Journal of

plied Mechanics

Published Quarterly by The American Society of Mechanical Engineers

VOLUME 60 - NUMBER 3 - SEPTEMBER 1993

573

575

583

589

595

601

607

614

619

626

633

640

646

649

662

669

677

683

689

695

702

707

715

721

728

737

743

749

759

763

Reviewers List
TECHNICAL PAPERS

Dynamic Wrinkling of Viscoelastic Membranes
C. H. Jenkins and J. W. Leonard

Green’s Functions for Generalized Plane Problems of Anisotropic Bodies With a Hole or a
Rigid Inclusion
Yung-Ming Wang and Jiann-Quo Tarn

Arbitrarily Oriented Crack Inside an Elliptical Inclusion
G. Anlas and M. H. Santare

An Inverse Problem in Elasticity With Partially Overprescribed Boundary Conditions, Part I:
Theoretical Approach
Weichung Yeih, Tatsuhito Koya, and Toshio Mura

An Inverse Problem in Elasticity With Partially Overprescribed Boundary Conditions, Part II:
Numerical Methods and Examples
Tatsuhito Koya, Weichung Yeih, and Toshio Mura

Singular Stress Field Near the Corner of Jointed Dissimilar Materials
Dai-heng Chen and Hironobu Nisitani

A General Method for Data Averaging of Anisotropic Elastic Constants (93-APM-26)
M. Grediac, G. Verchery, and A. Vautrin

Finite Deformation Constitutive Relations for Elastic-Plastic Fibrous Metal Matrix Composites
N. Fares and G. J. Dvorak

On Anisotropic Elastic Inclusions in Plane Elastostatics
Chyanbin Hwu, and Wen J. Yen

Frictionless Contact of Layered Half-Planes, Part I: Analysis
M.-J. Pindera and M. S. Lane

Frictionless Contact of Layered Half-Planes, Part Il: Numerical Results
M.-J. Pindera and M. S. Lane

The Effects of a Space-Fixed Friction Force on the In-Plane Stress and Stability of Transverse
Vibrations of a Spinning Disk
Jen-San Chen and D. B. Bogy

Response of Annular Plates to Circumferentially and Radially Moving Loads
G. N. Weisensel and A. L. Schlack, Jr.

Equations of Motion for Nonhoionomic, Constrained Dynamical Systems via Gauss’s Principle
R. E. Kalaba and F. E. Udwadia

Jumps to Resonance: Long Chaotic Transients, Unpredictable Outcome, and the Probability
of Restabilization
M. S. Soliman

Lyapunov Exponents and Stochastic Stability of Two-Dimensional Parametrically Excited Ran-
dom Systems
S. T. Ariaratnam and Wei-Chau Xie

Convex Modes for Uncertainty in Radial Pulse Buckling of Shells
Y. Ben-Haim

Representation of Strongly Stationary Stochastic Processes
M. Di Paola

On the Approximate Solution of Nonclassically Damped Linear Systems
J. H. Hwang and F. Ma

Maxwell Critical Loads for Axially Loaded Cylindrical Shells
G. W. Hunt and E. L. Neto

A Similar Flow Between Two Rotating Disks in the Presence of a Magnetic Field
R. Usha and S. Vasudevan

Free-Edge Stress Intensity Factor for a Bonded Ductile Layer Subjected to Shear
E. D. Reedy, Jr.

Fluid Flow and Heat Transfer in the Crescent-Shaped Lumen Catheter
M. A. Ebadian and H. Y. Zhang

Momentum and Enerw Approximations for Elementary Squeeze-Film Damper Flows
S. H. Crandall and.A. El-Shafei

Contact With Friclion Between Two Elastic Half-Planes
L. Johansson

Stress Field due to a Dislocation on the Interface Between Two Quarter Planes
P. Kelly, D. A. Hills, and D. Nowell

A Computational Model for Fe Ductile Plastic Damage Analysis of Plate Bending
Guangyu Shi and G. Z. Voyiadjis

é\hDoqbly Periodic Rectangular Array of Fiber-Matrix Interfacial Cracks Under Longitudinal
earing
Hong Teng and A. Agah-Tehrani

Transient Wave Propagation Methods for Determining the Viscoelastic Properties of Solids
R. H. Blanc

(Contents continued on Inside Back Cover)

ribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



CONTENTS(CONTINUED)
BRIEF NOTES

i ! H-W by N ircular Cavity in An- 769 777 Analysis of the Interfacial Crack for Anisotropic Materials Under
mﬁrgg?c“&'gé?am Plane S aves by Noneircular Gavity Displacement-Displacement or Traction-Displacement Boundary

iu Di i F Conditions
Liu Diankui and Han Feng Chein-Ching Ma and Jyi-Jiin Luo

Steady-State Transonic Motion of a Line Load Over an Elastic 772

Half-Space: The Corrected Cole/Huth Solution 781 Sing?larity Eigenvalue Analysis of a Crack Along a Wedge-Shaped
. G. iadis and J. R. Interface
H. G. Georgiadis and J. R. Barber Y. Z. Chen and Norio Hasebe
i - i d Against a Vertical Cliff ina 774 . .
gﬁjpi)glg:‘yF(iar:ﬁ\g%eVgtives Generatad Again a in 783 On the Convergence of Karhunen-Loeve Series Expansion for a
_A. K. Pramanik and D. Banik Brownian Particle

W. G. Paft and G. Ahmadi
785  Work-Conjugate Boundary Conditions Associated With the Total

Rotation Angle of the Shell Boundary
W. Pietraszkiewicz

DISCUSSIONS

787 The Effect of Compressibility on the Stress Distributions in Thin Elastomeric Blocks and Annular
Bushings, by Y.-H. Lai, D. A. Dillard, and J. S. Thornton—Discussion by C. W. Bert

787 Stress Distribution in an Edge-Stiffened Semi-infinite Elastic Plate Containing a Circular Hole, by
E. J. Lee and E. C. Klang—Discussion by X. Markenscotf

787 Complex Modes and Solvability of Nonclassical Linear Systems, by T. K. Caughey and F. Ma—

Discussion by S. M. Shahruz
BOOK REVIEW

789 Applications of Potential Theory in Mechanics: A Selection of New Results, by V. |. Fabri-

kant. .. Reviewed by M. Hanson
ERRATUM

582 The Spherical Inclusion With Imperfect Interface, by Z. Hashin and published in the June 1991 issue

of the Journal of Applied Mechanics

ANNOUNCEMENTS AND SPECIAL NOTES

625 12th U.S. National Congress of Applied Mechanics
676 Change of Address Form

688 Symposium on Material Instabilities—Call for Papers
694 IUTAM Symposium in 1996 or 1997 —Call for Proposals
736 Books Received by the Office of the Technical Editor
790 Worldwide Mechanics Meetings List

792 Information for Authors

Downloaded 04 May 2010 to 171.66.16.49. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



C. H. Jenkins

Assoc. Professor,

Department of Mechanical Engineering,
South Dakota School of Mines

and Technology,

Rapid City, SD 57701

Mem. ASME

Dynamic Wrinkling of Viscoelastic
Membranes

Problems associated with viscoelastic membrane structures have been documented,
e.g., dynamic wrinkling and its effects on fatigue analysis and on snap loading. In

the proposed analysis method, the constitutive equation is approximated by a finite
difference equation and embedded within a nonlinear finite element spatial discre-
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tization. Implicit temporal integration and a modified Newton-Raphson method are
used within a time increment. The stress-strain hereditary relation is formally derived
JSrom thermodynamic considerations. Use of modified strain-energy and dissipation
Junctions facilitates the description of wrinkling during the analysis. Applications
are demonstrated on an inflated cylindrical cantilever and on a submerged cylindrical

membrane excited by waves.

1 Introduction

1.1 Background. Thin membranes are inherently no-
compression structures. Compressive stress, of sufficient mag-
nitude to overcome tensile prestress, will be handled via changes
in membrane geometry, i.e., by an out-of-plane deformation
or localized buckling called ‘‘wrinkling.’” Analysis of wrinkling
isimportant to the prediction of membrane structural response.
In long-term loading situations, the creep/relaxation response
of viscoelastic materials will tend to decrease the level of pre-
stress, thus increasing the formation of wrinkles. Problems of
dynamic wrinkling (e.g., panel flutter) are of interest for the
effects on fatigue analysis (e.g., tension field effects on mean
stress distribution) and on snap loading (e.g., when a wrinkled
region suddenly regains the lost principal stress). (Such con-
siderations are beyond the scope of the present work, however.)

1.2 Prior Research. Wagner (1929) introduced the ideas
of wrinkling and ‘‘tension field theory’’ in connection with
flat sheet metal girders in the very thin metal webs used in
airplane construction. Under the action of a specific loading,
one of the principal stresses goes to zero while the other remains
non-negative. If the non-negative principal stress remains
greater than zero, a ‘“tension field’’ is defined; if it is zero, a
“‘slack’’ region results. The crests and troughs of ‘‘wrinkle
waves’’ align with the direction of the nonzero principal stress.
In typical wrinkling analysis, results are only in terms of av-
erage strains and displacements, while no detailed information
is generated for each wrinkle. Furthermore, a membrane need
not be wrinkled over its entire surface. (A review of membrane
wrinkling research is given by Jenkins and Leonard (1991a).)
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The formation of a finite number of wrinkles during mem-
brane deformation relies on the inherent (albeit small) bending
stiffness of the material. Detailed description of the wrinkling
phenomena is absent in membrane analysis since the bending
stiffness is disregarded. Pipkin (1986) and Steigmann and Pip-
kin (1989a, b, ¢) discuss this further and postulate the existence
of a “‘relaxed strain-energy density,’”’ which represents the av-
erage energy per unit initial area over a region containing many
wrinkles. The relaxed energy density is constrained such that
its derivatives (stresses) are non-negative, thus incorporating
tension field theory into membrane theory automatically.

1.3 Conventions. The following conventions are used:
the summation convention is implied unless explicitly stated
otherwise; Latin indices take the values 1, 2, 3 unless explicitly
stated otherwise; Greek indices take the values 1, 2; capital
and lower case Latin letters (except indices and symbols with
a tilde) refer to the undeformed and deformed state, respec-
tively; bold type indicates vector or tensor quantities; super-
scripts or subscripts enclosed in parentheses indicate no sum,
and the overdot symbol represents differentiation with respect
to time.

1.4 Strain and Stress Measure. Consider the Cartesian
coordinates X; of a point X on the undeformed membrane
midsurface which becomes point x with coordinates x; on the
deformed midsurface. Also define convected curvilinear mid-
surface coordinates ©' = ¢, i.e., the ©' coordinates of X are
numerically equal to the ' coordinates of x. The metric tensor
in the deformed state is gy = g » &, g = 9r/3¢', and r is the
position vector from o to x; similarly, in the undeformed state,
Gu = Gy » G;, where G; = dR/36¢', and R is the position vector
from 0 to X. The convected Green-Lagrange strain tensor
components, Ey;, are given by (Green and Zerna, 1968)

1
Ek/:E (8w — Gu). O
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2 Viscoelastic Finite Elements

2.1 Nonlinear Finite Element Method. We follow a finite
element discretization for a combined incremental/iterative
method with a ‘“‘modified”” Newton-Raphson iteration, using
an isoparametric formulation. With the notation that the in-
crement of time is Af, ¥; = isoparametric shape | functlon for
node 7, X! = ith initial coordinate of node I, Ul = ith dis-
placement of node I, £ = natural coordinate of the element,
I =1, ..., number of nodes (per element), and &k = 1, ...,
number of iterations per time step, we write the combined
incremental/iterative membrane equation of motion as (Jen-
kins, 1991):

M (U (t+ AL k+ 1))+ [y (£ + ADT{AUT (£ + AL) )
={B ;(t+ AL k+ D)) - (Fy(t+ A k) Q)

where [My;] = consistent mass matrix, Kt + AD) =

tangent stiffness matrix, {BP;(¢ + At; k + 1)} = external force
vector, {Fi;(t + At; k)} = internal force vector, and {AUY (¢
+ At)} = incremental displacement vector between iterations
k and & + 1. Note that, by use of the modified Newton-
Raphson method, [X U,J(t + A?)]is constant during a time step.

2.2 Constitutive Equation—General. The method of
‘“local state’’ (see Germain, 1973; Lemaitre and Chaboche,
1990) postulates that the thermodynamic state of a continuum
at a specific location and time is completely defined by the
values of certain variables (state variables) at that time and
location. The ‘“‘observable’’ state variables, temperature and
deformation, define elastic (reversible) phenomena uniquely
as a function of time. ‘‘Internal’’ state variables (e.g., defor-
mation rate) are required for the representation of dissipative
phenomena, since the current state also depends on the state
history. State laws are derived from postulated thermodynamic
potentials which are functions of the state variables. In order
to satisfy the Clausius-Duhem inequality (second law of ther-
modynamics), potentials must be non-negative, convex func-
tions with zero values at the origin of state variable space; a
typical choice is that of a positive-definite quadratic form.

In light of the above discussion, we postulate the existence

of strain energy and dissipation functions W = W(E, C, 1)
and V = W(E, C, 1), respectively, such that

Sty = tH+ t 3

()aEU()aEU() (3)

where S% is the convected, second Piola-Kirchoff stress tensor,
and C is the constitutive tensor. In Appendix A we show the
connection between (3) and the linear hereditary constitutive
equation. We now generalize as follows: for suitable choices
of state variables in W and V, and for a suitable material
function approximation by a Prony series, the following finite
linear viscoelastic constitutive relation is obtained from (3)
(where the dependence of the material function on current
strain has been neglected)

~ "dCP(1-1)
of _ Aoyl _ hedud SN 4
5% (1) = GO, (1) L L

E,(T)dr. 4

2.3 Constitutive Equation—Computational Form.
Solution of complicated viscoelastic problems will generally
require numerical techniques. (For a review of computational
methods in viscoelasticity, see Jenkins and Leonard, 1991b.)
In the direct method proposed by White (1968), the governing
integro-differential constitutive equation is approximated by
a finite-difference equation and embedded within the spatial
discretization, thus making a viscoelastic finite element; this
is the method followed in the present work.

In summary, we rewrite (4) in incremental form based on a
Taylor series approximation, then descretize with a trapezoidal
approximation. A three-term Prony series approximates the
relaxation modulus to reduce computational memory require-

576 / Vol. 60, SEPTEMBER 1993

ments (the adequacy of this double exponential model for solid
polymers has previously been discussed by Garbarski, 1989).
Finally, after considerable algebra, we rewrite (2) as
My (U] (14 AL k+ 1)) + [Kyny (14 ADT{ AU (14 A1) )
={By(t+ At k+ 1)) — (Fy(1+ A8 k)Y + {Qu(t+ADY  (5)

where {Q;;(t + Af)} = memory load vector. (For details see
Jenkins and Leonard, 1991b.)

3  Wrinkling Analysis

3.1 Formulation. For wrinkling under a plane stress as-
sumption, we define principal stresses S° (see Appendix B):

o aw ap L, aW . aF
SO=350 Ew S %m0 TiEmn  ©

where Eg are the principal strains. Following Steigmann and
Plpkm (1989a, b, ¢), a “‘natural width’’ (in 51mple tension),

Ez[E,(t)], is defined such that when $*(z) — $ = 0, By (1)
= Ez[El(t)], and §' — S [Ey, EZ, 7], where starred quantities
denote values*at wrinkling. When E,(¢) < E2[E1 (2)] (with E,

> 0), E, — E,, and “‘relaxed”’ strain energy and dissipation
functions are defined as

- - - * - - " . *
W =w*(C,E\, Ex, ), V’=V*(C,E, Es, 1) (T

from which the stresses during wrinkling may be formally
found. We note that the above differs from the approach of
some authors (see, e.g., Contri and Schrefler, 1988) who as-
sume S' remains fixed instead of £, above. In either case, the
strain energy after wrinkling is never greater than the strain
energy before wrinkling.

For the moderate deformation of compressible isotropic
elastic membranes (dissipation function equals zero), the wrin-
kling condition is shown to be (see Appendix B):

~21

* C
Ey(E)= ~ = L. &

The wrinkling condition for isotropic finite linear wvisco-
elastic membranes under plane stress is found from

Sz(t)Iém(O)EB(t) __S _C___(t_T_).Eﬁ(T)dT )
0 dT
or
222, 12 dC?(t—1) *
C*OE (t)—S ——— Ey(1)dr
0 dr
~21
= - CY0)E, (r)+g ac =) g (ryar. (10)
dr

Then §! — g"[El, E,, f] in the wrinkling region, or
* - - *
81y = CNO)E (1) + CHO)EL (1)

_Sti
OdT

N TdCM (t—7)
_ Al _ Yo N 1T
=CN(OWE, (1) SO o

dC'z(t—'r)

(G (t—1)E, (1) + C2(t = 1) Ey (1— 7))dr
EI(T)dT

+é‘2(0)E2(z)—S E,(r)dr. (1)

0

For constant Poisson’s ratio, v,

*11 *

- G . G? .
Cu(f):VTZ—zCn(t):v*—”C“.
G G
Then
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YAl (r—1)

. o E,(1)dr

§‘(r>=é“(0)E1(t>~S

Ly

TACP(t~1) *
+ e r———
g d

: [C”(O)Ez(t) - , Ez(T)dT]- (12)

G22 0 T

Now, substituting (10) into (12) gives

"aC (t—1)
d

0

~c'oE 0 - | Ev(r)dr

A . LA (1~ 7) ‘
—_— _ 2 oy 2=
+V622[ CHO)E, (1) go o E;(T)df}. (13)
Finally,
* - ! <11 _ .
Si(t) =1 —-vHCMOE (1) — (1 -7 X MEl(T)dT.
0 dT

(14

4 Compuater Implementation

In what follows, use is made of quadratic, isoparametric
quadrilateral (8-node) curved membrane elements. (For con-
venience, straight lines are shown connecting nodal points in
Figs. 1 and 5.) To determine the initial equilibrium configu-
ration of a structure to applied static loads, a viscous relaxation

technique is used. Newmark’s method is used to solve the
dynamical equations of motion. Pressure loads, a specific ex-
ample of nonconservative loads, are accounted for by iteration,
thus eliminating the need to compute nonsymmetric matrices.
For validation purposes, the problems of the uniform inflation
of initially plane e]astic and viscoelastic rectangular membranes
were considered. (See Jenkins (1991) for further program de-
tails and validation results.)

The present analysis method is used for the specific case of
a plasticized PVC membrane material with the following rel-
evant properties:

Thickness = 1.3 mm (0.050 in.); initial elastic modulus =

55.16 MPa (8000 psi);

relaxation modulus = [23 + 26exp(—2.6 x 1072 ¢) +

6.2exp(~ 1.8 x 107%)] MPa

([3.4 + 3.7exp(—2.6 x 107%t) + 0.90exp(—1.8 x 107%]

x 10° psi);

Poisson’s ratio = 0.45;

mass density = 1068 N s>/m* (1.0 x 107* b s%/in.%).
We note that only quasi-static values of moduli were available
to us. For harmonic loading (as in the examples that follow),
the use of ‘“‘complex’” moduli is indicated. Incorporation of
such effects into the formulation is ongoing and will be re-
ported subsequently.

Principal stress results are plotted at selected integration

. — — Undeformed
~1.00 eoves t/T = 0.0

snooe t/T = 0.125

sasest/T = 0.250

Free End Nodes 1-7

5.00 6.00

Displacement results for sinusoidal loading of cantilever cyl-

~2.00
0.00 1.00 2.00
Xy /R
00 -
E
nr 050 3
2 § .
~N 3
= z
0.00 3 .
el -
- ul
© S
© -0.50 i .
O 3
o ]
o 3
@ -1.00 3
a 3
4 Vertical Displacement
of Node no. 7
~1.50 s e R R R R s
0.00 1.00 2.00 3.00 4.00
- Time  t/T
Fig. 1
inder
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Fig. 4 Quasi-static displacement and principal stress results

points as follows: wherever uniaxial stress (‘‘tension field’’)
occurs, it is shown; biaxial stress is shown only where required
for clarity; magnitudes are not indicated, although the longer
line corresponds to the larger principal stress; orientation of
principal stress is as shown; a circle enclosing an integration
point indicates a ‘‘slack’’ region; the finite element model is
“‘unrolled’’ into a plane surface for viewing.
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5 Applications

5.1 Deformation of an Inflated Cylindrical Membrane
Cantilever. Various investigators have considered the in-
flated cylindrical membrane structure, with particular interest
in the stability of equilibrium (see Jenkins, 1991, for review).
In the present work, we first apply a sinusoidal tip load of

Transactions of the ASME
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Fig. 5 Submerged cylinder configuration

amplitude 1.17 kN (264 1b) and period T' = 1.05t0 a viscoelastic
cylindrical cantilever beam initially inflated to a pressure of
4.76 kPa (0.694 psi). (Advantage is taken of axial symmetry
as shown in Fig. 1.) Cylinder dimensions are radius R = 0.46
m (1.5 ft) and length B = 2.4 m (8.0 ft). The displacement of
a free-end node with time is also given in Fig. 1, as well as a
deformation profile of the free end at various times. Figures
2 and 3 indicate the principal stresses at selected integration
points at various times. Wrinkling results are as expected: as
the load forces the free end up, compressive stresses build in
the upper half of the cylinder causing wrinkling waves aligned
perpendicular to the compressive stress; the same follows as
the load forces the free end down and wrinkling develops in
the bottom half of the cylinder. We note that the stress at
t/T = 0.0, 0.5, 1.0, ..., are purely biaxial.

Then we apply a constant tip load (587 N) to the above
cantilever cylinder. Time-dependent displacement and wrin-
kling results are given in Fig. 4, where the time has been non-
dimensionalized by the first relaxation time constant Ty (=
1/0.0262 s~! = 38.2 5) of the viscoelastic constitutive relation.
Corresponding static elastic results are also shown for com-
parison purposes. Wrinkling results are shown for ¢/T, = 13.

Journal of Applied Mechanics

5.2 Hydrodynamic Loading of a Submerged Membrane
Cylinder. Membrane structures have been considered for use
in the marine environment in a variety of situations including
storage containers, dwellings, and breakwaters (Jenkins and
Leonard, 1991a). To examine the latter case, the numerically
predicted response of an experimental cylindrical breakwater
model was considered. (For experimental details, see Brod-
erick, 1991.) A 0.91 m (3.0 ft) diameter right circular visco-
elastic PVC cylinder of length 2B = 3.7 m (12 ft) is submerged
in 2.7 m (9.0 ft) of water depth with the (X;) axis of the
cylinder 3 feet below the still water level and parallel to it (see
Fig. 5). Due to symmetry of loading, only 1/2 the length of

“the cylinder is modeled; one end has a fixed boundary con-

dition, the other is fixed only in the axial direction. The cylinder
contains water and is subjected to an over-pressure of 0.48
kPa (10 psf), a value corresponding to the experimentally ob-
served mean value. Surface waves of 0.15 m (0.5 ft) height
and period T = 2 s are incident on the cylinder in the positive
X,-direction. Incident wave pressure on the cylinder is ac-
counted for in the numerical model by a linear Froude-Krylof
model, i.e., no diffraction or radiation effects are considered
to modify the incident wave field. Internal pressure of the

SEPTEMBER 1993, Vol. 60 / 579
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cylinder is assumed constant. The mass of the contained fluid
is distributed to the cylinder as lumped masses at the corner
of the elements.

A selected finite element vertical displacement result at the
membrane top are compared to experimental values in Fig. 6
for approximately seven cycles of loading (results are nondi-
mensionalized by 1/2 the wave height to match experimental
data); corresponding cross-section profiles for two cycles are
also shown. The comparison is quite good, considering the
lack of a more sophisticated hydrodynamic model.
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Figures 7 and 8 indicate the associated principal stresses for
selected times. Both fore and aft sides (left and right sides of
figures, respectively) are represented in plane ‘‘unwrapped’’
view; the symmetry end corresponds to the tank centerline. A
significant amount of the membrane is wrinkled, which is
indicative of the complexity of the loading environment. We
would expect increased internal pressure to decrease the amount
of wrinkling to some extent. Comparison with experimental
video data shows that the essential description of the wrinkled
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surface has been captured (see Jenkins, 1991, for additional
details and results).
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APPENDIX A
Viscoelastic Constitutive Relation

Following Lemaitre and Chaboche (1990), we consider the
specific plane stress case when, for small strain,

P | vl E

= | ——=E 2——E\E, Alg
"= [(1—%) welaot 2170 } (Ala)
_ 1| eET ET*

== EooFigg+2 ———— EE, Alb
V=3 {(1 ) BB (1+0) Ey; } (A1D)

where T and T* are charalcteristic retardation times in tension
and shear, respectively, E is the initial elastic modulus, and »
is the Poisson’s ratio. The stress can now be shown to be

vE E
SD!B l:(l 2) E‘Y’Yaaﬁ +o (1 + ) O(ﬁ]
vET
+ [(1 Epdag+

vl
= -9 7 (Bt TEfr)aaﬂ +—

ET" .
= F
1+») "‘ﬁ]

(Eop+ T Eqg). (A2)

E
(1+7)
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The shear retardation time, T, can be determined during a

shear test, i.e., when

(Eog+ T*Eog), a#B.

Sap = constant = (A3)

(1+»)

The solution of this differential equation is readily shown to
be

1+
Eos(t) =—E—” Sasll —exp(—1/T")], a=B.  (Ad)
Similarly, T is identified through a tension test, viz.,
S(a) (a) = constant
Y .
= (1 _ V2) (E'Y’Y+ TEs“s“)a(a)(cx)
[Eay (e + T Eayw]- (A5

T

Using the facts that Ejgy = — vE(a)q), Where v = constant,
and 1 — »* = (1 — »)(1 + v), we combine terms to get

E
(I+»)

= EE (4 (o) * 1E (@) (s 1=

EE e+ 0T+ T*)E oy ()

S(ay () =

_E
, 1+
We recognize (A6) as the governing equation for a Kelvin-
Voigt mechanical-analogic model with response

WT+T"). (A6)

1 _
E(a)(a)(f)=z~, Say(a [l ~exp(— Lt/1)]. (A7)
The model can be generalized by forming assemblies of Kelvin-
Voigt models; for linear viscoelasticity, the strain responses

may be summed, e.g.,

1
Ey(f)= { +—[1-6Xp( Ext/m)]

1 _
+ 5 [1- eXp(—E31/773)]} S(ayer (A8)
3

This result can also be reached by use of the Prony series
representation of the material function in the hereditary con-
stitutive relation. Consider the three-term Prony series

J() =A, + Ayexp(— Bat) + Asexp(— Bit) (A9)
substituted into the linear hereditary integral
P
~ aJ(t—
Eog(£) = J(0)Sus (1) — S % Ses(T)dr. (A1)
0
For constant S,z in (A10) we integrate to get Eq. (A8) where
T | 1~~E2~E3
==A1+A,+ A5, ==A,, ==A4,, B,=—= B .
B 1 2 A 5 3, Dy ” 3= "

APPENDIX B
Wrinkling Condition
Define principal stresses and strains
8= 8N o mins Es= [E (g (8)lmax,min

where §! > §2, E| > E, and parentheses around superscripts
or subscripts indicate no sum. Now also define
éaﬁE fol G (BI(B)

« In general, the principal axes (defined by the basis vectors

a) will differ from the local coordinate axes (defmed by the
basis vectors G,), and the metric tensor components G*® trans-
formed to the principal coordinates are given by
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(*;ozﬁ _ )\s)\ng% (B1) 0=C*E, + C*E, (B4)

where the backward change of basis coefficients A% (Malvern, ~and the wrinkling condition is given by
1969) are given by the transformation 6

x Ey(E) = — =5 Ey. BS
G, =NG,. - : (B2) 2(E1) Forz il (B5)
For an isotropic Hookean material, . ) The principal stress under wrinkling is then given by
§*=CPE,. B3 T X - C?C"?
o w f ®9 S'=CUE + CE= (&' —== ) Ev. (B6)
Now for wrinkling, S° = 0, then . C
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ERRATA

Errata on ‘“The Spherical Inclusion with Imperfect Inter-
face,” by Z. Hashin, published in the June 1991 issue of
JourNAL OF APPLIED MECHANICS, Vol. 58, pp. 444-449.

On page 446, the last two Egs. (19) should read:

9
ope=2GB g3(7 +1Ap%+ 2B+ (1 —-2»)C/p’ +3 D/’
2 3 7 5 2
+| =7C+»Ap*—B+(1-2»C/p =5 D/p’ |3 cos’d.
2 3 3 5
Opp =203 15vAp"—B—-5(1-21v)C/p +5D/p

5
+ [ —(11+70)Ap*+3(1 = 25)C/p° -5 D/pS] 3 00520} .

Equation (20) should read:
A|=Cz=D2=O Blz 1.
The last two Egs. (25) should read:

1) . 1
ob)(@,0) _ Kx(3K: ~2Gy) + 6K,Gi(1 + 3p)+§ {“ (1-2)C,

gy 3K1 [3K2 + 402(1 + 3p)]
+% D +% [—2+2(1-2»)C,~7D)] cos20}
043(a,0) _ Kx(3K1—2Gy) + 6K,Gi(1 + 3p)
Jp 3K1 [3K2 + 4G2(1 + 3[9)]

1 3
+§ {— 1 —5(1—2V1)Cl+2_D1

3
+5 [6(1 —2v)C,—5D)] 00529} .

The help of Mr. Uri Schur in correcting these errors is grate-
fully acknowledged.
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Green’s Functions for Generalized
Plane Problems of Anisotropic

Yung-Ming Wang

Jiann-Quo Tarn

Department of Civil Engineering,
National Cheng Kung University,
Tainan, Taiwan 70101,
Republic of China

Bodies With a Hole or a Rigid
Inclusion

Green’s function solutions are presented for the generalized plane problems of a
point force and an edge dislocation located in the general anisotropic elastic medium
with a hole or with a rigid inclusion. The Lekhnitskii’s complex potential approach

is used and a general expression of the solutions is obtained. Particular attention is
paid to the determination of appropriate mapping functions that map the exterior
of the hole or the inclusion onto the exterior of a unit circle. The conditions under
which the conformal mapping is possible are explored. Examples using the Green’s
Sunctions for the solution of notch problem are given.

Introduction

The solution of a point force or a dislocation located in an
elastic medium of infinite extent is known as the Green’s func-
tion solution or the fundamental solution. Among its wide
applications, the Green’s function is essential in the boundary
element method (Brebbia, Telles, and Wrobel, 1984). In study-
ing elasticity problems involving geometrical disturbance, such
as a hole or an inclusion, it is preferable to employ a special
Green’s function which satisfies the boundary conditions at
the hole or the inclusion in the formulation so as to avoid
disturbance of the stress distribution in the vicinity of the high
stress concentration region.

Considerable research on the related topics can be found in
the literature, The use of special Green’s function in the crack
problems have received much attention (Snyder and Cruse,
1975; Clements and Haselgrove, 1983; Ang and Clements,
1987; Kamel and Liaw, 1989). Interactions between point sin-
gularities and a rigid inclusion have been a topic of considerable
interest because of their practical importance (Mura, 1982;
Santare and Keer, 1986; Dundurs and Markenscoff, 1989; Li
and Ting, 1989). To the authors’ knowledge, earlier studies
on the Green’s functions of anisotropic elasticity are for an-
isotropy of special kinds, and for a hole or an inclusion of
elliptic shape which includes its geometric limits, such as a
circle, a crack, or a line inclusion. Recently, using the Stroh
formalism (Stroh, 1958), Hwu and Yen (1991) studied the
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Green’s function for the case of a point force in two-dimen-
sional anisotropic medium containing an elliptic hole. Ting
and Yan (1991) studied the problem of general anisotropic
medium with an elliptic hole subjected to prescribed traction
on the hole surface and an elliptic rigid inclusion subjected to
a concentrated force. While certain identities concerning ei-
genvalues and eigenvectors developed in the Stroh formalism
may be useful in simplifying and interpreting the solutions, as
discussed by Suo (1990), the formalism is essentially an alter-
native derivation of the classical Lekhnitskii’s approach (1963).
Due to its explicitness, the Lekhnitskii’s complex potential
formulation is employed in this paper to obtain the Green’s
function solutions for the generalized plane problems in the
cases of a point force and an edge dislocation located in the
anisotropic elastic medium with a hole or with a rigid inclusion.
The anisotropy considered herein is completely general, with-
out assuming elastic symmetry of the materials.

It is well known that the use of the complex potential ap-
proach to the notch problem involves conformal mapping.
While it is relatively simple in the case of isotropic materials
because a single mapping function is required, the solution is
considerably more difficult to obtain in the case of general
anisotropic materials, since it requires finding three conformal
mapping functions which transform the complex parameter

' regions onto the exterior of a unit circle. Analytic solutions

for the notch problems in anisotropic elasticity appear to be
available only for the hole of elliptic shape (Savin, 1961;
Lekhnitskii, 1963). For a hole contour of a general shape,
many numerical solution methods were devised (Sih, 1978).
Approximate solutions based on perturbation method valid in
restrictive conditions for orthotropic materials can be found
in Lekhnitskii (1968). In this paper, a general expression of
the solutions for hole of arbitrary shape is derived and par-
ticular attention is paid to the determination of appropriate
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mapping functions. The conditions under which the conformal
mapping is possible are explored. It is shown that the conformal
mapping in the entire region outside the unit circle is indeed
possible only for elliptic contour or for anisotropy of a special
kind. Nevertheless, useful mapping functions which are con-
formal and single-valued within a local region containing the
arbitrary contour can be obtained in a simple manner. Ap-
plication of the special Green’s functions to the solutions of
problems involving holes or rigid inclusions of arbitrary shape
is then discussed and examples are given to examine the validity
and generality of the present solution.

Basic Equations and General Solutions

The stress and displacement components for a generalized
plane deformation of a general anisotropic elastic medium can
be expressed in terms of three complex potentials (Lekhnitskii,
1963) as

o1 =2Re(uidr + p3ds + uihsds) 1)
022 =2Re(d; + 05 + Nsh3) 2)
G12= —2Re(id1 + paths + pahsds) 3)
o13=2Re(u\idy + pahaby + p3h3) “
03 = — 2RC()\1¢)1I + )\zd)Zl + ¢3’) (5)

3
1 =2Re <2 pm) (6)
k=1
3
1y =2Re <2 qkqsk) ™

k=1

3
uy=2Re <Z rkd)k) ®

k=1

in which ¢, =¢x(zs), (k=1, 2, 3) are the complex potentials,
Zx =X+ wy, Re stands for the real part, and prime (") denotes
differentiation with respect to the argument. The rigid-body
displacements were omitted. u, are the three complex conjugate
roots with positive imaginary part of the characteristic equa-
tion:

L(wh(w) - 13(w) =0 ©)
h(p) = 555#2 — 2B4spt + Bas,

L) = 615!’-3 =B+ 556)#3 + (825 + Bag)it — Bass
L(w) = ﬁull-4 - 2316#3 + 2812+ :866)1-"2 — 2B26pt + B2

where

B;; are the coefficients of deformation of the material. The
expressions for the complex parameters Ay, Py, gi, and ry in
terms of 8; and u, can be found in Lekhnitskii’s book. The
basic equations for the generalized plane stress problem are
obtained by replacing §; with the compliances a; of the ma-
terial.

When the material possesses one plane of elastic symmetry
normal to the x;-axis (monoclinic material), or the material is
orthotropic with axes 1, 2 as its principal material axes, then
I(n) = 0 and A\; = A, = A3 =0. Determination of ¢; is not coupled
with ¢, and ¢,. The in-plane and antiplane deformations can
be treated independently.

For the expedience of exposition, let us adopt the following
matrix notations similar to those given by Stroh (1958) and
Suo (1990),

o1 U a1 e
O=(dyp, U=(Up, O={0120, 62={0n],
3 U3 013 023

584 | Vol. 60, SEPTEMBER 1993

P D2 D3 —m M2 =N
A=lqg @ q|L=| 1 1 Ao
r Iy I _)\1 —>\2 —1
g 0 0
r=10 pu O

0 0 p

Then Eqgs. (1)-(8) can be recast into compact forms as follows:

o=-Lpp' -Lu g’ (10)
0,=L¢’ +L @’ an
u=A¢+A (12)

where the overbar denotes the complex conjugate.
In addition, the resultant forces T on an arc can be expressed
by
T=-L¢-L 9. (13)
Consider an infinite region with a traction-free hole or a

rigid inclusion. The boundary conditions on the contour of
the interior boundary I' can be written as follows:

(1) When T is a traction-free boundary,

Lé+Lé=0 onT. (14)
(2) When I' is a rigid boundary,
A¢+AF=0 onT. 15)

Suppose that exterior of I' in the {; planes can be mapped
conformally onto the exterior of a unit circle, o=¢", by the
mapping functions

zk=wk(§‘k)s k:1, 2’ 3. (16)

Then, the boundary condition on the unit circle in the §
plane becomes

L&)+ L #(c)=0,
A®(0)+ A B(0)=0,

where @ (5) =6 (Wi l($%))-

When the medium contains point singularities due to the
presence of a concentrated force and an edge dislocation, &
must be holomorphicin fa] > 1 except at the point singularities
and ‘at infinity.

Let ® consist of a function f which contains the point sin-
gularities but is holomorphic in lol <1, and function g hol-
omorphic everywhere in lol>1,

B(5) =1(5) +8(5)-

Note that 5= o~ ' on the unit circle, and f(o™ ") is the bound-
ary value of £(¢~") which is holomorphicin lol>1, and g(o™ ")
is the boundary value of g(¢~ ") which is holomorphicin fol < 1.
Substituting (19) into (17), (18), multiplying them by
1/2xi(o— ¢), and integrating around the unit circle, we obtain
according to the Cauchy’s formula for the infinite region
(Muskhelishvili, 1954)

a7
(18)

(19)

Lg)=-LI¢™, I¢l>1 (20
for the case of a traction-free hole and
Ag(O=-ATEH, I¢l>1 2D
for the case of a rigid inclusion.
Then by (19) we obtain
(O =F)-L LG (22)
for the case of a fraction-free hole, and
(O =fO-ATACTH (23)

for the case of a rigid inclusion.
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Equations (22), (23) are the general expressions of the com-
plex potentials satisfying the boundary conditions (17) or (18).
It can be applied to various problems involving a notch or an
inclusion. Determination of f({) for a given boundary value
problem requires that it be holomorphic in the unit circle. Once
the solution of £(¢{) is determined for the problem, the pertinent
field quantities can be obtained from (1)-(8) by replacing ¢ in
each component functions with ¢, {, and {3, respectively.

Green’s Function Solutions

Consider a concentrated force P=(py, p,, 0) and an edge
dislocation with Burgers vector b= b,i + b,j both located at the
point (x*, ¥*) in the medium. When the point singularities are
acting in an unbounded region without the geometrical dis-
turbance, the stress and displacement fields can be determined
from ¢y

67 (2) =i log(z —21) 4

where z; =x" + ", the coefficient vectors ¢= (¢, ¢;, ¢;} are
obtained from the condition that integrations of the force and
displacement determined by (24) over a simple closed contour
encircled z; produce the resultant forces equal to (py, Dy, 0)
and the displacement increments (b, b,, 0). The conditions

provide
L -L|f{c) 1(p
A —~A| [8) 2xib)

When the point singularities are acting in the unbounded
region containing a hole or an inclusion, the stress and dis-
placement field must be perturbed by the presence of the hole
or the inclusion. Consequently, in addition to ¢y, a modified
term ¢y which is holomorphic outside the unit circle should be
included. Thus, in the { plane,

(25)

8,(0) = ¢ log(t— &) + 8D (26)
where {5 = wg '(z0).
Comparison of (26) with (22), (23) immediately gives
fi(©) = cx log(¢— &) @7

It follows from (22), (23) that

3
Bi(50) = i log(k— $6) — D Mg log(s ' —57),  (28)
j=1
where M_=L”—I: for the case of a traction-free hole and
M=A""A for the case of a rigid inclusion.

The Mapping Functions

Determination of the Green’s function solutions (28) is based
on the existence of the conformal mapping functions (16). In
practice, however, it is very difficult to find the suitable map-
ping functions that transform conformally the {; parameter
regions onto the exterior of a unit circle. In the following, the
conditions under which the conformal mapping is possible are
explored.

Consider a hole of arbitrary shape in the infinite region. The
Fourier series representation of the contour can be expressed
by

x(0)=Ao+ Z Ay cos nf+ Z B, sin n,

n=1

29

n=1

y(8)=Co+ », Cy, cos nf+ Y D, sin nd,

n=1

(30)
n=1
where 0<6<2r. It is shown in the Appendix that the family
of elliptic contours can be represented by (29), (30) with
A,=B,=C,=D,=0 for n=2.
On the z; planes, the contour is given by

Journal of Applied Mechanics

w=x+py=(Ao+ mCo) + Y, (An+pCp)cos nf

n=1

+ > (By+ mD,)sin nb.  (31)
n=1
It is necessary that the mapping functions be holomorphic
and single-valued outside the unit circle. Equation (16) thus
may be represented by a Laurent’s series in the form

2= wi(§) = Moe + mycdic+ Y ) Ml " (32)

n=1
In addition, all the roots of wy({z) =0 are required to locate
inside the unit circle. )
On the unit circle, {x=¢?, then

o

Ze= Mo+ (Mg + M 13)cos 0+ Z M _ pp €OS 1O
n=2

@

+Hi(my—m_y)sin 0— > m_y sin nb.  (33)
n=2

Comparing (33) with (31), we obtain

mox = Aqg + prCo, (349
my=[A;—iBy + pe (Cy— iD1)]/2, (35)
m_=[A+iB+pu (C+iD)]/2, (36)

m_pye=A,+uCp=i(By+uDy), nz=2. 37

Since p, are always complex, let u; = o + I8y, oy and 8, being
real numbers, §8,>0. From (37), we have for n=2,

ayCp+ BiDy = — Ap,
k=1, 2,3.
BkCn—aanz _Bm (38)

Equations (38) are compatible only under two possible con-
ditions:

(1) A,=B,=C,=D,=0 forn=z=2,
then m_ ;=0 for n=2.

The contour is a family of ellipses. Furthermore, it is shown
in the Appendix if A,.D;— B,C,>0, the exterior of the ellipse
is mapped onto the exterior of the unit circle by (32) with the
branch points located inside the unit circle. If A\D,— B;C, <0,
the appropriate mapping functions are

w(§k) = Mo+ mudic '+ m e (39)

_ By prescribing appropriate parameters in the mapping func-
tions for the elliptic hole, the Green’s functions for a circular
hole, for a crack, can be readily obtained.

(2) ai=op=a3, f1=P2=0;, hence p;=p,=ps.

This means that the characteristic Eq. (9) has repeated com-
plex roots. Note that the basic forms of complex potential
representation of stresses and displacements are different from
those given by Egs. (1)-(8) in this case. The isotropy is a well-
known degenerate case of this kind with u;=pu,=1.

Equations (38) contradict for any other situation. Conse-

- quently, the mapping functions which is conformal and single-

valued everywhere outside the unit circle can not be found for
a nonelliptic contour with distinct ug.

On the other hand, a mapping which is conformal and single-
valued within a local region containing the hole of arbitrary
shape can be determined by using a complete Laurent’s series
representation )

w=wi(§e)= D, Muli.

n=—0o

40)
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Comparing (40) with (31), we obtain

Mo = Ao+ e Co, (41)
My =[Ay— By + w(Cy—iD)1/2, (42)
M _ = [Ap+iB,+ uy (C,+1iDy)1/2. (43)

The mapping functions (40) are not single-valued in the entire
region outside the unit circle because branch points where
wi({) =0 in general exist outside the unit circle.

In spite of the fact that the branch points of (40) are not
always located inside the unit circle, the mapping functions
are holomorphic and single-valued within a finite region be-
tween the interior contour and the branch cuts. The corre-
sponding Green’s functions satisfying the boundary conditions
at the interior contour are useful in the numerical solution of
the pertinent problems. When using a numerical procedure
such as the boundary element method to analyze a problem
involving an interior contour of arbitrary shape, it is advan-
tageous to determine first the local region containing the hole
or the inclusion in which (40) is holomorphic and single-valued.
Then the problem region is divided into subregions, and the
special Green’s functions (28) can be employed in the subregion
containing the hole or the inclusion, with its boundary not
intersecting the branch cut. The Green’s functions (24) for an
unbounded region can be used for the remaining subregions
of the problem. Thus, the boundary conditions on the interior
contour are satisfied exactly and can be eliminated from the
path of integration, and only the remote boundaries away from
the hole or the inclusion are required to include in the boundary
integral equation. The continuity between the interfaces of the
subregions can be implemented easily according to the bound-
ary element method procedure (Brebbia, Telles, and Wrobel,
1984).

Examples

To show the validity and generality of (22), (23) and the
Green’s functions derived herein, the following examples are
presented:

(1) An Infinite Plate With an Eliptic Hole Under Remote
Loading. The load considered is a linearly varying normal
force applied at infinity, which includes the cases of a uniform
tension and a bending force. Solutions obtained by superpo-
sition and series expansions in these two cases for monoclinic
materials were given in Lekhnitskii (1963).

In the present solution, the prescribed condition at infinity
is

‘7;0 =ky+ps,
(44)

where k, p, are the constants characterize the applied load.

The complex potentials corresponding to the prescribed
loading condition for the infinite plate without a hole are in
the form of

0 o oo o
Oy =0y =0y, =0y, =0,

6% (z) =az’*+bz. (45)

The coefficients a and b can be determined by substituting
(45) into (10), (11) and using the condition (44).

According to (32), the mapping functions that map the ex-
terior of an elliptic hole with semi-axes a, b coincident with
X, y-axes onto the exterior of a unit circle are

2= M+ m_ i (46)
where
mye=(a—iub)/2, m_ = (a+iub)/2.
Substituting (47) into (45) gives ®; in the {; plane,
() = M + mybid + 2myem _ g
+m_ybid ™+ mtga Tt (@7)
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In the presence of an elliptic hole in the medium, a modified
term ®'(¢) holomorphic in ol > 1 must be added to 7. Com-
paring with (19) and retaining only the terms in (47) which are
single valued and holomorphic in ¢! <1, we obtain

f(O)=a"C+b"

where

* 2 *
Qp =mudy, by =myby.

Thus, a direct application of (22) gives the required complex
potentials for the problem:

®()=a*"C+b* L 'L a2t Y. (48)

The general solution is now examined by comparing with

the available solution given in Lekhnitskii (1963) for the special

case of monoclinic materials. When the material has one plane

of elastic symmetry normal to xs;-axis, then A=A\, =A\;=0. a,
b in (45) are determined as

kK,
W) 2w w)
lLpr (15129
3 b: 7 y b:()’
Ty P (wy

where

P(w) = (= ) = i) (o — ) = ia)-
“Then from (48),
4’1(5‘1)=afg“?+bf;1+< iy N uz—uz >{_
Lo ﬂl*#z
+<M_El @+ “2_>§1 . (49)
17 M2

B 2 J
<I>2(§2)=a§r%+b§‘g—< TR BT >§2
M~ H2 H1— H2

—<’“_ a, +5— "2—>§2, (50)
Hi— M2 Bi— M2

®3({3)=0. (51)

Lekhnitskii’s solution for the problem was obtained by a
superposition of a modified stress field determined by Fourier
series expansion upon the uniform stress field valid for the
infinite plate without the hole. Corresponding to the present
solution, the modified stresses are determined from the func-
tions

B = P51 — P ($)-
A little algebra gives
B
g‘l o g‘l_ 2) s

m(g. ) — < lpx
—H2

-1 @—1@_2—2
1_2< 2§‘2+8§~2 s

which are exactly the solutions provided by Lekhnitskii.

()=

(2) A Plate With a Square-Like Hole Under Uniform Ten-
The contour of the square-like hole (Fig. 1) is repre-

sion.

sented by
x=a(cos ¢+ ¢ cos 30), (52)
y=ua(sin & —¢ sin 30). (53)

An approximate solution using perturbation method was
given by Lekhnitskii (1968) for the case of an orthotropic
material and small values of the parameter ¢. To compare the
present solution with the perturbation solution valid for small
¢ we made the computation by selecting a=10, e=1/9 and
used the same material properties E,=1. 2*105kg/cm
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Fig. 1 Geometry and loading of Example 2
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Fig. 2 Branch cuts in the first quadrant of the physical plane (branch
points are at z= +31.22 and z= +28.64/, heavy lines indicate branch
cuts)

E,=0.6%10’kg/cm?, G;,=0.07% 10°kg/cm?, vy, =0.071. The
corresponding complex parameters are found to be u; =4.11j,
u2=0.344i. The mapping functions obtained according to (40)-
(43) are

Zi=—1.73 34255 (- 155 ¢71=2.84 ¢T3, (54)
22=0.364 {3+6.72 5, +3.28 5 140.747 53 (55)

The branch points are located at {;= +2.33, &= +£2.56i,
which correspond to z= +31.22 and z= £28.64/ in the phys-
ical plane, respectively. Figure 2 shows the branch cuts and
only the first-quadrant region is shown because of symmetry.
Figures 3 and 4 show the region of conformal mapping in the
$i and {; planes. Indeed, the contour described by (53) is
mapped into a unit circle in the { planes by the mapping
functions (54), (55).

Numerical solution of the problem using the boundary ele-
ment method can be obtained by dividing the problem region
into two subregions. In the subregion in between the hole and
Ix1 =20, |yl <20, the special Green’s functions (28) with map-
ping functions (54), (55) were used. The Green’s functions for
the infinite region (Eq. (24)) were used in the remaining region.
Sixteen quadratic boundary elements along the interface
Ix1 =20, 1y1 =20 and four quadratic boundary elements in
the remote boundary were used in the computation. Compar-
isons of the results with the Lekhnitskii’s solution are given
in Fig. 5, in which the cases of uniform tension in. direction
of E, and in direction of £, were calculated. The results are
in excellent agreement.
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Fig. 5 Comparisons of the present solution with the approximate so-
lution for Example 2

In the case of isotropy, the solution form is different. In
practice, nevertheless, isotropy may be considered as a special
case of anisotropy by assuming p; =1/, and u,=1i+¢, € being a
very small constant, here we use e = 107% Then the present
Green'’s functions are still applicable. It is not difficult to show
that the branch points generally are located at a distance far
away from the hole. Hence, often there is no need to consider
the branch cut. The boundary element method solutions for
the problem shown in Fig. 1, using only four quadratic bound-
ary elements in the remote boundary in comparison with the
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solution given in Lekhnitskii (1968), are shown in Fig. 5. Prac-
tically identical results were obtained.
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APPENDIX
Consider the contour given by
x=Ay+ A; cos 8+ B sin 6, (A1)
y=Cy+C, cos 8+ D, sin 6. (A2)

Expressing cosf, sinf in terms of x, y, we can represent the
contour by the following quadratic equation:
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(CH+D}) (x = Ag)*— 2(A,C1 + B\Dy) (x— Ag) (¥ — Cy)
+(AT+ B (v~ Cp)*=(A\D, - B,C))%. (A3)
The canonical form (Hildebrand, 1965) of (A3) is given by
M(X—A0) +M(Y—-C)’=(A,:D, - B\C))*  (Ad)

where A\;, A\, denote the eigenvalues of the matrix A,

A= C%+D% - (4G +B.Dy) (AS)
| —(AG+BD)) A}+B}

Ma2=(A1+Bi+ Cl+ DY) = ([(A,—Dy)?

+(Bi+CDA [(A1+ D))+ (B - )2 (A6)

Equation (A4) is an ellipse in a rotated plane with the center
at (4, Cp) and the semi-axes are (A4,D;—B,C))*/\,
(A,D, — B,C;)*/\,. Hence, (A1) and (A2) represent a family
of elliptic contours.

The mapping functions that map conformally the ellipse
represented by (A1), (A2) in the physical plane into a unit circle
in the {; planes are

2= Wi (§1) = Mo+ myde+ m i ! (A7)

where
mox= Ao+ 1k Co,

my=[Ay =B+ p (G —iD1)1/2,

my=[A+iBi+ u (C+iDy)1/2.
The branch points where wi({;) =0 are located at
Ge= = (m_/my)'?, (A8)
and the requirement that the branch points be inside the unit
circle produces the following condition:
A\D;—B,C,>0. (A9)

Let the origin be located at the center of the ellipse. Then
at the point x=x,>0, y=0 on the ellipse,

dy x(Ci+D})
dé~ A.D,-B,C/

If A,D,— B,C;>0, as § increases counterclockwise in the {;
plane, dy/df >0, the point xg, ¥, also travels counterclockwise
in the z plane. Therefore, the exterior of the ellipse is mapped
onto the exterior of the unit circle by (A7). On the contrary,
if A\D,— B|C,<0, then dy/df<0, the exterior of the ellipse
is mapped into the interior of the unit circle by (A7), with
branch points outside the unit circle. In this case, the mapping
functions that map the exterior of the ellipse onto the exterior
of the unit circle are

o= Wi () = Mo+ Myl '+ m_ el (A1D)

The branch points = =+ (m,/m_1,)"? of (All) then are
located inside the unit circle.

(A10)
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Arbitrarily Oriented Crack Inside
an Elliptical Inclusion

The plane problem of an elastic elliptic inclusion containing a crack is solved.

Department of Mechanical Engineering
and Center for Composite Materials,
University of Delaware,

Newark, DE 19716

Complex potentials presented by Qaissaunee (1992) for an edge dislocation inside
an elastic elliptical inclusion are used to obtain the Green’s function for this problem.
The problem is formulated in terms of systems of singular integral equations which
are solved numerically. Some detailed results are given for various crack inclusion

geometries and material combinations.

1 Introduction

Crack fiber interactions in short fiber composites have been
a topic of considerable research. Experimental work has shown
that, in some cases, overall material fracture doesn’t occur
until after the individual fibers begin to fracture, as shown by
Clegg et al. (1988). In other words, in these cases, cracks first
appear in the fibers. To gain insight into this and related
problems, the solution for an arbitrarily oriented crack inside
an elliptic inclusion is solved. The crack in the inclusion is
formulated in terms of a distribution of dislocations. Resulting
integral equations are solved to find the stress intensity factors.

The problem of edge dislocation-circular inclusion inter-
action was first solved by Dundurs and Mura (1964). Dundurs
and Sendeckyj (1965) solved the case where the edge dislocation
was inside the circular inclusion. In both cases Airy’s stress
functions were used to formulate the problem. Atkinson (1972)
used the results of Dundurs and Mura to analyze the interaction
between a crack and a circular inclusion. He set up the problem
in terms of a distribution of dislocations and solved the re-
sulting integral equations. Erdogan, Gupta, and Ratwani (1974)
studied the interaction between a circular inclusion and an
arbitrarily oriented crack. They used a method similar to that
of Atkinson’s. Erdogan and Gupta (1975) later solved the case
where the crack crosses the interface.

Elliptic inclusions were considered later than circular inclu-
sions. Warren (1983) used an infinite series to formulate the
case where the edge dislocation was inside the elliptic inclusion.
He later used the solution to study the crack at the tip of a
craze (1984). Stagni and Lizzio (1983) solved the case where
the edge dislocation was located outside an elliptic inclusion.
Santare and Keer (1986) presented the solution for the inter-
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action of an edge dislocation outside a rigid elliptic inclusion.
Using that solution to formulate the Green’s functions, Patton
and Santare (1990) studied the effect of a rigid elliptic inclusion
on a straight crack. Wu and Chen (1990) solved the case where
the crack is inside an ellipse, extending from one focus to the
other of the ellipse. In a more extensive survey, Mura (1988)
reviews the studies on crack inclusion interaction problems in
his paper on inclusion problems.

2 The Stress Field for a Dislocation Inside the Elliptic
Inclusion

Consider an elastic matrix, denoted as region 1, with elastic
constants u; and x; containing a perfectly bonded elastic elliptic
inclusion, denoted as region 2, with elastic constants , and g,
where y; is the shear modulus, and «; = 3 — 4; for plane strain
and x; = (3 —;)/(1 +v;) for plane stress, where y; is the Pois-
son’s ratio. The elliptic elastic inclusion contains an edge dis-
location at point z, (see Fig. 1). The stress field in the inclusion
with the dislocation has been solved in terms of the complex
potentials ¢ and ¢ by Qaissaunee (1992).

Stresses and displacements can be written in terms of the
complex potential as defined by Muskhelishvili (1954).

Uxx:Uyy=2[¢’(Z)+d)’(Z)], (1)
Oy — O+ 2005, =2[20 " (2) + ¥ (2)], )
2uu+iv) =k (z) —2¢" (2) — ¥’ (2). 3

o 5 R

z - plane ¢ - plane

1992; final revision, Apr. 23, 1992. Associate Technical Editor: C. F. Shih. Fig. 1 Geometry of the problem; (a) physical; (b) mapped plane
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The primes denote the derivatives with respect to z where z =
x + iy and the overbar denotes the complex conjugate and 7
is the imaginary number.

The geometry of the problem is simplified by mapping the
ellipse into the unit circle as shown on Fig. 1, the function
used is z = w({) = R(¢{+m/¢), where m = (a—b)/(a+b)
and R = (a+b)/2. The complex potentials ¢, and y, for
region 2 are

=% ((“—>

¢
$2(§) =In + Z cd,
(f—@)(f—ﬂ)
$o
$§) =7 In| —————
1 _ _
§<E+m§"§0—m/§‘o> i
d k
Ty eI
_ r(1‘+mr2>§ F2-mé
VT Tm = (m+ )+t

2 o
§'(1+m§ Z KL @)

In these expressions, vy, = pob/in(«k; + 1), where b = b, +
iby, and b, and b, are the Cartesian components of the Burgers
vector.

The constants are

Pl — (B— DgiTy
o= (1-B) HF——35k 5
c_p=nifc, ©)
di= —a(m'C+7; Ay) )
d—k=mkdk+¢1kck 8
where
pi= (8- a) = (B— Dam™,
ax=(1—m*)km®“Y
Y= —amkAk+Fk
and

i [ )

A =724

3 k—1
I mg—m /=6 (m
B"’[ —m <ro> *

B_ =% Ax+ 7B,
q="t+m/%
Tri—x
Tk +1]
T +1)
T T+l

mis—qEd+ o gk#l:l
] ’

3
So—m

P=pa/my

Therefore, after some manipulations, one can write the stresses
inside the inclusion
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t
xx = 2R
- e[”R(f—fo)(rro—m)
+Re[’)’2

_ (m+He
(R (5~ 50)* (§of—m)’?
2 4 —

oy AT
2SR (£~ 60) 2 (fok —m)?

k—1
R ZC” }

2mg“ (; +m)

k—1
REG—m)’ ) e

{0
R({—§o)(§“§o—m)

Z dkkg_k 1

R((

2 4_3 262 22 o
{ (mfR(g-’;?_fm)f m) chk§k~l
1 2 o0
+7§2§Sf_m§ DU 2} ©)

o -
=2R
> e[ PR o) (F50—m) R(g' chks“ }

(m+ e 2P Fam) -
—R - it
e[” TR(E—$0) (5ol —m)® " RE(F—m)? 4 > ks
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FE+myt & k-2 3 ¢t
— k(k—1
R(P—m)T 20 MU= DE ey RE 5 o)
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2 3 2
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These stresses can be separated into bounded and singular
portions. The singular portion represents the dislocation and
its image points and the bounded portion represent the inter-
action for the case where the crack is fully imbedded in the
inclusion without touching the interface. The bounded parts
of the stresses are calculated matching the tractions and dis-
placements along the elliptical contour which is mapped to the
unit circle. The resulting terms are the series terms of the
expressions above:

8 k1 pe| 2GR )
Oxxb—R(g_z_m) Z;Ckkf' + Re Rg‘(i' m)3 Z kkg-k 1
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E+rm)t & k-2 k=1
TRE-m)T Zm crk (k—1)§ R(; Z dikt
2 43?2
f(mf’R(;’_fm)f‘ m) Z‘Ckkfkhl
1
%;ﬂlz ek (= 1)t~ 2}, a2
@ 2mE (P m) & _
Tyyb = R(Sh ch s“k - [—R}:‘({z%,;)—;) 2. ekt
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RS-

[2m§ ¥+ m)
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- k-1
R(; dekr

4
f(mf - 3m* §' f m) chkg.k-l

R({T—m)?
ok (k — 1);"“2]. (14)

£ +mi?)
R(—m)* &

The singular portions of the stresses are the remaining terms
which are not represented in infinite series.

3 Integral Equations

A crack can be represented by a distribution of dislocations.
In this case the distribution is unknown, but the resulting crack
faces are assumed to be traction-free. This condition can be
expressed by the following integral equations:

2 p(z 2 +1
S htw) , 0+S K@ 2)ba(z0)dzo="2 D (15
7 2720 7
2 b(z 2 +1
g : O)do+g Koz 20)bu(z0)dzo=—22 D g g6
2 T2 z] 12

n and ¢ refer to the positive normal and tangential directions
to the crack. b, and b, are

amn
(18)

b, = b,cosf — b,sinf

b, = b,sinfd + bycosf

where # is the angle of crack as shown in Fig. 2.
The first integrals contain the Cauchy singular portion of

the stresses due to distribution of dislocations. In the second

integrals, K, and K, are the bounded kernels which represent

the interaction between the crack and elliptical inclusion. They

are in the n and ¢ directions, respectively. Some portions of K,
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Fig. 2 Problem geometry

and K, become unbounded when the crack touches the interface
between the inclusion and the matrix. This situation requires
a separate analysis as discussed in Erdogan and Gupta (1975)
and is not treated here. K,, and K, can be obtained from Eqgs.
(12)-(14) by calculating the normal and the tangential com-
ponents.

The right-hand side of the equations are the constant stresses
in the elliptic inclusion, in the absence of the crack, induced
by the loading g at infinity. They are derived by using the
solution given by Hardimann (1954).

F,=F,,c08%0 + Fy,sin®) — 2F,,sinfcosf (19)

F,= (Fyy—F,)sinfcost + F,, (sin%) — cos?)) (20)

where

FXA:(A]_BI)/Z
Fy=(A+B)/2
Foy=—DB,/2
roglr(a+b)*— 2p(a 21 b)) -2p(d = b Gyr
r{a+b)2—4abp(1+2p-2r)
roo(@—b) (14+2p—r) +rGi(a+ b)Y (1+2p)
r{a+b)*—4abp(1+2p—2r)
rGy(a+b)?
r(a+b)2—4abp

A=

B, =
B,=

and

a=R(1+m)
b=R(1—m)
G = — 0pCOs2N
Gy = 0¢sin2\
r=F\/E,
p=E—1/8(1/p— 1/u,).

4 Solution

The integration equations can be reduced to a standard form
by the substitutions

22— 2 2+ 2
=Y g 224

2 2 @b
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Table 1 Stress intensity factors for a crack located in a circular inclu-
sion, m = 0.0, § = 30.0 deg, vy = x, = 1.8, A; = 90.0 deg
p2/pa = 3.0 2/ =1/3
a/d | K;Jooc'? | Kirfooc? | Kijooc ™ | Kip[oocT?
— 00 0.9458 0.5683 0.4640 ©0.2526
40 0.9462 0.5685 0.4638 . 0.2525
20 0.9475 0.5690 0.4630 0.2523
10 0.9528 0.5709 0.4600 0.2515
5 0.9735 0.5784 0.4488 0.2485
2 1.1067 0.6273 0.3914 0.2316
1.25 1.3585 0.7337 0.3526 0.2046
1.11 1.5312 0.8195 0.2963 0.1888
1.05 1.7132 0.9140 0.2768 0.1742

Table 2 Stress intensity factors for a crack located in an elliptic inclu-
sion, m = 0.5,0 = 0.0 deg, xy = x;, = 1.8, A\ = 90.0 deg

pafpy =30 | pa/py =1/3
a/c K/ooct/? K;/ooc!/?

— 00 1.0794 0.8057

30 1.0856 0.8005

15 1.1037 0.7861

10 1.1317 0.7649

5 1.2507 0.6907

2 1.5812 0.5640

1.50 1.7046 0.5246

1.25 1.8023 0.4905

1.154 1.8678 (0.4669

1.070 1.9846 0.4294

1.034 2.1172 0.3982

1.017 2.2315 0.3771
z=Z2%z‘ g+z—212L—Z~‘. 22)

Equations (15) and (16) can now be written in the form
1
Sl %%‘” dot | Kot Fobueoag =" g,
-1 0 —1
(23)
i 1
| %%ﬁ dio+ | Kk EbiEdi=""E0 E, g
—1 0 -1 H2

To find a unique solution to the integral equations, it is nec-

essary to impose additional conditions such as the crack closure
conditions
1
| butzdz=0 25)
-1
1
| sz, 6)
—1
The unknown functions can be defined as follows:
() =50 @7)

V1-§
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Table 3 Stress intensity factors for a crack iocated in an elliptic inclu-
sion,m = ~0.2,6 = 0.0deg, xy = x, = 1.8, A = 90.0 deg

paf/p = 3.0 | pa/p =1/3

a/c | Ki/oocl/? Kr/ooct/?
— 00 1.4000 0.5380

30 1.4000 0.5380

20 1.4015 0.5378

10 1.4062 0.5357

) 1.4249 0.5278

2 1.5624 0.4798
1.60 1.6654 0.4525
1.33 1.8151 0.4210
1.14 2.0734 0.3801
1.067 2.3414 0.3478
1.01 2.9259 0.2986

i) =S50 (29)
1-£5

which gives the square root singularity for a crack tip sur-
rounding by a homogeneous medium. The system of singular
integral equations can be solved by the method described by
Gerasoulis (1982). The interval [— 1, 1] is divided into 2n equal
parts with 2x collocation points and 27 + 1 integration points.
Piecewise quadratic polynomial representation of the singular
and nonsingular parts of the integral equation is used to dis-
cretize the integral equations into a set of algebraic equations.
The strength of the stress singularity at the crack tips are
characterized by the stress intensity factors. They are related
to the dislocations density functions as follows:

K =72 lim =) @) Q)
Ki(o) =122 m RG]0, GO
Kyl =122 lim Q=216 G
Kin(z)) = 12;‘; lim [2(:-221"7,(2). (32)

K; and Kj; are mode I and mode II stress intensity factors,
respectively.

5 Results

Numerical results are given for the stress intensity factor
defined by (29)-(32). Stress intensity factors for cracks inside
elliptical inclusions, at different inclinations with different as-
pect ratios m, can be solved by changing the required param-
eters in the solution outlined above. The problem can also be
solved for stress applied at different angles at infinity. In the
following results cracks inside elliptical inclusions are studied
extensively for various crack angles and for various values of
m. The results for m = 0, crack inside a circular inclusion
with uniaxial stresses applied at infinity, are shown in Table
6. To make a check the results for the circular inclusion are
compared to the results presented by Erdogan and Gupta (1975)
and they are shown in Table 7. The stress intensity factors are
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Table 4 Stress intensity factors for a crack located in an elliptic inciu-
sion, m = 0.5,0 = 30.0 deg, x; = x, = 1.8, A = 90.0 deg

pafpn = 3.0 pafp =1/3
a/d | KiJooc'? | Kirfooct? [(1/0091/2 Kri]ooc?
— 0 0.7523 0.5666 0.6381 0.2903
8.660 0.7690 0.5735 - 0.6238 0.2856
4.330 0.8158 0.5909 0.5885 0.2750
2.887 0.8846 0.6118 0.5467 0.2642
2.165 0.9670 0.6308 0.5078 0.2563
1.732 1.0575 0.6467 0.4747 0.2514
1.443 1.1546 0.6611 0.4459 0.2483
1.237 1.2655 0.6802 0.4169 0.2451
1.083 1.4274 0.7617 0.3767 0.2306

Table 5 Stress intensity factors for a crack located in an elliptic inclu-
sion, m = 0.5, ¢ = 0.0 deg, v, = x, = 1.8, 15.0 deg < A < 150.0 deg

Table6 Stress intensity factors for crack located in a circular inclusion,
m= —0.0,0 = 0.0deg, x; = x, = 1.8, A\ = 90.0 deg

pa/p1 = 3.0 | pa/pi =1/3
afc | Ki/ooc'? | KiJooc'?
— 00 1.2739 0.6098
20 1.2763 0.6085
10 | 1.28% 0.6046
5 1.3112 0.5898
4 1.3317 0.5796
2 1.4910 0.5144
1.25 1.8297 0.4279
1.11 2.0621 0.3894
1.056 2.3074 0.3140

Table 7 Stress intensity factors for a crack located in a circular inclu-
sion, m = 0.0, 6 = 0.0 deg, vy = x, = 1.8, A = 90.0 deg, comparison of
results of Erdogan and Gupta (E&G) and Anlas and Santare (A&S)

2 = 3.0 tafur =1/3
ajc | E&G. | ALS. | E&G. | A&S.
10 1.283 1.283 | 0.6046 | 0.6046
4 1.332 1.332 | 0.5796 | 0.5796
2 1.491 1.491 | 0.5144 | 0.5144
1.33 § 1.752 1.753 | 0.4427 | 0.4435
1.11 ¢ 2.062 2.062 | 0.3900 | 0.3894

s M= 0,5

mmanm m=0.0

L] m=-0.5

m wm ms0.2

mewn m=-0,2

fa/p1 = 3.0 pa/p =1/3
A | Ky /ooc!/? 1(1[/0‘061/2 Koot | Kip]ooct?
15 0.1745 0.4162 0.0214 0.1195
30 0.4997 0.7209 0.1113 0.2070
45 0.9438 0.8324 0.2341 0.2390
60 1.3880 0.7209 0.3569 0.2070
90 1.8321 0.0000 0.4797 0.0000
120 1.3880 0.7209 0.3569 0.2070
150 0.4997 0.7209 0.1113 0.2070
2.0 1
1.8
1.6
g 1.4
1.2
1.0
0.8 T T T T
0 1 2 3 4

alc

Fig. 3 Normalized stress intensity factor versus distance from inter-
face, for different values of m, polpy = 3.0, x4 = x, = 1.8, A = 90.0 deg

normalized with respect to 00\/2, which is the stress intensity
factor in a uniaxially stressed infinite plane containing a crack
of length 2¢ perpendicular to the direction of loading.

In Table 1, mode I and mode II stress intensity factors are
given for a crack oriented at 30 deg inside a circular inclusion,
m = 0.0. Results for different crack lengths are tabulated for
wo/wy=3.0, stiff inclusion and softer matrix, and w/ =
1/3, soft inclusion and stiffer matrix. d is the distance from
the origin to the elliptical boundary, when the crack angle, 0,
= 0, a = d. In Table 2, a straight crack in a horizontal elliptic
inclusion m = 0.5 is analyzed. The crack is perpendicular to

Journal of Applied Mechanics

external loading o,. Stress intensity factors for different crack
lengths are given. The results show that, as the crack ap-
proaches the interface, for soft matrix, the stress intensity
factor increases rapidly. For a soft inclusion they decrease as
the crack approaches the interface.

Similar values are given for a vertical elliptical inclusion, m
= —0.2, in Table 3. The crack is again perpendicular to the
external loading. Stress intensity factors increase and decrease
faster as the crack approaches the interface, compared to m
= 0.5 case.

In Table 4, the results for a 30 deg inclined crack are given.
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Fig. 4 Normalized stress intensity factor versus distance from inter-
tace, for different values of m, pylpy = 113, %y = x, = 1.8, A = 90.0 deg

In this case, m is 0.5 and stress intensity factors for different
crack lengths are tabulated.

The solution used in this problem allows the usage of dif-
ferent angles for loading. In Table 5, the results for an elliptic
inclusion, m = 0.5, embedded in an infinite region loaded by
a gp at an angle N, are given. Mode 11 stress intensity factor
is symmetric w.r.t 45 deg as expected. The crack is straight
and a/c ratio is 1.25.

In Figs. 3 and 4, the stress intensity factors are normalized
with respect to the constant stress value inside the elliptical
inclusion. The results are plotted for different crack lengths
and different ellipses. Since the normalization has been done
using the stresses inside the inclusion, when the crack is small,
values of the stress intensity factors go to 1 as expected. These
plots agree with those of Atkinson (1972), for the case of a
circular inclusion.
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Fredholm integral equation of the first kind and cannot be solved directly. The

regularization method, which has been originally employed by Gao and Mura (1989),
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Introduction

Inverse problems in science and engineering have been at-
tracting more attention recently. Stanitz (1988) has studied the
problem of designing a channel for arbitrarily prescribed ve-
locity distribution. Sobieczky (1988) has investigated the prob-
lem of determining the profile of an airfoil from the given
surface pressure distribution. Gao and Mura (1989) have used
the residual surface displacements to determine the residual
stress field around the damaged area. The latest developments
in inverse problems in structural mechanics have been sum-
marized by Kubo (1988).

In this paper, we investigate a linear elasticity inverse prob-
lem which is in the form of the Cauchy (initial value) problem.
The problem is ill-posed since the solution’s existence, unique-
ness, and continuous dependence on the data are not neces-
sarily guaranteed. Therefore, such problems must be solved
indirectly by means of transformation like the regularization
method.

First, we describe the type of problem in question along with
the particular problem in which we are interested. Second, we
examine the existence, uniqueness, and stability of solutions
of such problems. Third, we briefly introduce the original
formulation of the regularization method by Gao and Mura
(1989). Fourth, we introduce our new one. Fifth, we give a
simple demonstration of it. Finally, we conclude with remarks
and discussions.
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is formulated from a different perspective in order to address some of the difficulties
experienced in their formulation. The theoretical details are discussed in this paper,
Numerical examples are treated to Part II.

1 Problems

1.1 Forward (Well-Posed) Problem. Let us consider a
well-posed boundary value problem first. For example, sup-
pose as shown in Fig. 1, that the four edges of a thin rectangular
plate are maintained at the following temperatures:

»(0, y) =0,
ela, y)=0
@ (x, 0)=0,
e(x, b)=f(x).
The temperature is governed by the Laplace equation,
o Fo_, o
axt oyt
for the steady-state problem.
The solution of this problem can be readily obtained as

€]

V2g0=

nwx sinh (nwy/a)

P(x, ¥) =D sin—= ————— (3)

~ a sinh (nwb/a)’

where
y
b o=1(x)
®=0 =0
Vip=0 ¢
0 a x
p=0
Fig. 1 Steady-state temperature distribution in a rectangular plate
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Fig. 2 A long cylinder under lateral compression

nwx
—dXx,
a

e,=2] 700 sin @)
a

0

assuming that the series is convergent.

1.2 Inverse (Ill-Posed) Problem. Now, instead of (1),
suppose the following boundary conditions are prescribed:

e(x, b)=S(x)
do (X, ) B G)
Ty =g(x),
y=b
where
a4 > . _nwx sinh (nwy/a)
g(x)—-ay["z_;c,,sm a sinh (nvrb/a)}y:b’ ©

and the remaining boundaries are considered free (see Courant
and Hilbert (1953)). We wish to know whether this problem
is solvable, and if it is, whether the solution is unique and
stable. If the solution indeed exists and is unique, (3) must be
the solution and the boundary values along the free boundaries
must be (1). A problem like (2) with (5) in which the boundary
values are prescribed in the initial value problem manner is
called a Cauchy problem (see Knops and Payne (1971)) which
may be categorized as a type of inverse problem.

1.3 Forward (Well-Posed) Problems. Consider the prob-
lem of a long circular cylinder under lateral loading as shown
in Fig. 2. Suppose that the lateral loads are given by

{px =pcos (6)
Py=psin(0)

for 0=<#=<2xr. The corresponding lateral displacements from
the linear theory of isotropic elasticity are

M

1—
Uy= ~——E—Vpacos(0)
(3)

1-» .
u,= ——E——pasm(ﬁ)

where E is Young’s modulus and y is Poisson’s ratio.

1.4 1Inverse Problem. Now, suppose that instead of (7),
both the partial lateral displacements and loads are prescribed
as

Px=p cos (0)
py=psin(6)
)]

1—
U,= —Tvpacos (2]

1—v .
u,= ~-E—pasm(0)

along 0<f@<w. We wish to know whether the displacements
and the loads along #<6=27 can be uniquely characterized
by assuming static equilibrium. If the characterization is pos-
sible, the solutions must be (7) and (8).

596 / Vol. 60, SEPTEMBER 1993

Inverse problems in elasticity date back as far as 1907 to
Almansi (1907) (and a more recent study to Gao and Mura
(1989)). They are not restricted to the above problems. For
instance, Dulikravich has employed it in the so-called inverse
design to design the optimum turbine blade from the given
temperature and heat flux on the surface (Dulikravich (1988)).
More rigorous mathematical treatment of the inverse problem
has been done by many mathematicians (Tikhonov (1963),
etc.).

2 Existence and Unigueness of the Solution of the In-
verse Problem

The fundamental requirements of the so-called well-posed
problem have been established by Hadamard (1902), namely,
existence, uniqueness, and continuous dependence on the given
data. Therefore, any problem that violates even one of these
conditions is called an ill-posed problem. Let us see how these
conditions apply to the inverse problem.

2.1 Uniqueness. Before the theorem of existence, let us
look first at the theorem of uniqueness. The uniqueness theo-
rem for two-dimensional elasticity can be found in the book
by Muskehelishvili (1963); a more general one, in Knops and
Payne (1971). However, here we take a look at a simpler version
by Gao and Mura (1989) instead. The assumption is that the
system is in static equilibrium.

Lemma: Let T and T, compose the entire boundary of an
elastic body D. If the boundary values along T'| vanish iden-
tically, i.e., if the displacements and the tractions are identically
equal to zero on Ty, then the displacements and stresses over
the entire domain D are zero.

Proof: Let u; and o;; be the displacement and stress fields
that give rise to the vanishing of the displacements and tractions
along T';. Similarly, let 4} and o}; be the displacements and
stresses that cause the displacements along I'; to vanish but
not the tractions. The Betti-Maxwell reciprocal relation (see
Jaswon and Symm (1977)) yields

S ohundl = S (10)
T+ T

afju;*nde‘,
1+T2

where »; are the components of the normal vector along I'y
and T',. According to the definitions of o;; and u, the right-
hand side of (10) and the T'; integration on the right-hand side
vanish, so that (10) is reduced to

S ofiuindl'=0.
]

(11)

Equation (11) is valid for any arbitrary o}, and so the dis-
placements u; must be identically zero along I',. From this
result, the divergence theorem implies that the displacement
field vanishes identically over the entire domain which in turn
means the stress field is identically zero.

The Fredholm alternative theorems (see Stakgold (1967))
states that the solution x of Ax = b is unique if the homogeneous
solution xy of Axy =0 is nontrivial. By virtue of this theorem,
the uniqueness theorem for two-dimensional elasticity is es-
tablished.

2.2 Existence. According to Hadamard’s definitions of
the well-posedness, there is a class of inverse problem that does
not have a solution at all. Here is an extreme case in linear
elasticity. Suppose a set of displacements and tractions has
been prescribed to I'y and T'; independently,
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Fig. 3 A linear elastic body

{ui:O
on I’y
t,‘ZO
(12)
ui=u;#0 r
- on I'y.
Li=T1#0 2

Clearly no linear elasticity solution exists satisfying (12) be-
cause of the lemma given in Section 2.1. Even though it is
obvious at a glance that such a prescription is impossible, often
the inverse solution has to rely on the values usually obtained
from experimental measurements. Ideally, because the trac-
tions are proportional to the normal derivatives of the dis-
placements, we may be able to estimate roughly the
compatibility of the data by

- ui,x.)"' (S) + ui,y-k(s)
N X2 (s) + ¥ (s)

du; . .
E’: Ui X (S) + Uiy ()

inC

assuming the rectangular coordinates x and y are functions of
the boundary parameter s.

2.3 Continnous Dependence on the Given Data (Stabil-
ity). Consider the equation

Ax=b, (13)

where x is the solution; b, the given data; and A is a linear

operator that may be a matrix, a differential operator, or

integral operator. We introduce errors in the operator and the
given data to observe the behavior of the solution

(A + 5A)X = (b + 6b). (14)
These errors may have resulted from the experimental meas-
urements. Bearing (13) in mind, (14) can be reduced to
6AX = gb.

Then the solution becomes
x=(8A)" !5b. (16)
Equation (16) means that the inverse solution is extremely
sensitive to the arbitrary errors introduced in the operator and

the given data. For this reason, the inverse solution cannot be
approached directly.

1s)

3 The Original Formulation of the Regularization
Method
A brief summary of the original formulation of the regu-

larization method employed by Gao and Mura is given. We
leave the details to their paper (Gao and Mura (1989)). Our

as shown in Fig. 3; therefore, some details may differ from
those in their paper.

We start from Somigliana’s integral equation (see Brebbia
et al. (1984)) derived from the Betti-Maxwell reciprocal theo-
rem,

1
S Tij (3, x ")y ()l (x) + 2 ui(x ")
r

=S Uis(x, x" ) (x)dl' (x),  (17)
r

where
Ujlx, x')= —1 o

Al — )1 1-2 61""" ir il

47‘(1—V)r{[( Mo+ 1,1 an

~(1 _2”)(r"‘”j—l',jn,-)}
Xi—x{
Tu(x’ x/) — 1
i §7r(1 — V)}: {(3- 4V)1n(r)5ij_ rar)
r=
_ (rir)'?
ri=r/r

6;;=XKronecker delta
u=shear modulus

v =Poisson’s ratio. (18)

Let us split the boundary T into two parts T'; and T';. Both
displacements and tractions are prescribed along T';, but T';
remains as a free boundary (see Courant and Hilbert (1953)).
Gao and Mura has written (17) as

g Ty (x, x")u(x)dl (x)
Ty

—S Ui (x, x")t(x)dl (x)=b(x"), (19)
Ty

where

b(x")=~- S T (x, x"Yu; (x)dl (x) —%u.-(x’)
T2

+S Ui (x, x")(x)dl (%), (20)
Ty

Equation (19) is a Fredholm integral equation of the first
kind (see Stakgold (1967)), and it cannot be solved as it is.
Gao and Mura have applied the regularization method by
Tikhonov (1963) derivable from the constrained minimization
problem

minimize\/g u,g(x)dx—f-& (x)dx 2D
I r

1

_subject to

2
\/S “ T(x, X')uj(x)afl‘()c)—sF Uij (x, X’)tj(X)dI‘(x)—b(x’)} dx'<e, (22)
Iy 1

Ty

derivation is for a static two-dimensional linearly elastic ho-
mogeneous material @, bounded by the smooth boundary T,
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where ¢ is an arbitrary tolerance. The Euler equations for this
problem are
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Note: Rc 2.

Fig. 4 A linear elastic body enclosed by the fictitious boundary

~

T (&, x" YU (n, X’)dF(x')J u(n)dl (n)

I “ nf(e,x')'rjk(n,x')dﬂx')]uk(n)dr(n)
T Iy
W)

rau(§)= | Tk, x )by (x)ar ()

L

9 23
S [S Ui (&, x") Ujic(m, X’)dF(X')}fk(n)aT(n)
Iy Iy

—S “ T}'i(g,xl)Ujk(")’x’)dr‘(x’):Itk("?)dF("])
T L 12

ali(§)= | e, )b,0e )l (x')

. )

where o is the reciprocal of the Lagrange multiplier. In general,
(23) is solved numerically on computer.

The problem with (23) is that there are several double in-
tegrations involved, and the general consensus has that the
implementation of multiple integrations on computer is dis-
couraged unless it is absolutely necessary (see Press et al.
(1986)). In addition, because T;; and U;; are singular kernels,

given in (18). By an application of Hooke’s law and the trac-
tion-stress relation,

{Uij = Cijkluk,/ @5)

t,' = oijnj
where C;j; are the material constants; #;, the normal vectors,

can be derived so that
t,-(x>=§ Tji(x, X' ) (x")dT (x"). (26)

r
Suppose that the boundary T is enclosed by another bound-
ary T'* and that the gap between the two boundaries is filled
by the same material that composes the domain Q as shown
in Fig. 4, we can write the equations similar to (24) and (25)
with T' having been replaced by I'*. We can compute the cor-
responding forces (potentials) ¢} that take the values of u; and
t;along T’ by

L Ui (%, x7)f (x")dT (x")
T

ui(x)=g

, xel', @7

ti(x) = S L T X7)¢7 (x")dT (x")
r
and once we have the forces, we can compute displacements
and tractions at any point in the domain Q" by moving x in
(27) to the desired position. This type of indirect boundary
element method is called the fictitious (imaginary) boundary
indirect method because of the presence of I'*. This indirect
method effectively avoids singular integrations because x never
coincides with x’ in (27), but, on the other hand, the down
side of this method may be that the judgement of the optimum
location of I'* requires some experiences.

Let us formulate the regularization method based on the
fictitious boundary indirect method. As before, we first set up
the constrained problem

minimize S . (o7 (x))%dx (28)
r

subject to

\/S {{S * (/ji(X, x1)¢j*(xl)d1—‘(x’) —u;(x
r2 r

extreme care must be taken to evaluate them. Moreover, be-
cause their singular natures have been convoluted in (23), im-
plementing such multiple singular integrations costs CPU time
and accuracy; and, therefore, is not recommended.

4 An Alternative Formulation of the Regularization
Method

The numerical solution of Somigliana’s integral Eq. (17) is
called the solution of the direct boundary element (or integral)
method (BEM). Naturally, there is an alternative method called
the indirect BEM. The indirect BEM is based on either the
simple or double layer potential theory (Kinoshita and Mura
(1956)).

To put this method very simply, the displacement field u;
of a static linear elastic body, free of body forces, subjected
to the external forces ¢; along its boundary I' can be expressed
as

ui(x) = S Ui (x, x");(x")dl' (x"), 24
T

where Uj;is the Green’s function (fundamental solution) tensor
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2 3
)] +D L Ti(x, x’)¢f(x’)d1‘(x’)—t,~(x)] }dI‘(x)se, (29)
T

where I', T'5, and e are the same as the ones in the previous
formulation. The Euler equation for this problem is

ni

Wi (%, )Uji %, M)+ Ty (X, §)Tje(x, n)]dI‘(x)}
2

X @7 (mdI' () +ad? (£)

= SF Uy (x, Ou; (x) + Ty (x, £)4;(x)1dl(x).  (30)
2

Note that even though there are still some multiple integra-
tions in (30), we have effectively removed singular integrations.
Numerically, (30) is much simpler to implement on computer
than (23). After the forces ¢f are found, we can compute
displacements and tractions at any point from (27) by moving
X to the desired position.

5 A Simple Example

Although Part II of this paper shows more numerical dis-
cussions and results, here is a simple demonstration of (30)
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using the inverse problem introduced in Section 1.4. This prob- sure p having been set to 2m, 5 MPa, 0.25, and 2 MPa, re-
lem turns out to be very insensitive to the position of I'*; spectively. Figures 5, 6, 7, and 8 respectively show how the
therefore, we simply show the results of this problem with the computed u,, u,, t,, and ¢,, agree with the exact solutions (7)
radius @, Young’s modulus E, Poisson’s ratio », and the pres- and (8). They are indeed in very good agreement.
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6 Conclusions and Remarks

In this paper, the difficulties in solving inverse problems
have been discussed. Nonexistence, nonuniqueness, and insta-
bilities may occur. The inverse problem cannot be solved di-
rectly.

An alternative formulation of the regularization based on
the fictitious boundary indirect method has been investigated.
This regularization has effectively overcome the most difficult
part of the regularization method based on the direct method—
the singular integration. It has been applied to a linear elasticity
problem and performed very well.
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Introduction

We have overcome the problem of evaluating convoluted
singular integrations by means of basing the regularization
method formulation on the fictitious boundary indirect method.
However, this new formulation has not yet removed the other
problem—multiple integrations. Implementing multiple inte-
grations is not, in general, recommended (Press et al. (1986)),
for the number of evaluations increases geometrically as the
number of dimensions increases.

In this paper, we first take a look at the general procedure
of solving integral equations numerically. We then incorporate
the procedure into our regularization method formulation and
solve a few example problems. Finally, we conclude with some
remarks.

The General Procedure to Solve Integral Equations

Consider the integral equation
1

1
S x'xu(x)dx+§ u(x"y=cos (rx'), O0=x'=<1. (1)
0
The exact solution is given by
24x
u(x)=—=+2 cos (mx), 2)
St
and we would like to approximate (2) numerically at discrete

points,
Here we employ the three-point Gauss-Legendre quadrature

to evaluate the integral on the left-hand side of (1). The three-
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Mura (1989). In this paper, we look into numerical details to facilitate computer
implementation. This implementation is quite general in that it works for both Gao
and Mura and us (Koya and Mura (1992)).

point Gauss-Legendre quadrature is given by (see Hildebrand
(1987)),

b 3
S f(x)dxzx, Zf(xlrz+xr£j)wja (3)
a j:]
where
b+a
=ty
_(b—a)
x=t @
(iz1p3={—-~3/5, 0, ~3/5}
Wiz1,23= [5/9, 8/9, 5/9}
and therefore (1) becomes
1, 1 , )
Ex iju(xj)wj+5u(x )=cos (mx"), 5)

j=1

where
1
xj=5(1+§). )

There are three unknowns—u(x;), u(x;), and u(x3)—in
(5). Instinctively, we would like to choose three points for x’
so that there will be three equations,

1 ’ 3 1 ’ ’

2 X >, X () Wi+ u(x;)=cos (mx;), =123, (7)
i=1

and we can solve (7) for the unknown us by simple inversion.

The question is where to choose x;. The most obvious choice

seems to be the same points as x;. When these points are

substituted into (7) and solved, we obtain

u(x;)=1.93053

u(x,) =0.242183, 8)
u(x;)=—1.44617
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Fig. 1 Numerical and exact solutions of (1)
where
1 3/5
=—-———=0.112701665
X 5 3 6
Xy = 0
1 /3
X3 =§+~—2—/—§EO.887298335 ©)

which is in good agreement with the exact solution,

u(x;)=1.93076
u(x;) =0.243171
u{x;) = —1.44447,

It follows that as the order of the quadrature increases, the
plot of the solution begins to look like the exact solution.
Figure 1 shows the result of the 100th order quadrature and
the exact solution. They almost match exactly. This solution
method is called the Nystrom method (see Delves and Mo-
hamed (1985)).

The Nystrom method allows us to replace the original in-
tegral equation into a system of simultaneous linear algebraic
equations thereby treating the problem in terms of the linear
algebra at which the computer truly excels.

Let us employ the Nystrom method in our formulation of
the regularization method. From Part I, the original integral
equations are

(10

ui(x) = SF* Uji(x,x")¢;(x")dl (x")

xel. (1)

600 =| | Tulox oy an (),

r
These are now converted into a system of simultaneous linear
equations by means of the nth order quadrature,

Ui (Xa) = D Uji(XarXs ) b(xs ) WaJ (£5)
B=1

11(%a) = D) TiiXarXp )0 (x5 ) WpJ (),
B=1

x€e€lha=12,...,m (12)

where J is the Jacobian determinant which maps the natural
coordinates £z over to the global coordinates xz since most
quadratures are defined in the natural coordinates. The type
of quadrature used in (12) is not necessarily the Gauss-Le-
gendre. It may be any suitable one which facilitates integration.
In general, the selection is based on the type of kernel in
question. )

Notice that (12) forms an m X n system of simultaneous
linear algebraic equations which may or may not be a square

602 / Vol. 60, SEPTEMBER 1993

system. There is not much point in choosing # points for x to
create a square system because unlike the previous example
problem, the path of integration does not intersect x. Although
we can form mechanically a square system, the coefficient
matrix is usually singular and cannot be inverted.

Let us rewrite (12) as follows:

([

Now, the regularization formulation becomes

(13)

minimize

o'

e J[E-Epo] T

(14)

Then the Euler equation for this constrained problem is
UU+TT+oDe=UTu+T". (15)

Notice the resemblance between (15) here and (30) in Part
I; they are numerically equivalent. Moreover, there are no
multiple integrations involved in (15). They have been replaced
by matrix multiplications at which the computer excels. After
the parameter ¢ has been computed with the appropriate value
of «, we can proceed to calculate the displacements and trac-
tions at any point by (13) with x having been moved to the
desired position.

There still remains the problem of determining the appro-
priate value of « (Ribiére (1967) and Wahba (1977)). In general,
there is no direct way to determine it; therefore, it must be
done by iteration. Ideally, the solution should improve as the
value of « approaches zero; consequently, it seems to be logical
to set the initial value of « rather larger, and evaluate the
inequality constraint in (14). If the test proves to be false,
decrease the value of « and repeat the test. As to how much
to decrease at each iteration is a difficult problem. Gao and
Mura (1989) suggested the use of the bisection method, but to
guess the initial two values of o« may be difficult even though
the convergence is absolute. In this paper, the secant method
(see Hildebrand (1987)) is used because it requires only one
initial guess, and the convergence, though conditional, is much
faster than the bisection method. The procedure is as follows:

Step 1: Choose the initial o and the step length /4. Set the
iteration counter » to 1 and the maximum iteration
count N to an arbitrary number. ‘

Step2: Evaluate the left-hand side of the inequality constraint
in (14) at o and o + #4; and label them flo) and

f(a+h), respectively.

Step 3: Test the inequality (14) for both values.

Step 4: If either is true, stop.

Step 5: The next guess is given by a,. = a, — Af(a)/
Ula+h)—f(a)]

Step 6: Increment n. If n is larger than N step, or else scale
the step length 4 by half,

Step 7:  Go to Step 2.

The function fin this case is the left-hand side of the inequality
in (14).

So far we have examined integral equations with smooth
paths of integration. However, when the paths take arbitrary
and not necessarily smooth paths, we cannot expect to integrate
numerically the entire path with sufficient accuracy. Moreover,
as the size of the domain in question increases, its boundary
increases accordingly, so does the order of quadrature. Because
in reality we cannot afford to raise the order indefinitely just
to keep up with the size of the domain, it is essential to econ-
omize without sacrificing accuracy.
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The simplest way to achieve this is to take advantage of the
integration property

N

S fx)dl (x) =] S f(x)dT (x),

r r

i=1 i

(16)

where N is the number of smaller components of the total
boundary I'. Thus, we can subdivide into smaller boundaries
for which lower order quadratures prove to be accurate enough.
At the same time, discretization allows us to integrate any
arbitrary path shape. There is no major difference between
the discretized and continuous methods as long as the path is
smooth enough. Furthermore, as the size of each subboundary
decreases, the behavior of the solution along it may be ap-
proximated by a simpler function such as a constant, linear,
or quadratic function. This ‘“‘discretization’’ of the integral
equation is the basis of the boundary element method.

In the next section, we examine the characteristics of the
regularization method more closely by solving a couple of
example problems. We would like to know whether this method
always yields the solution we want.

Example Problem No. 1

As the first example, we repeat the problem discussed in
PartI. As Fig. 2 shows, along cylinder is under radial compres-
sion. The Cauchy data—displacements and tractions—along
the upper half of the lateral surface, 0 < § =< 7, is given and
the lower surface, # < 6 < 2w, remains free. We would like
to calculate the displacements and tractions along the lower
surface.

We know the analytical solutions are

DPe=2cos 0
pPx=2sin @
u,= —(14/25) cos 6
uy,= —(14/25) sin 0.

amn

Figures 3, 4, 5, and 6 show the x and y displacements and the
x and y tractions, respectively. They all agree excellently well.

Example Problem No. 2
Consider a square plate under uniaxial load as shown in Fig.

Journal of Applied Mechanics
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7. The Cauchy data—displacements and tractions—are pre-
scribed along the right edge x = 2.0 of the plate, and the
remaining boundaries are free. We would like to solve this
Cauchy problem. The constant boundary element method is
employed to discretize the original equation into the Nystrom
form,

Unlike the previous problem, this problem poses some dif-

" ficulties. Both displacements and tractions in the previous

problem are smooth and continuous whereas the tractions in
this problem are discontinuous at each corner. Because our
formulation is based on the Euclidean L, norm which has a
form of the quadratic function, it is uncertain as to how the
regularized solution behaves in the neighborhood of these
points.

Another concern is the applicability of the constant element
discretization. We know the analytical solutions for the x and
y displacements (m) are
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u,=0.004x
u,= —0.0012y.

We are not certain whether the constant element approximation
is suitable in this situation. Figures 8, 9, 10, and 11 show the

(18)
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results when the analytical values are given along x 2.0.
The errors in the displacements are still in the acceptable range,
but those in the tractions are not. It seems that because the
displacement is a continuous function, the regularization
method works well; however, the traction may be either con-
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tinuous or discontinuous so that the regularization cannot treat
it reliably.

Furthermore, because the input data is the analytical solu-
tions which are constant and linear, the constant element ap-
proximation is unable to fit the data completely. In other
words, to the constant approximation these values are not the
““exact’’ values. The values which can be approximated reliably
by the constant element approximation are the ‘‘apparently’’
exact input data. »

In order to show this behavior, we use the mixed boundary
value problem solutions by the constant element approxima-
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Fig. 15 y tractions based on the numerical data
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134 ..36.,38 199 42 44 ..4§ 48
(@) @)

; 3.00m f— 1.00m—]
Fig. 16 More complicate boundary conditions

tion as the input data. In other words, for the x and y dis-
placement input data, we use the numerical solutions. Figures
11, 12, 13, and 14 show the results. They are in better agree-
ment.

Example Problem No. 3

In this example, the geometry and the boundary conditions
are slightly more complicated as shown in Fig. 16. This problem
has been solved as the mixed boundary value problem first.
Then these solutions have been used as the input data along
the nodes #65 to #80, other boundaries are free. We would
like to recover the remaining boundary conditions.

Figures 17, 18, 19, and 20 show the regularized solutions
and the mixed boundary value solutions. They are in very good
agreement. However, the traction solutions as shown in Figs.
15 and 16 are not as good as the displacement solutions due
to the presence of discontinuities. Further studies are required

‘to address the problem of discontinuity.

Conclusions

The numerical procedure based on the Nystrom method to
solve the Cauchy (inverse) problem is discussed. As long as
the input data is compatible, it can be solved with great ac-
curacy. However, unlike the ordinary boundary value problem,
the sensitivity of the solution to the input data is more pro-
nounced. A very refined discretized model is required to solve
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12 3 45 6 7 8 91011121314151¢6

Node
Fig. 18 y displacements

with sufficient accuracy. Moreover, a special procedure may
be required to handle discontinuities in the solutions.
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Singular Stress Field Near the
Corner of Jointed Dissimilar
Materials

In this paper, the characteristics of the stress field near a corner of jointed dissimilar
materials are studied as a plane problem. It is found that the order of singularity
is dependent not only on the elastic constants of materials and the local geometry
of corner, but also on the deformation mode. The dependence of the order of
singularity was established for the case of mode I and the case of mode II. An
explicit closed-form expression is given for the singular stress field at the close vicinity
of the corner, in which the stress field is expressed as a sum of the symmetric state
with a stress singularity of 1/v'™M and the skew symmetric state with a stress

singularity of 1/v' =2, When both \; and \, are real the singular stress field around
the point singularity is defined in terms of two constants Ki,ap K np asin the case
of crack problems.
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Introduction

For a crack problem in a homogeneous plate, the singular
stress field near the crack tip is expressed as
I o KII
gy \/7 () + \/;
where r, § are the components of polar coordinates with the
origin of the coordinate system at the crack tip and the func-
tions f ,1]-(0) and f,-,”(@) correspond to the mode I and mode II
deformations, respectively.

Since the order of the singularity (i.e., —0.5) and the explicit
form of functions f {j(()) and f,-,”(@) in expression (1) are known,
so based on the expression (1) the stress state at the crack tip
is completely determined by the two parameters K; and K,
(i.e., the stress intensity factors for mode I and mode II).

The study of stress singularitits related to a wedge in plane
elasticity was made by Williams (1952), Dempsey and Sinclair
(1979, 1981), Bogy (1968, 1971), Bogy and Wang (1971), Hein
and Erdogan (1971), and Theocaris (1974) et al. For the general
case of N-material composite wedge, the dependence of the
order of singularity on the elastic constants of materials and
on the local geometry of the composite plate has been estab-
lished already. However, few papers have been reported for
the eigenfunction of displacement or stress (Bogy, 1970). In
order to determine completely the local behavior of the dis-

§0), M
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placement and the stress at the corner, the eigenfunctions cor-
responding to each eigenvalue are needed, simply as the
functions f}(8) and f;/(9) are needed in Eq. (1).

The present paper deals with the plane problem of a com-
posite body consisting of two dissimilar isotropic, homoge-
neous and elastic wedges, perfectly bonded along both of their
common interfaces, as shown in Fig. 1. The problem was -
studied by Bogy and Wang and an eigen equation for deter-
mining the order of the singularity in the stress field at the
corner was given (Bogy and Wang, 1971), while the associate
eigenfunction has not, to the best of our knowledge, been
considered before. In this paper, an explicit closed-form
expression, similar to Eq. (1), is established for the singular
stress field at the corner. The stress field is expressed as a sum
of a symmetric state and a skew-symmetric state. Both the
eigenvalues and associated eigenfunctions are analyzed for the
symmetric mode and the skew-symmetric mode, respectively.
The stress field around the singular point is defined in terms
of several constants similarly as in Eq. (1) for the crack prob-
lem.

Fig. 1 Corner of two bonded wedges
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Formulation

Consider a plane problem of two dissimilar wedges of angles
v and 27—, respectively, bonded perfectly at both of their
interfaces (Fig. 1). The regions occupied by the two wedges
are denoted by @, and ©,. The two wedges are made of different
isotropic and homogeneous elastic materials. Denote the shear
modulus and Poisson’s ratios of the two materials by G,, »
and G,, vy, respectively.

Take the vertex as the origin of coordinates and put the x-
axis on the line which divides the region @, and Q, equally. In
each of the regions ; (i=1,2), displacements in the radial and
circumferential directions, u,;and uy,, stresses in the plane polar
components, g, g, and 7,5, and resultant forces in the x and
y-directions, P,. andP (resultant forces of the stresses, exerted
upon the left- hand 51d'e region by the right-hand side across
an arbitrary path leading to the moving point from a definite
point) are expressed in terms of two complex potentials ¢; (z)
and ¢;(z)

-9

2t +ivg) == (kD) =26 (D~ @) Q)

09, + 07, = Reld/ (@)1, 0, 0y, + 2irg, = 26™(Z{ (2) + ¥/ ()}
3
=Py + 1Py =0:(2) + 2/ (2) +¥:(2) 4)

where

. B —r)/(1+») (plane stress)
Y N P (plane strain).

In order to evaluate the singular behavior of stress at the
corner tip we assume ¢;(z) and ¥;(z) to be of the following
form, as Theocaris (1974) did.

¢i(2)=auz)\+azizx, ¥i(z) =1711'Z)\‘*‘bzizX (5)

where the exponent \ and the coefficients ay;, ay;, by;, by are
in general complex.

On the interfaces at the vicinity of the vertex, the complex
potentials ¢; (z) and y; (z) must satisfy the boundary conditions
that the displacement and the traction are continuous at the
interfaces as

(_Py1+iPx1) |0='y/2= ( “‘Py2+iPx2) lﬂ:’y/l}

(tr, +i09)) o=y 2= (Upy + iUp,) gy 2

©)

and
(= Py +iPy ) = —yn=(— Py, +iPy,) '9—2#—7/2} o

(tr, +i09,) o= — g2 = (Ur, + 1V} lg= 20 _ 12

Although we can derive an eigen equation from Egs. (6) and
(7) for determining the eigenvalues, namely the order of the
singular stress, as the others do. However, the equation would
be complicated and it is too difficult to derive the eigenfunction
in an explicit closed form. It can be overcome by noting that
there exists a geometric symmetry in the given problem. This
fact enables us to divide the elastic field considered here into
a symmetric part and a skew-symmetric part, namely into a
part due to the mode I deformation and a part due to the mode
II deformation.

For the part due to the mode I deformation, we can use the
following symmetric condition instead of Eq. (7):

Pylg-0=0, v lg-0=0, Pyylg_ =0, v5,lg_.=0.  (8)

For the part due to mode II deformation, we can use the
following skew-symmetric condition instead of Eq. (7):

Pyll0=0:07 ur1]9=0=0’ Py2l0=7r:0a ur2|o=7r=0- (9)

608 / Vo!. 60, SEPTEMBER 1993

Eigen Equation

From Egs. (6) and (8) and from Egs. (6) and (9), we obtain
two sets of eight linear equations, corresponding to the sym-
metric and the skew-symmetric deformations, respectively. The
equations are homogeneous for the eight unknown coefficients
ay, @, by, by, @13, @2, by, by, The nonvanishing stresses
correspond to nontrivial solutions of the set of eight equations,
so A is determined by the roots of the eigen equation derived
by setting the determinant of the coefficient matrix equal to
zero. After a little algebra the eigen equations are written as
Dy(a,8,7,N) = (oc— BY*N}(1 — cos2y) + 2A(e — B)siny { sin\y

+sin\NQ27 — ) } + 2N — B)Bsiny {sin\(27 — y) — sinNy}

+(1 -t~ (1 — B)cos2Am + (o — BHcos { 2Ny — 1)} =0 (10)

for the mode I deformation and as
Dy(o,B,7,N) = (o — BY*N*(1 — cos2y) — 2\ (a — B)siny { sinky
+sinAM27 — %)} — 2N (e — B)Bsiny { sSinA (27 — y) — sinAy }
+(1=a®) ~ (1 = BHcos2Am + (c? — BAcos 2Ny — )} =0 (11)
for the mode II deformation, where « and 8 are Dundurs’

composite constants (Dundurs, 1967 and 1969), (Bogy, 1968)
and are related to the elastic constants of each constituent by

_ G](K2+ 1) - Gz(K[ + 1)
Gl(K2+ 1) + G2(K1 + 1)

_Gilka— 1) = Goli — 1)
GI(KZ + 1)+ Gk, + 1)

(12)

One can verify that the product of Dy(«,B,v,\) and
Dy(a,B,7v,M) coincides with the eigen equation given by Bogy
and Wang (1971).

-4 XD](O{,ﬁ,’Y,)\) X DZ(O‘,B:'Y!)\)
=Eq. (19) in (Bogy and Wang, 1971). (13)

Equation (13) means that the eigen equation in (Bogy and
Wang, 1971) may be reduced to two factors; one factor de-
termines the eigenvalues corresponding to the mode I defor-
mation and another determines the eigenvalues corresponding
to the mode IT deformation.

We now proceed to solve the eigen equations (10) and (11).
Bogy and Wang (1971) gave the numerical results for the order
of the singularity in the stress field at the corner. However,
they did not distinguish the eigenvalues corresponding to the
two different modes and only showed the eigenvalues with the
smallest real part. The eigenvalues corresponding to the mode
I and the mode II are both needed for analyzing the singular
stress field at the corner.

Denote the roots of Eqgs. (10) and (11) by A, and A,, re-
spectively. Since only the singular stress fields are studied here,
we only seek the roots A, and A, in the ranges as

0<Re(M\) <1, 0<Re(\)< 1. (14)

Figures 2-4 show the values of A\, and A, for any material
combinations and for the vertex angle of y =210 deg, 270 deg,
330 deg. The composite constants « and 8 are contained in
the parallelograms in the («,8) plane shown in Figs. 2-4, be-
cause under the restrictions

OSV],V2_<_O.5, OSGI, GZSOO (15)

all possible values of « and 8 defined by Eq. (12) are contained
in the following range, as shown by Bogy (1971).
—l=sa=s+1, (- 1)/4=B<(a+1)/4 (16)

Figures 2-4 indicate that A; (namely, the roots of Eq. (10)
corresponding to the symmetric deformation) may be real or
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Fig. 2(b) ), (corresponding to mode Il deformation) Fig. 4 A, and A, for p =330 deg

Fig. 2 A and X, for p=210 deg

complex, and the number of \; may be more than one. How-
ever, in the range of «,8 where

Bla—B)>0. 17
A is real and the number is one. Equation (17) corresponds
to
G, k-1 /[, G,
—- f—>1 1
G ko1 (‘ G~ > (18)
or
Gl k]—l . Gl
—_—> f—>1). 19
, G, k2~—1<1 G, > 19
Ay=€ytimy

Figures 2-4 also show that the number of A, is one at the
most and it is always real. There exists a region of no singular
Fig. 3(a M\ (corresponding to mode | deformation) stresses due to the mode 1I deformation, for example, for o> 8

when v =210 deg and for o< when vy =330 deg.

In Figs. 5 and 6 the values of A, A, for the materials of

vy =, =0 are plotted against the angle v and the ratio G,/G,,

respectively. These results indicate that there is no A; or A, less

than 0.5. For the case of y=360 deg and G»,/G,=0 or = oo,

the singularity becomes the strongest: A\;=A,=0.5. Figure 6

also shows, as a function of G,/G,, two distinct regions: the

region of \; >\, and the region of A\{<\,.

_ In many studies about the singular stresses it is thought that
« only the eigenvalue A\;, with the smallest real part is necessary
to be taken into account and so the singular stress field is
I assumed to be of the form

§ ayyoerRePmin) =1, (20)

However, it may be mistaken in some cases. Figure 7 shows
one of the cases. In Fig. 7, a strip with a diamond-shaped

L-0.5

i . L inclusion is subjected to tension and the materials are such as

Fig. 3(b) ) {corresponding to mode Il deformation) A >\ So from Eq. (20) the singular stresses would be as

Fig.- 3 ), and ), for p =270 deg o,»jocrh_ !, where \, is the eigenvalue corresponding to the mode
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Fig. 5(a) ), (corresponding to mode | deformation)
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Fig. 5(b) X, (corresponding to mode Il deformation)

Fig. 5 Variation of )\, and ), with vertex angle v for »;=»,=0

11 deformation, but there is no mode 11 deformation in the
given problem.

Eigenfunction

We now derive an explicit closed form for the eigenfunction.
The eigenfunctions corresponding to each eigenvalue are de-
termined straightforwardly. First, we consider the symmetric
deformation.

Substituting the eigenvalue \; into the coefficient matrix in
the eight linear equations obtained from Egs. (6) and (8) we

obtain
an =y, by=by 2D
1M =Tppe” ™M, bpe™T=Dye MT (22)
and
@y _ (a—B)sin{ Ay —m))
b Mla—B)sin{y— Ny —m)] +(1 - B)sin(\7)
an_ (a—B)sinfA(y—m)]
by Mla—=B)sin{y —N(y—m)} + (1 + B)sin(A7)
ape™™ (1= B)si(\y) + (1 —a)sin [\ (1= 7)} + \i(a— B)siny

1 1 1 1 10 100 1000
1000 100 10 1 1 1 1

Fig. 6(a) ~ =330 deg

=l
(=]
[
<
=]

.
1
1

-1
-1

G, /6
Fig. 6(b) =300 deg

v, v,=0

0.0

1 L 1 1 i)
_1_ 1 1 10 100 1000
1000 10 1 1 1
6, /6,

Fig. 6(c) =270 deg

Fig. 6 Variation of Ay and ), with ratio G,/G, for vy =y,=0

L(ZS)

a;  (1+B)sin{\ 27— )} + (1 +a)sin {‘)\1(7— ™} + Mla— B)sin*{)

Since A, is of order 1, the eight unknowns ayy, @, ba1, by,
a13, Gxn, b2, by are only related by seven Egs. (21), (22), and
(23). It means that we can arbitrarily choose one of the eight,
for example, define a;, as

1 . ;
an:————51n{)\1(’y—7r)]'{Kl,)\l‘“KZM} @4

227
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where K| , and K T,», are real constants.

Substituting Eqs. (21)-(23) with the definition (24) into Eq.
(5) we can derive the eigenfunction of stress and displacement
without any difficulty. The size of the resulting expression is
too large to print here. Therefore, we only indicate here that
the singular stress around the point of singularity is determined
by two real constants K KZM and has the form as

Transactions of the ASME



-1
ap=r"""[(m K\, +mKf ) M

X {cos(glnr)cosh[fglcos[(p — 1)0]
+ sin(glnr)sinh[fg]sin[(p — 1)0] } + (mzK,,M

+ K ) X {cos(glnr)sinh|fg]sin[(p — 1)0]
- sin(glnr)cosh[fglcos[(p — 1)01} + (3K, + 3Ky ))

X {cos(ginr)cosh[8q]cos|(p + 1)0]
+ sin(glnr)sinh[fglsinl(p + 1)01} + (mK; a T 7KT L)
X {cos(glnr)sinh[8q]sin{(p + 1)6]
— sin(glnr)coshffglcos[(p + 1)8]}]
T =r"" [ (msK) y, +nsKF,)

X {cos(ginr)cosh{fqglsin[(p — 1)0]
~sin(glnr)sinh[fglcos[(p — 1)01} + (meK, A

+ ngKi ) X {cos(qglnr)sinh[fg]cos[(p — 1)6]
+sin(glnr)cosh[0glsin[(p — 1)6]) + (MK \, + 1K \))
X {cos(glnr)cosh[fqlsin[(p + 1)6]
—sin(glnr)sinh[fg]cos[(p + D01} + (MK \, + neKF y))
X {cos(glnr)sinh{fglcos[(p + 1)8]
+ sin(glnr)coshlfq]sin[(p + 1)0]1}] -/

(25)

for the material 1 (—y/2<0=+/2) and as
op=r"""{meKy \, + noKix,)
X {cos(glnr)cosh[g (= — lcos[{(p— 1){(7 — )]
+ sin(glnr)sinh{g (7 — 8)]sin[(p — 1 ){(x —6))
+ (10K, 5 + F10KEN)
X {cos(glnr)sinhfg (7« — 8)Isin[(p — )(7 — 6)]
—sin(ginrcosh[g(m — Hlcos[(p — 1)(7 —0)] }
+ (m Ky, +nuK7 )

3

X {cos(glnr)coshg (7 —8)]cos[(p + 1)(7 — )]
+ sin(glnr)sinh{g(x — Nlsin[(p + 1 )7 — )]}
+ (MK K
X {cos(ginr)sinh]g(w — O)Isin[(p + 1)(7 — )]
— sin(glnr)coshfg(m — §)]cos[(p + 1)(w — D]}
T =r"" (MK n + niKin)
X {cos(ginr)cosh[g(m — O]sin[(p — 1)(7 — 6)]
+ sin(glnr)sinhg(w — Hlcos[(p — (7w — )]}
+ (maK\ +1uKT
X cos(glnr)sinh[g(m — )lcos[(p — 1) (7 — )]
- sin(glnr)cosh[g(z — O)]sin[(p — 1)(7 — )]}
+ (15K + 1sKF )
x {cos(glnr)coshlg(x — 8)]sin[(p + 1)(7 — 0)]
+ sin(glnr)sinh[g(w — )]lcos[(p + 1)(7w — )]}
+ (116K 5 + M6KT )
x {cos(ginr)sinh[g(w — &)]cos{(p + )(7 — 0)]
— sin(glnrycosh[g(m — 6)]sin[(p + 1)(7 — 6)] }]J
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(26)

_ 1 h
an +a“=—\/2—‘1r sin{A\i(y—m)} <Ky,
- 1
b“+b“:—\/2:7f(;l___6—)
X [N —B)sin{y =My — )} + (1 = B)sin\, 7]+ Ky,
: >

Gijo( r

but
Ay < Ay

U/ d

R

Fig. 7 Strip with a diamond-shaped inclusion under tension

for the material 2 (y/2=<6<2m —y/2), where m;, n; (i= 1~ 16)
are functions of «, 8 and v alone.

Since Dy(at,8,7,M) = Dy(a,8,7,N), if Nis a zero of Dy(«,8,v,N)
so 1s A. It is thought that the stress state around the point of
singularity is expressed in terms of four real constants because
both A and A are the eigenvalues (Hein and Erdogan, 1971).
However, the eigenfunction corresponding to A should be the
same as the eigenfunction corresponding to A, as can be under-
stood by considering the form of function in expression (5).
It means that the eigenvalue A does not contribute to a new
eigenfunction other than the eigenfunction corresponding to
A. That is, in the general case the stress state around the point
of singularity is expressed in terms of two real constants.

When A, is real, the associate eigenfunction becomes simple.

By making use of the relations (21), (22) and A, =\,, the
complex potential can be written as

$1(2) = (an+ @12, ¥1(@) = (b + byy)2M ()
for the region {1, and as
b2(z) = (@™ +ae” Ny e MM,
¥2(z) = (12N +bpe” MTe "M (28)

for the region Q,.

The coefficients a,, +ay, by +Dby, ape™™+ape” ™™ and
b126M™ + be” ™7 in Eqs. (27), (28) are real and are given by
Egz)following expressions after use of Eqs. (23) and definition

; — _igm |
a4+ qpe ™ :—\/i sin{ Ay —m)}+Cre Ky

e = ]
blzel)\l-/r_l_blze N

V2w B)
X e —B)sin(y = My~ m) ) + (1 +B)sinx]+CreKpn,

29
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where
(1= B)sin(hy) + (1 — o)sin{A (7w — )} + M« — B)siny

1= (L +B)sin{ M7 —v)} + (1 +a)sin{ A (y— 7)} + A\(a— B)siny’ (30)
Equation (29) means that when A, is real, the singular stress
A2
;l:ael 2(:) nt?tz :g(}?[eMI deformation is expressed in terms of one ff)[,ll (0)2\/*( 5 (Dol — B)sin {7y — Aoy — 1)}
Welrﬁ:vs;mllar way, for the part due to the mode II deformation — (1= B)sinQnm)] X sin{ (g + 1))
{ a= —ay, bu=—bn } on [(>\z+1)(&—6)Sin{>\z(v—7r)}]Xsin{O\z—1)0}] (39)
T =~y Nom T =g
@127 = ~ e, b= = bye T Fha)= [Dhi(ee—Bsin {y — Nty — )}
Since A, is always real it follows that the complex potentials \/——( -8
become + (1 - B)sin{\7)] X sin{ (A + 1)0}
$1(2) = (a1 —811)2’2, ¥a(@) = (b1 —b11)2"? (z€Q)) +I0n = (e — B)sin{ My — m)}] X sin [\ — DBY] (40)
$2(2) = (@1pe™" —Tppe” M )e ML, €7 - - :
Ya(z) = (blzei)‘z’r _ Elze~i)\21r)e—i)\27rz)\2 (2€%,). Jro,1(0) = \/ﬁ(a _8) [l = B)sin{y — Aoy — m)}
The coefficients ay,— @y, by — b1, @™ —a,e” ™™ and — (1 —=B)sin(A,m)] X cos{ (A, + 1)}
b12¢™" —b,e” ™" in Eqgs. (32) are pure imaginary and are given +[0— D(a—B)sin{ My — 1) }1x cos{ (h— 1)8}] (41)
by the following expressions as in the case of mode I defor-
mation:
au—an=\/—5; sin{ Aoy — )} =K,
by— \/ﬁ(a 5 X Mo = B)sin{y — My —m)} — (1 = B)sindam]+ Ky, 5, .
@™~ e M = —L sinfhay—m)}CoeKipn,
2T
bie™ —Be™ M = \/—2;(& 5 X [Nl — B)sin{y — Moy — )} — (1 + B)sinAgm]  Cr= Ky 5,
where Ky, is a real constant and
__ (I=B)sinQuy) + (1 — a)sin [ My(m — 1)} — Mo — B)siny (34)
2T (L4 B)sin(MQm — )} + (1 + w)sin Ny — 1)) — Aglar— B)siny’
The singular stress field is a sum of the stress field due to
the symmetric deformation and the stress field due to the skew-  and for material 2, (y/2<6 <27 —v/2):
symmetric deformation. When A, is also real, an expression c ’
of the singular stress field is given by the following equation T oy 1M _ B)ai — _
in the same form as Eq. (1). Jra®) 27— B) [l =Bsinty =My =m)]
o K” f,,(0) +K1” 2 .(6) +(1 +B?sin()\l7r)] X cos{(\+ D(r—6)}
K K + [\ =3)(@—B)sin{ My — ] Xcos{ (A — D(m—6)}] (42)
iy Rirxg cor i
0= o SO 5 S0 (=1 G9) gy O pingy—aty - )
K1>\ Kin 1 o4 Kn Kuxs p1 o). Va2r(a-B)
Trod = =n S b o — (1 +B)sin(\ym)] X sin{ (\y + 1)(x —6) )
where for material 1, (— 'y/2 <0=<y/2): + (2= 3) (= B)sin [ Aoy ~ m}}I X sin{ (A, — D(m —0)]]  (43)
_ —C)A .
Q) =m [IM(a—B)sin{y =Ny —m)} fo6)= m [[A (e —B)sinfy — M(y — m)}
+ (1 B)sin(\ )] X cos{ (A; + 1)} + (1+ B)sin(hm)] X cos {(A + 1)(w — 6)}
+ [\ = 3) = B)sin { \(y — ) }] x cos {(\ — 1DB}] (36) + [\ + D= B)sin{ My —m)}]1 X cos{ (M — D(m—0)}] (44)
-\ CoA . '
Fi0) = = [l Bysin{y =My =) @)= o (e Bsinty ~doly—m)
— (1 = B)sin(\ym)] X sin{ (A, + 1)8} — (1 +B)sin(\ym)] X sin{ (A + D7 —6)}
+ {0z = 3= B)sin{ Aoy — M) }I xsin{(\,— 1)8)]  (37) + [+ D — B)sin { Aoy — M }I X sin{ Ay — 1)(7r—0)]]  (45)
A CiA .
‘fb],l(o) = m [N = B)sin{y — Ny — )} frIB,Z(e) =m [[M(oe = B)sin{y — My — )}
+ (1 = B)sin(\ym)] X cos{ (\; + 1)6} + (1 + B)sin(Aym)] X sinf (A + 1) (7w —6)}
+ [\ + D= B)sin{ A (y — ™) }1 X cos {(\ — 1)B}] (38) +I — Da = Bsin (M (y — M} Xsin{ (A~ D)(r —0)}]  (46)

612/ Vol. 60, SEPTEMBER 1993

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Transactions of the ASME



interface

I'=10(A,=0.768)

T=0.1(),=0.663)

0.0 7/ !

r=6,/6,

1 1 i
90° 120°  150°  180°
0

-0.5 L

Fig. 8 Singular stress field o, for y =270 deg and K, =1

Cz)\z
[ =—F—=——
V271(o— )
— (1 + B)sin(\ym)] X cos{ Ny + 1) (7 — 0)}
+I0n— D(e—B)sin {Maly —m i1 xcos{(r— D(m - }]. @7)
In Eqs. (42)-(47) the constants C, and C, are defined by Eq.
(30) and (34), respectively.

In Eq. (35) the stress field at the close vicinity of the corner
is given as a sum of the symmetric state with a stress singularity
of 1/r' ™™ and the skew-symmetric state with a stress singu-
larity of 1/r'7*2, and is expressed in terms of two constants
K, and Ky, as in the case of crack problem.

For v=27 and o= 1, the roots of eigen equations (10) and
(11) become as A\, =\, =0.5 and Eq. (35) yields

[[Na(or—B)sin {ry — Moy — 1))

oK (s 0 1 30) Kmp{ 5. 03 30
w4772 472 2 47247 2
0_K1,1/z —cosg+lcos 30 +@Q —ésmg—ésinﬁ
CNmr (AT 274 T 2) a4 2 47 2

Kup (1.6 1. 30) Kypn(1 63
= L2 [4_1 sin ~+— sin *}+M {— cos = += cos ﬁ}

27r (4 2 4 2

which is in agreement with the concrete form of Eq. (1) for
the crack problem in a homogeneous plate.

Figures 8 and 9 show the singular stress oy and 7,5, as a
function of 6, for y=270 and for K; »,=1 and Ky, =1, re-
spectively. For G,> G,(G, corresponds to the material of the
wedge with angle > 180 deg) one notes that the intensity of
singular stress gets the maximum at §=0 deg. However, for
G, < G, the maximum does not occur at =0 deg.

Journal of Applied Mechanics

Interface

[ (1,=0.622)

r=10(,=0.835)

I=G,/G,
Fig. 9 Singular stress field 7, for y =270 deg and K,,,=1
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Averaging of Anisotropic Elastic
Constants

Redundant experimental data are usually required to determine the best value for
the whole set of compliances of an anisotropic laminate. A method is presented

here to optimize the compliance tensor values using the five invariants of fourth-
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rank compliance tensors. A vectorial representation of those invariants is given. It
provides a compact presentation of the data and reveals the experimental scatter.
Experimental data obtained with bending tests on plates are used as an example to

optimize the flexural compliance tensor of a laminate and to show the relevance of
the method in practice.

1 Introduction

Several tests are required to assess the validity of a consti-
tutive law of anisotropic composite materials. When a material
is isotropic, the number of independent constants is only 2
within the framework of linear elasticity. For orthotropic plates,
this number increases to 4. In the usual case of uncoupled
multidirectional laminates, the independent stiffness or com-
pliance components are as many as 12 (Tsai and Hahn, 1980):
six in-plane and six flexural stiffnesses or compliances. Char-
acterizing these 12 quantities is the challenge which must be
faced before designing with composite materials; it will be all
the more difficult because anisotropy induces particular par-
asitic effects (Pindera and Herakovich, 1982, for instance),
which are to be taken into account through the use of suitable
experimental tests and data treatments. For example, the in-
plane compliance tensor of an anisotropic composite material
can be obtained by several tensile tests performed in different
directions, which lead to more quantities than coefficients to
be identified. The unknown compliances are then optimized
by means of these redundant data. However, conventional
methods of analysis do not always take full advantage of the
tensorial nature of these quantities.

In fact, the true goal is not really to assess and to optimize
the compliances, but to optimize the fourth-rank compliance
tensor itself, which is the mathematical tool describing the
elastic behavior of the laminate. Rather than considering the
compliances, which are extrinsic parameters for anisotropic
materials, it is more relevant to use the invariants of the tensor
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which do not depend on the choice of axes and can therefore
be regarded as intrinsic parameters. Hence, the rigorous pro-
cedure for optimization of compliance measurements pre-
sented here is performed by relevant operations on the whole
set of compliance tensor invariants.

The polar representation of fourth-rank compliance tensors
is first described. This representation is then used to define a
norm and a deviation function involving the experimental data.
Minimizing this function provides the optimized invariants.
Finally, the method is used to average a set of experimental
data.

2 Theoretical Analysis

2.1 Introduction. Only a few papers deal with the prac-
tical optimization of experimental anisotropic compliance data.
In these, the tensorial nature of the Hooke’s law relations of
anisotropic materials is not strictly and completely taken into
account. A first approach was given by Wu et al. (1973), but
it can only be used for orthotropic materials. Vong and Ver-
chery (1980) proposed a simple procedure based on the least
squares method that does not require all the components of
the tensor in each test configuration. In this latter case, the
tensorial nature of the compliances only appears in their trans-
formation equations and not in terms of invariants.

The method presented here is a rigorous approach of op-
timization through the use of the whole set of five invariants
of the fourth-rank compliance tensors. It uses a polar repre-
sentation of fourth-rank tensors, which clearly reveals the dis-
tance between experimental and optimized sets of data, and
characterizes the type of anisotropy.

2.2 The Polar Representation of Fourth Rank Ten-
sors. The theory of polar representation of tensors was de-
veloped and applied by Verchery and his co-workers, extending
results for elasticity tensors obtained by Tsai in the 1960s and
detailed by Tsai and Hahn (1980). The theory was presented
by Verchery and Vong (1986). An English presentation of the
essential points can be found in Kandil and Verchery (1989).
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or laminate axes

Fig. 1 Rotation of the coordinate system

The general constitutive equations for uncoupled laminates
between the in-plane strain components %, the curvatures k,
the in-plane stress resultants &V, and the moment components
M can be written in the following form (Tsai and Hahn, 1980):

B0 o)) o

From an experimental point of view, the components of the
two 3 % 3 stiffness matrices A and D are not directly measured.
In fact, suitable tensile or bending tests provide their inverses
which can be rewritten using the normalized form suggested
by Tsai (1988): 4A~'and #°/12 D™}, & being the thickness
of the laminate. Both of them are normalized compliance ma-
trices denoted S in the following.

Because of the anisotropy of the laminates, compliances are
tensor components and depend on the choice of axes. They
can be expressed as a function of different invariant parameters
and the angle f depicted in Fig. 1 between the chosen axes and
the frame of reference (Kandil and Verchery, 1989). Using the
contracted notation with two subscripts (Tsai, 1988):

S“ = T0+2Tl +ROCOS400+4R1C082G1
SZZ = To + 2T1 + ROCOS4GO - 4R1C052a|

S]ZZ - To+ 2T1 — RQCOS4GO

S66 =4 ( To - R0COS4(10)
Sl6= 2(Rosin4a0+2R,Sin2c11)
Sy = 2(— Rgsinday+ 2R, sin2a,) 2)

Ty, T1, Ry, and R; remain invariant under change of frame
while @y and a, are changed into @y + 8 and a; + 6. T, T3,
Ry, Ry, and ay — a, are therefore the five independent invariants
of a fourth-rank tensor of Hooke’s law relations. They can be
considered as intrinsic parameters that fully describe the tensor.
A sixth parameter § must be given in order to compute six
compliances that are extrinsic, i.e., dependent on the coor-
dinate system characterized by 6.

Intrinsic and extrinsic parameters must be clearly distin-
guished here. In the common case of isotropic materials, the
compliances are intrinsic parameters and it is not relevant to
consider other parameters. On the other hand, compliances of
anisotropic materials are dependent on the choice of axes.
Hence, they do not characterize the intrinsic nature of the
material, whereas the five invariants fully define the type of
material anisotropy. For instance, a square symmetry induces
R, = 0, orthotropy is equivalent to @y = @; + k 45 deg (Where
k is an integer) and isotropy to Ry = R, = 0. As a result, one
can detect whether a material is orthotropic and can easily find
the orthotropy axes defined by angle @,. By contrast, a set of
six compliances expressed in axes different from the orthotropy
directions does not allow this determination.

Journal of Applied Mechanics

TPa

4R,

b- Generalized Mohr's circles

Fig. 2 Vectors and generalized Mohr’s circles for the compliances

Equations (2) can easily be inverted to give the following
quantities called ‘‘polar components’’:

1
T0=§ (S11+ 82— 2512+ Se6)
isotropic components
i
T =3 (Si1+Sn+2512)

) 1 ;
R0€4m0=§ (S +8Sn— 2512—S66+21(S16_SZ6))

. 1 ;
RleZIal :§ (511_522-{—1(516-1'526))

anisotropic components. (3)

Two of them are real, and characterize the isotropic part of
the constitutive law, the other two are complex and define the
anisotropic part, which reduces to zero when the material is
isotropic.

In the complex plane, the polar components can be fully

and compactly represented by four vectors /o, f}, Ayp, and A4y,
defined by:

I:)<7(;0> ﬂ(z( T00+ Tl)) for the isotropic part

~ (Rocosdap ; (4Ricos2a; _ _
thi 1 t
Ao <Rosin4a0> Ay <4Rlsin2al for the anisotropic par

In a rotation of the axes through 6, I:), and fl remain constant
while 4y and A4, rotate through 46 and 26, respectively. One
can plot two circles with the tip of the two vectors A, and

A, (Fig. 2(a)). They can be considered as Mohr’s circles that
generalize the familiar Mohr’s circle of stress. In the present
case, we have a second circle with an angular rotation four
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times that of the coordinate axes. As for the stress components,
the compliances are provided by graphical constructions plot-
ted in Fig. 2(b)). These graphical interpretation of the com-
pliances is directly related to Egs. (2). Such generalized Mohr’s
circles are also used by other authors (Wu, Jerina, and Lav-
engood (1973), Tsai and Hahn (1980) for instance), but with
different locations of the circle centers, bécause this choice is
arbitrary.

2.3 Distance Between Two Tensors. Comparison of the
elastic properties of two laminates.is usually performed through
a term-by-term comparison of the compliances or stiffnesses
of both materials. However, this method cannot be considered
as appropriate for anisotropic materials because those param-
eters depend on the choice of the coordinate system. For in-
stance, some of the compliances S,s of two different materials
can be equal in a particular frame and different in another
one. The approach suggested below does not depend on the
coordinate system where the calculations are performed. It is
proposed to reduce the comparison of two sets of six com-
pliances referred to the same axes to a single scalar called
distance. The characterization of the difference of two tensors
will obviously allow a global comparison of any two materials.

From the four polar components defined above, it is easy
to compute a distance between two tensors S and S’. First, a
norm N(8) is defined as the square root of the sum of the
squares of the norms of the four vectors:

N(S) = [1I12+ 11,12+ 1 Ay 12+ 1 4,17V2 @)

The norm is therefore related to the lengths of the four vectors.
Introducing the polar components,

N(8) :[(TO)2+4(TO+TI)2+ ‘R0e4fao|2
+ 16!R162ia1 ]2][/2‘ (5)

The angular components have no influence, i.e., the norms
are invariant under changes of the reference frame. N(S) can
therefore be considered as an intrinsic parameter characterizing
S.

Secondly, the distance between two tensors S and S’ can be
defined as the norm of the difference between the two tensors
S and S’. Obviously, S and S’ components must be expressed
in the same reference frame in order to define an intrinsic
distance.

Introducing the polar components,

N(S=8")=[(To—To )2 +4(To+ T~ Tp —~ T1 )?
+ |Rye* ™0 — Ry %012+ 16| R ¥ 1 — R, 21192, (6)

Two tensors S and S’ are equal if and only if N(S — §)
is equal to zero. In this case, the two sets of four vectors are
the same. In the complex plane (Fig. 2), this means that the
generalized Mohr’s circles representing S and S8’ are the same
and that the angular components g, and ag -as well as ¢; and
a{ are equal.

One can define the relative deviation between two tensors
as the ratio:

_NS-8")
TUNGES)

This nondimensional quantity is well suited to quantify the
difference between the two tensors. In particular, if € is small,
the two tensors S and S’ can be considered as close to one
another and the two materials will therefore have approxi-
mately the same global mechanical response. This quantity can
therefore be used to assess the global scatter of experimental
results, S’ being the tensor determined from a set of six ex-
perimental compliances in a particular coordinate system and
S being the optimized tensor.

9

2.4 Optimization. Within the framework of data opti-
mization, one can define a deviation function between an op-

616 / Vol. 60, SEPTEMBER 1993

timized tensor 8°"™=4 and » tensors & (j = 1 ... n) called
measured tensors, whose components are determined through
mechanical tests carried out on coupons cut in the same lam-
inate. The deviation function is the sum of the squares of the
distances between the optimized tensor and the different meas-
ured tensors. As specified previously, all tensor components
must be provided in the same frame to avoid any material
rotation from one configuration to another. $/ must therefore
be expressed in the reference frame rotated through ¢’ from
the coordinate system j where the experiments were performed.

Each measured tensor expressed in frame j is defined by T4,
I}, A} and AY. In the reference frame, it is defined by I}, I,
Aq’ and A,’. As specified above, A’ and A,’ are rotated,

respectively, through —4¢’ and —26’ from A} and A{. The
deviation function can be expressed as follows:

n
E= Z [N(Sop[imized _ Sj)]l (8)
j=1
In terms of vectors, the deviation function becomes
n g . - . - _.’ .
E= " [Uy— I+ 1L - I{ 1+ | Ag— A’ 1?

=1

+14,-A471%. ©9)
All those sets of four vectors characterizing the same an-
isotropic laminate must be approximately the same after ro-

tation of the tensor components through — 6.
Using the polar components,

E= > [(To— T4 +4(To+ T\~ Th—TY)*
j=1
+ | Rye"0 — Rh 400112 1 161 R, ¥ — Ri @112, (10)

Each set of six components T4, T, R}, R}, a), & is obtained
through Eq. (3) from a set of six experimental compliances
S7,s measured with appropriate mechanical tests in the axes /.

The best fit of » measurements can then be obtained by
finding the minimum of E, which gives the optimized tensor
defined by Ty, Ty, Ry, Ry, ag and ay, i.e.,

o0E O0E OQE dE 0OE OJF

———m— == ——=——=—=)
aTO 6Tl aRO BRl 8ao aal

Differentiation of Eq. (10) provides the optimized components.
1 n . 1 n .
To== >, Th Ti== >, T
o= ; b Ti=- ,ZE 1

1 n . ) )
Ro== > Rbcos[4(ao— ab+6")]
n o

an

1 n . ) )
Ri=- > Ricos[2(a ~ai+6)]
j=1

1g(4a,) = {2 Résin[4(a{)—0j)]} / {Z R{;cos[4(a{)—0j)]3
J=1

L =
v L . . . " . . .
tg(2a;) = iz Risin[2(a] — 0’)]} / {Z Ricos[2(a] ~ 0’)]} .
Jj=1 Jj=1
(12)
It can be noted that Ty and 7 are the direct averages of the

corresponding experimental values. Iy and /; are therefore di-
rectly the average of the corresponding experimental vectors

Ihand I{, j = 1 ... n. On the other hand, R, and R, are,
respectively, weighted by cos[4(ay — a} + 6’)] and cos[2(a; ~
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Fig. 3 Optimized vector m_qc

@} + 6%)]. This distinguishes the present treatment from that
of Wu et al. (1973) who did not take into account the angles.
In fact, the present procedure reduces to two averages of real
numbers (the isotropic parts) and two averages of complex
numbers (the anisotropic parts). Angular quantities are there-
fore involved in these two latter averages.

The average of the complex numbers is geometrically inter-
preted as an average of their associated vectors in the complex
plane. This procedure is depicted in Fig. 3. The n vectors

Aq’ are plotted in sequence: the tip of one is joined to the
tail of the other. The optimized vector A is the average of the

. ri T .
n experimental vectors Ay’. A4, is also obtained through a
similar construction.

In conclusion, it can be written

O I 1y =
== J — J
DI nZh
Jj=1 Jj=1
N 1 < —/' - 1 1 a/~
Ag=~ Ayl A =— A
0 n; 0 1 nj:z; 1

The two vectorial averages of I and I; are obviously equiv-
alent to two scalar averages of T, and Tj, as the imaginary
part of the isotropic components in Eq. (3) is zero. Such a

(13)

simplification cannot be performed for 4y and A4,.

3 Application to the Averaging of Experimental Data

Bending tests have been carried out on a 16-ply [0, 90,1z
symmetric glass/epoxy laminate. The experimental procedure
is not described here. More details can be found in Grédiac
and Vautrin (1990a) and (1990b). The tests were performed in
different directions to measure the six flexural compliances in
ten coordinate systems defined by the angle 6/ (j = 1 to 10).
The increment from one configuration to another is — 10 deg.
The 0 direction coincides with the direction of the fibers of
the external ply. Hence, the (0, 90) frame is expected to coincide
with the orthotropy directions. Tables 1 and 2 respectively
show the experimental values of the normalized flexural com-
pliances of the plate specimen, and the invariants computed
using Eq. (3). ) ) .

It is apparent that af and @ decreases as — ¢ increases. As
expected, T4, T4, R}, R} remain approximately constant. The
difference aj — @} should be constant. However, it shows a

large scatter due to the poor accuracy of @}, the vector I being

shorter than I%. Nevertheless, one can consider that the average
value of this difference is realistic. The optimized components
are shown in Table 3. The fifth invariant ¢, — a; is equal to
—42.2 deg. Hence, the material can be regarded as ‘“‘nearly
orthotropic.”” This is due to the fact that @y — a; = k 45 deg
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Table 1

Experimental compliances

-0 8y S22 Sy, Ss6 516  Sa

deg. TPa! TPal TPal TPa! - TPa'l TPa-!

0 32.4 50.4 -9.7 292.8 4.6 -5.1

10 36.7 58.0 -17.1 274.6  30.7 -30.0

20 52.6 70.3 -30.9 222.6 472 -42.6

30 71.7 79.9 -52.0 150.9 46.8 -28.0

40 84.5 - 915 -62.4 108.0 24.2 -8.9

50 85.2 86.9 -60.8 109.2 -7.5 23.6

60 88.4 72.0 -41.9 153.9  -335 44.4

70 65.1 57.4 -27.3 232.7 -42.9 457

80 65.7 37.6 -19.0 280.4  -35.4 29.8

90 50.4 31.1 -10.4 300.0 0.0 -11.9

Table 2 Invariants
-¢ ™ om R} Ri a) al al -l
deg. TPa'! TPa"! TPa! TPa! deg. deg. deg.
0 49.4 792 239 225 435 907  -47.1
10 50.4 7.58 23.8 2.66 35.0 89.1 -54.0
20 50.9 7.65 229 2.29 25.5 82.3 -57.2
30 50.8 5.94 23.1 2.73 13.9 52.0 -42.0
40 511 6.40 25.5 2.10 4,73 57.2 -52.5
50 50.4 6.32 243 2.02 -4.67 479 -52.6
60  49.7 9.56 225 2.46 2150  16.8 -31.8
70 51.2 8.48 232 1.04 -26.9 10.1 -37.0
80 52.7 8.17 23.8 3.59 -34.2 -5.63 -28.6
90 50.3 7.62 24.8 2.83 -46.7 -15.8 -30.9
Table 3 Optimized components
To Ty R, R, a, ay ag - a
TPa’l  TPasl  TPal  TPal deg. deg. deg.

present method 50.7 1.57 23.8 2.22 44.5 87.1 -42.2
method of Wu et al. 50.7 1.57 23.8 2.35 n p. n. p. n. p.

n. p. : not provided

(where k is an integer) is the relation characterizing orthotropic
materials. The directions of orthotropy are given by a,. In the
present case, the ‘‘best’’ directions of orthotropy are rotated
through 90 — 87.1 = 2.9 deg from the reference frame.
The experimental data are plotted in Figs. 4 and 5. Each set
of six experimental results is illustrated by the four vectors

I, F, A%, AY. For convenience, only A% and A/ have been
plotted in Fig. 4, but note that the origins of the vectors are
not located at the same point because of the scatter in the

length of I4, I4. The scatter of experimental results is clearly
illustrated in this figure. Regularly orientated and constant-
length vectors would show a very accurate experimental pro-
cedure. The left-hand set of vectors in Fig. 4 is more regular
than the right-hand one. It is suggested that the main reason
is the small value of R, (2.22 TPa™!), which is therefore not
identified with the same accuracy as Ry (23.8 TPa™ ).

Figure 5 provides the four optimized vectors as well as the

‘optimized Mohr’s circles. The tips of the vectors A% and A4

are plotted. One can see the good agreement between exper-
imental data and optimized Mohr’s circles.

The scatter between the experimental sets of vectors and the
optimized ones is assessed using the relative deviation e given
by Eq. (7). Figure 6 provides ¢ as a function of the angle — ¢,
The relative deviation remains less than ten percent, and the
magnitude of e can easily be related to Figs. 4 and 5. For

instance, A4 at ¢/ = — 80 deg is not really in agreement with
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Fig. 6 Relative deviation of experimental data

the right-hand circle and one can observe that ¢ is highest for
this angle. One could improve this procedure by selecting the
most relevant experimental configurations that provide a low
value of the relative deviation e, and removing the experimental
data characterized by a high value of ¢ (Babut and Brandt,
1977).

Optimized components computed using the present method
and the method given by Wu et al. (1973) are compared in
Table 3. As may be seen, this latter method provides a good
assessment of the radii Ry and R; even if the angular scatter
is ignored. However, the angular components a, and a; cannot
be computed. Finally, one can calculate the optimized com-
pliances using Eq. (2). These values are provided in the ref-
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Table 4 Optimized compliances in the reference frame

S11 S22 Sia Se6 S16 Sa6
TPa-! TPa’l TPa'l TPa'l TPat ‘TpPa'l
33.2 50.9 -11.7 297.9 2.6 -0.7

erence frame (Table 4). The shear coupling compliances Si4
and Sy are close to zero. Hence, it is verified that the plate is
approximately orthotropic.

4 Conclusion

In this paper, a rigorous process for averaging experimental
compliances of composite materials has been presented. It is
based on the use of the polar representation of fourth-rank
compliance tensors and consists in minimizing a deviation
function.

Strictly speaking, an anisotropic elastic law is completely
characterized by five independent invariants that are here used
to optimize the anisotropic elastic constitutive law. Because of
their intrinsic nature, these quantities should certainly be more
often used to represent and to characterize composite mate-
rials.
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composite materials. An additive decomposition is adopted to describe the kinematics
of large deformations; a lattice is defined by the current fiber direction. Elastic and
plastic constitutive relations are developed from the proposition that distortions
take place relative to the fiber direction. A numerical method is proposed for
integrating the constitutive equations. Finally, an illustrative example of the for-

mulation indicates that when axial loads along the fiber direction are comparable
to the instantaneous shear stiffness, the finite deformation formulation is needed
even with small strains.

Introduction

Elastic-plastic behavior of metal-matrix composites rein-
forced by continuous fibers has been investigated in many
theoretical and experimental studies in recent years (Dvorak
and Bahei-El-Din, 1979, 1982, 1987; Dvorak and Teply, 1985;
Teply and Dvorak, 1988; Dvorak et al., 1988). These studies
considered infinitesimal deformation formulations in view of
the high stiffness and relatively low ductility of fibrous metal
matrix composites as, for example, compared to ductile poly-
crystalline metals. However, due to the anisotropy of fibrous
composites and the existence of preferential modes of low
hardening plastic flow, a finite deformation formulation may
be needed. This is due to the possible pronounced geometric
hardening or softening that may occur with the reorientation
of these modes under deformation-induced rotations. This is
consistent with observations made in the literature concerning
the need for finite deformation formulations in constitutive
studies (Rice, 1970), finite element studies (McMeeking and
Rice, 1974) and in localization studies (Rudnicki and Rice,
1975; Asaro and Rice, 1977; Rice, 1976). These observations
are especially pertinent when strains are magnified by such
stress concentrators as notches and cracks. For example, the
Moire patterns of Post et al. (1988) show experimental evidence
of large strains and the localization at and away from notch
tips in boron-aluminum fibrous composite plates.

Finite deformation elastic-plastic constitutive relations have
recently received considerable attention in the literature. Spen-
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cer (1984) and Fares and Dvorak (1989) studied the behavior
of metal matrix fibrous composites. Christoffersen et al. (1981)
and Nemat-Nasser (1983) studied plastic flow of granular and
geomaterials. Hill and Rice (1972), Asaro and Rice (1977), and
Pierce et al. (1982) considered the finite deformation of single
crystals, while Lee (1969), Agah-Tehrani et al. (1987) and Lee
and Agah-Tehrani (1988), Iwakuma and Nemat-Nasser (1984),
among others, studied such deformations in polycrystalline
metals. The single crystal studies were particularly influential
in clarifying the structure of constitutive relations at finite
deformations. Especially important was the concept of a lattice
capable of rotating by an elastic spin which may be different
from the spin derived from the antisymmetric part of the ve-
locity gradient. The specific manner in which the lattice rotates
effectively leads to a distinct constitutive relation (Asaro and
Rice, 1977). In polycrystalline metals, this concept has led to
a discussion of the constitutive specification of the plastic spin
(Dafalias, 1984). The particular choice of lattice deformation
has to be physically motivated by the microstructure (and ex-
perimentally verified) and cannot be fully determined by fun-
damental postulates such as the principle of material frame
indifference (objectivity) or by conservation laws.

Fares and Dvorak (1989) considered a multiplicative decom-
position (Lee, 1969) of the deformation gradient in formulating
constitutive relations for fibrous metal matrix composites. The
multiplicative decomposition facilitates the visualization of the
deformation by introducing a relaxed, intermediate configu-
ration represented by the plastic part of the deformation gra-
dient. However, there are theoretical as well as practical reasons
why an additive decomposition of the velocity gradient is pre-
ferred (Nemat-Nasser, 1981). Thus, we use an additive decom-
position in the present formulation. We note, however, that
both decompositions lead to approximately the same results
when the elastic strains are small. As in the multiplicative
decomposition, the choice of stress rates have to be carefully
chosen (Dienes, 1979; Nagtegaal and deJong, 1982; Lee et al.,
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1983; Dafalias, 1983) but they follow from the physical as-
sumptions. )

The present work is concerned with the constitutive frame-
work of finite elastic-plastic deformations of fibrous, metal
matrix composites. A plane stress formulation is adopted which
is appropriate to single or multiple (usually around 7) ply
unidirectional materials. Laminated plate response may then
be deduced from ply behavior and suitable lamination theories.
The physical assumptions on which the constitutive framework
is based is first discussed. These assumptions are motivated
by analytical and experimental studies of the matrix-dominated
mode (MDM) of plastic deformation of fibrous composites
(Dvorak and Bahei-El-Din, 1987; Dvorak et al., 1988). We
then describe the kinematics with emphasis on the fiber rotation
and the elastic and plastic strain measures, the appropriate
rates of field variables such as stress, and the specification of
elastic and plastic constitutive relations. Next, we discuss the
manner in which these constitutive relations may be integrated
when given a deformation gradient history. We then present
the elastic-plastic stiffness in a form suitable for implemen-
tation in a large deformation finite element program. Finally,
we present some simulations under specific loading histories
emphasizing the role of the finite deformation formulation in
comparison with an infinitesimal deformation formulation.

Formulation

(i) Notation. Inour discussions we will use the same fixed
Cartesian frame to locate points in both the reference and
deformed configurations. Vectors and tensors will be written
in boldface letters and components of those will be written in
normal type and indexed. The position vector to a material
point in the reference and current configurations will be de-
noted by X and x, respectively. We will also use the summation
convention for repeated indices, comma notation for partial
differentiation with respect to position, an overhead dot to
denote a material time derivative, and a superscript *‘7"’’ on
a second-order tensor to mean a transpose.

(ii) Physical Assumptions. An additive decomposition of
the velocity gradient will be adopted. Thus we have

L=L°+1" (1)

Implicit in such a decomposition is that the elastic part of
the velocity gradient contributes to an elastic constitutive re-
lation. In particular, we will assume that the stress power
formed between Cauchy stress and the elastic part of the ve-
locity gradient contributes to an elastic potential. Thus a Green
elastic or hyperelastic constitutive relation is assumed. Spe-
cifically,

W(E®) = JFo: L= Jo: D¢=Jo,D5 )

E° =% FTF-1) 3)
Je = det(F°) @
Fé=L°F° (5a)
Fl,_o=L (5b)

Equations (5) define an evolution equation from which F¢
may be determined from L°, F® coincides with the deformation
gradient F if the material is purely elastic. We follow common
terminology in referring to F° as an elastic deformation gra-
dient although it is understood that ¥¢ is in general not the
gradient of a vector field. Unlike the multiplicative decom-
position, F is not to be associated with an intermediate relaxed
configuration whereby an unloading of the material by F¢ leads
to a stress-free state. This is because the evolution of F¢is path
dependent so that any finite unloading path may be accom-
panied by plastic flow.

There are two assumptions concerning the plastic defor-
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Fig. 1 The deformation gradient rotates the fiber direction 6" with its
associated normal p?

mation. The first is that plastic deformation does not deform
the fibers in either shear or normal strain. This hypothesis is
consistent with the matrix-dominated mode of plastic defor-
mation. The work by Dvorak et al. (1988) provides extensive
experimental support for the existence of this mode. The sec-
ond assumption is that plastic deformation follows a flow rule,
hence the rate of plastic deformation, relative to current con-
figuration, is related to the rate of increase in stress. In addition
to these physical assumptions, the elastic Green-Lagrange strain
will be taken as a linear function of the second Piolla-Kirchoff
stress based on the elastic deformation gradient, and kinematic
hardening will be admitted in the plastic range.

(iii) Kinematics. Let the initial and current fiber direc-
tions and the vectors FerPendicular {counterclockwise) to them
be represented by a'’, b, a®, and b®, respectively (see Fig.
1). Note that due to the deformation, b® may not be along
the material element initially along a®. We will refer to the
coordinate systems defined by (2, a®) and (™, b®) as the
initial and current fiber coordinate systems, respectively. We
will conveniently assume that the fixed Cartesian system chosen
is aligned with the initial fiber coordinate system. If these two
systems are unaligned, then all tensor relations given in the
direct form remain valid and formulas for tensor components
may be converted to the required Cartesian system by a simple
rotation. The kinematical part of the spin of any material
element currently along the unit direction ¢ is given by

We=We+ D% c®c—c®eeD? 6)

where @ denotes a tensor product. Note that the elastic spin
W and rate of deformation tensor D have been used in Eq.
(6) in order to exclude the spin associated with plastic defor-
mation. The total spin of the material element along the fiber
direction coincides with the kinematical part of the spin due
to the first physical assumption in the previous section. Thus,

W =W+ DbV RbV - bPRbV.D° (7a)
W=W+D:b"@b" - b"@b".D. (7b)

Therefore, by knowing the velocity gradient history, the
rotation of the fiber may be kinematically determined without
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resort to any further constitutive relations. The total fiber
rotation R’ is obtained as

R/ =W/.R/ (8a)
R, _o=1 (8b)

where W/ is calculated using Eq. (7). The ‘initial and current
fiber direction vectors are then related by

b =R/ea®®, ©)

where ‘4’ is 1 or 2. In single crystal plasticity, the rotation of
the lattice may not be obtdined kinematically without resort
to constitutive relations when there is more than one active
slip mode. This is so because shearing across, as well as parallel
to any given slip plane, may cause rotation of the material
element and atomic realignment, but it does not affect the
lattice orientation.

(iv) Stress and Stress Rate Measures. Plastic flow is as-
sumed to occur relative to the current fiber direction, hence it
is natural to consider the ‘‘driving forces’’ to be the Cauchy
stress components relative to the current fiber coordinate sys-
tem. Therefore, we define

7=R"0R & 5;=b".0ep? (10)

T=RL0%R7 & Gy=b"e0%pY (11)

where o is the Cauchy stress and o will be referred to as the

fiber stress rate of Cauchy’s stress. Using Eqgs. (8) and (10) we
can show that

°=0—Wegt+ge W, (12)

In addition, ¢° can be related to the Jaumann stress rate a*

by

oV =0’+P:D (13)

Piji= 00008 — oy biB + 0,06y~ abOBY (14)

where §;; is the Kronecker delta, the ‘‘rs’’ components of P:D

are given by P.yDy, and P is a fourth-order tensor whose

components with respect to the fixed Cartesian system are given
by Eq. (14).

Elastic Constitutive Relations

As expressed in Eq. (2), we assume that the energy associated
with the stress power formed using the elastic velocity gradient
is conserved. Thus we obtain a hyperelastic constitutive relation
based on the elastic deformation gradient defined by Eq. (5).
This may be given as

ke OW(EY)
o =g (15a)
= PF T egaFe T (15b)

where ¢ is the second Piolla-Kirchoff stress based on the
elastic deformation gradient. This hyperelastic constitutive re-
lation is path independent for any region in deformation space
in which there is no plastic flow. A complete representation
of W(E®) for an anisotropic medium may be specified (Onat,
1990). However, an adequate realization of Eq. (154) for small
elastic strain but arbitrarily large rotation and plastic defor-
mation may be given by

o =K:E°, (16)
where K is a symmetric fourth-order tensor which does not
depend on the elastic strain E°. ¢"¢, E?, and K are all defined
with respect to a configuration pulled back from the current
one by F*~ ', In general, the components of K are not constant
with respect to a fixed Cartesian coordinate system because
the intermediate configuration may evolve as the deformation
progresses. This is analogous to a change in the choice of the
reference configuration in purely elastic constitutive frame-
works. The configuration pulled back from the current one
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by F¢~' will be referred to as the intermediate configuration.
If we now assume that the tensor K may at most take into
account the orientation of the fibers in the intermediate con-
figuration, then the components of K are constant. This follows
from (7) which shows that there is no relative rotation of the
fiber direction between the intermediate and the reference con-
figuration. We now adopt a transversely isotropic elastic con-
stitutive model for the unidirectional fibrous composite. In a
Cartesian coordinate system having the X;-direction along the
fibers in the intermediate configuration, Eq. (16) may then be
written as

ol ke By cpsBr O E5
ol = cosEr cBr O En (17)
oFKe 0 0 264||E

where E,4, Er, G4, and v, are constants and ¢, =1/(1 - v4E;/
E,4). We also note that the coordinate system in which (17) is
described does not rotate with the deformation. In numerical
implementations the rate form of the elastic constitutive re-
lation will be needed. Assuming that the elastic strains are
small, this is given as

**=K:D* (18a)
0= 6+ tr(D%o— Lo — oo LT (18b)

where 0% is the Oldroyd stress rate based on the elastic velocity
gradient. Therefore we note that when elastic strains are small
and practical considerations require a hypoelastic constitutive
relation, it is appropriate to use the Oldroyd rate of Cauchy
stress rather than the commonly used Jaumann or corrotational
rate. Even though the elastic strains are small, such a distinction
may be important when low hardening conditions apply.

Plastic Constitutive Relations

(i) Yield Condition. We adopt a phenomenological but
micromechanically motivated yield function of a fibrous layer
in plane stress. This yield function is associated with the Matrix
Dominated Mode (MDM) discussed by Dvorak and Bahei-El-
Din (1987). Note that the normal stress component along the
fiber direction (i.e., the axial stress) does not influence yielding.
Using the components of the stress and backstress relative to
the current fiber coordinate system, the yield function is de-

fined by
— — 2
("“_“‘2>2+ ("22“"‘”¢1> ~1if g=1
- To To
f(o—lj—.alj)E = — )
70
19

where q=[(512—&12)/(622—522)], and To is the initial yleld
strength of the material in shear. We note that although oy,
and o, are equal, they are to be considered as separate variables
in Eq. (19). This distinction is related to the assumption of no
plastic shearing across fibers and will be clarified in the dis-
cussion of the flow rule. The yield function defined in Eq.
(19) allows for kinematic hardening and may be extended to
allow for isotropic hardening. We note that the resolved stress
and backstress components o; and oy are independent of the
particular Cartesian coordinate system used or to superposed
rotations and hence these components are objective scalars.
Thus the yield function is an objective scalar function of the
stress and backstress. The infinitesimal deformation formu-
lation does not distinguish between the initial and current fiber
coordinate systems and hence its direct application to finite
deformations is not objective. Therefore, an important dif-
ference between the infinitesimal and finite deformation for-
mulation is that the latter updates the current fiber coordinate
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system using Egs. (8) and (9). Using Eq. (10) and an equivalent
one for the backstress «, we may rewrite the yield function as

F@—ay) =7 (0—a)eb?) = f(o- ). (20
Using the yield function defined by Eq. (20) and a plastic
scalar loading variable X to be used in the flow and hardening

rules, the Kuhn-Tucker form of the yield condition for rate-
independent plastic flow is given by

Az=0
=0
N=0.
In this form, the yield condition has a form identical to that
used in infinitesimal deformation formulations. However, the
classical form of expressing the yield condition is different due
to the fiber rotation and is given by
of

5—:0">0 and f=0 = vyielding occurs
(2

g—f:o"s 0 and f=0 = neutral loading
a

@n

(22)

f<0

The difference of conditions (22) with those of an infini-

tesimal deformation formulation is manifested in the use of

¢’ instead of ¢. This difference is also necessary for the ob-
jectivity of the yield conditions (22).

(ii) Flow Rule. The plasticity velocity gradient is given
by L” and its components with respect to the current fiber
coordinate system are given by

¥=RT1PR & 7;=bLPep, (23)

The tensor ¥y describes the plastic deformation relative to
the fiber direction and must therefore be constitutively related
to o the stress components relative to the fiber direction using
a flow rule. An associated flow rule (satisfying normality) is
given by

= 7o yielding.

= ¢ of s v Of

yu—)\aaij & L —-)\aa.

Note that 7,; and 7 ; must be zero by the physical assump-

tion of no plastic flow across fibers. This physical assumption

is enforced by requiring f to be independent of &, and o),

which, in Eq. (24), leads to 7, and ¥; being zero. Note that

similar to the single crystal studies, L” and not D” alone is
constitutively prescribed in Eq. (24).

@4

(ili) Hardening. We will only describe kinematic hard-
ening although the present model can be easily extended to
account for isotropic hardening if sufficient experimental data
is available. The hardening is related to the evolution of the
backstress o which can be given as

@=c\v; & o®=chp (25)
where
(26)

Equation (26) allows the direction of «j; to vary along the
yield surface and it is motivated by experimental evidence
(Dvorak et al., 1988). For example, experiments suggest that
when ¢g>1 then oj; follow Prager’s rule

af ,
=0

N i

V—ao = "‘_gﬂaa 27
dg do

while when g <1 Phillips hardening rule is more appropriate,
i.e.,
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af af
a9
= o . o

%.0’

In Eqgs. (27) and (28), the second result is implied by the
consistency condition discussed below. In order to avoid a

discontinuity in the specification of » when g=1, we specify
v as

° = a’=06" .

(28)

14

(o
do'do
o "
0
do

when g=<1

(29
af af

I 2090 1\ of

— oy (1=—) Z when g=1,

Iql'" af 00 < ]q|m> o when g
—.q

L do
where m is a suitably large exponent and ‘‘m’’ is taken to be
6 in the simulations presented in a later section. We will assume
that the hardening is linear so that ¢ is a constant. A loading
history-dependent ¢ is more appropriate and can be accom-
modated by the use of further internal variables. For example,
in two surface plasticity models (Dafalias and Popov, 1975;
Krieg, 1975) the modulus ¢ is a function of the plastic work
and the distance between the yield surface and a second surface
whose motion has to be described using additional internal
variables. Such a specification of the modulus ¢ in a manner
consistent with experimental data is currently being developed
for an infinitesimal deformation formulation and may be sub-
sequently implemented in the finite deformation formulation.
The yield function (19), yield condition (21), flow rule (24),
and hardening rule (25) and (29) fully specify the finite de-
formation rate independent plastic constitutive relations. We
conclude this section with an expression for the consistency
condition required to maintain f= 0 during plastic yielding. It
is given by

aof = aof _—

75, G 357 a;=0 &

Y. o

g‘oo— a®=0.

da’ do’ (30)

Integration of Constitutive Relations

In this section we will discuss a method of integrating the
finite deformation constitutive relations when given a defor-
mation gradient history. The method is an adaptation of the
projection method of Ortiz and Simo (1986) to the present
constitutive relation. In discussing this integration method, we
will assume small elastic strains so that Eq. (18) applies. How-
ever, we will allow a more general form of the yield function
of Eq. (19) and (20) in the form

7=7G® 31
where q is a vector containing internal state variables. For
example, q could be associated with the backstress o as well
as isotropic hardening parameters. The plastic constitutive re-
lations also involve flow and hardening rules as in (24) and
(25) in the general form

L = \R/+E(3, )R = Mr(R',5,9) (32)
di —
o -hG. (33)
The main idea of the integration method is as follows: The

method starts with a specification of a deformation gradient
increment. If the predicted stress ¢ based on the elastic con-
stitutive relation at fixed internal state lies within the yield
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Table 1 Stress update aigorithm
(i) Kinematic update: Fo=Fp.1 +AF,
b = FpaD /1 Fp-a®i
Rf‘ obtained from components of bf,l)
FO=F2 | +AF,
=Rk : EORE

(i) Elastic Predictor:

ﬁg‘an-l
(iif) Check for Yielding: fU<07
0 - =0
YES: F.=F) ; G=35, :
NO: i=0

EXIT

(iv) Plastic Correctors:
do!

1= .K:r T‘
di §

r iy +c‘r

i i
n+tr(rn)c

. S
i_ n
Al =

@F 1/30) : (do ijary + F tpg) - B 1
gitlegleanind

AFS = (AR, F - AN p Ly P

Fo = B8 AR

s+ =Rk : ESYY)RT

(v) Convergence Check: 1T ! < TOLERANCE ?

YES: F=F*! | 5,250 ; qu=qf'  EXIT
NO: i«i+! ; GOTO(v)
Table 2 Sample material properties
Ep(GPa) | Ey(GPa) | Ga(GPa) \7% T (MPa) ¢ (GPa)
237 158.29 63.48 0.182 30.0 _ [0.5 (fig 2a-c)

surface, then the increment is wholly elastic. If the predicted
elastic state lies outside the yield surface, then plastic flow is
allowed at a constant level of the total deformation gradient
until consistency is restored. When plastic flow occurs, two
critical results are required: The first is an expression for the
evolution of stress with plastic flow at fixed total deformation
gradient. The second is a good estimate of the increment in
plastic loading variable AN at the current deformation incre-
ment required to restore consistency. The first result is essential
to the method, whereas the second has an important impact
on efficiency. Using Eq. (18) and the additive decomposition
(1), we may express the stress rate as

oc=K:D-D")—tr(D-D")o
+(L-1ea+as (L7 -1y, (34)

Using the flow rule (32) and noting that the velocity gradient
does not evolve with A, since the deformation gradient incre-
ment is held fixed at a given time increment, we obtain

do

5: —Kirg+tr(f)o—reo+oer’
where r; is the symmetric part of r. The plastic loading pa-
rameter increment AN at any current state is estimated by
linearizing the yield condition around the current values of
stress and internal variables and extrapolating to the consistent
state at a fixed level of the total deformation gradient. Thus,
an estimate of AN is obtained as

Y A
df do 6f —
do’ d)\ 8(1

35

AN= (36)

where do/d\ is given by Eq. (35) and all functions on the right-
hand side of Eq. (36) are evaluated at the current values of
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stress o and internal state q§. Having an estimate A\ from Eq.
(36), the stress ¢ and state § may be integrated as a coupled
system of ordinary differential equations in \ using relations
(33) and (35). If at the end of the increment AN, the yield
condition is still violated, a new estimate of AN based on the
updated stress and internal state is calculated and the stress
and internal state are further evolved. This process is repeated
until consistency is restored to a certain tolerance. If the es-
timate AN is accurate, only a few iterations are needed. The
integration of the ordinary differential equations in A of the
stress and internal state may be conveniently accomplished
using any explicit numerical integration scheme. Since only a
few (typically one) increments of AX are needed per defor-
mation increment, a forward Euler formula may be used (Ortiz
and Simo, 1986). A flowchart for the overall procedure is listed
in Table 1.

Elastic-Plastic Stiffness

In this section we will outline the derivation of the “‘con-
tinuum’’ elastic-plastic stiffness for a specific pair of stress
rate/deformation rate measure. This stiffness relates the Jau-
mann or corrotational stress rate to the rate of deformation,
namely,

v =K?:D. (37)
The stiffness K is useful in some finite element implemen-
tations such as in the program ABAQUS. Using Egs. (18),

(13), and the flow rule (32), we may express the Jaumann and
the fiber stress rates as

V=K":D+ AK@:r (38)
0°=[K" - P::D + AK@:r (39)
where
K= K= 001+ 0y + oudy; (40)
Th= = 0.5K (8,851 + 8,1851) + 0010 — 00— audype (41

Substituting Eq. (39) into the consistency condition (30) with
generalized internal variables § and solving for the plastic
loading parameter rate A\, we obtain

A=K%:D (42)

where
1 8f

G_
K af 6f

(KD - P]. 43)

K(Z)

Finally, substituting Eq. (42) into (38) we obtain the elastic-
plastic stiffness as:

K”=K"+ [K?:r] QK. (44)

We note that the elastic-plastic stiffness K% is a function of
K,0,q,R’ and whether elastic or elastoplastic deformation is
involved. If the material is currently deformmg purely elas-
tically then the stiffness K is given by K. Note that the
elastic-plastic stlffness does not directly 1nvolve W, except
implicitly when R’ is updated. We note that in general

K5, # K. The components of D and K%, with respect to a
specific coordinate system, may be written as a column vector
(.e., [Dy1, Dy, 2Dy,]7) and a 3 x 3, matrix respectively. This
matrix representation of K% is in general nonsymmetric, but
is in a form suitable for implementation in a large deformation
finite element code which has an option for a nonsymmetric
stiffness matrix (e.g., ABAQUS).

Example Problem

We will consider the deformation of a 0-deg ply tube spec-
imen with the fibers being aligned with the cylinder axis. Due
to boundary constraints, the material elements perpendicular
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Fig. 2(a-c) The axial shear stress versus axial shear strain response
of a 0-deg ply fibrous composite specimen under proportional transverse
normal stress/axial shear stress and a fixed axial normal stress of either
0, —300, or 300 MPa (solid lines). Compression softens and tension
stiffens the plastic response of a 0-deg ply fibrous composite tube spec-
imen under shear. The dashed lines represents the calculated “small”
strain predictions. The small strain predictions are not affected by the
axial stress so, for the same case, they all have the same response. The
proportionality constant during loading is 0.0, 1.0, and 1.73 for Figs. 2(a),
2(b), and 2(c), respectively. The plastic modulus ¢ is 0.5 GPa.

0.000 O.‘MS

to the cylinder axis are assumed not to rotate. The elastic
response is assumed to be transversely anisotropic with con-
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stitutive model given by Eq. (17). For the plastic response,
kinematic linear hardening is adopted with the evolution of
the kinematic stress being defined by Egs. (25) and (29). Fi-
nally, normality is assumed and Eq. (24) is used for the flow
rule. The relevant material properties are given in Table 2. The
elastic properties are representative of 6061 Al/B composites
with a volume fraction of around 0.45. The plastic tangent
modulus approximates the instantaneous plastic tangent mod-
ulus of 6061 Al/B at a volume fraction of 0.45 under a mod-
erate strain of 1-2 percent. The chosen initial yield strength is
slightly higher than that of 6061 Al/B at a volume fraction of
0.45 and is chosen to partially account for initial nonlinear
plastic straining.

Three cases of proportional loading between the transverse
normal stress and axial shear stress with a fixed axial load of
either 0, — 300 or 300 MPa are considered. The ratio of trans-
verse normal to axial shear stress in the cases a, b, and c are
0.0, 1.0, and 1.73, respectively. Shear stress and strain are
numerically obtained for cases a, b, and ¢, under the various
conditions of fixed axial stress and are plotted in Fig. 2(a-c).
The dashed lines in the figures are results obtained using a
corresponding ‘‘small’’ strain formulation using the same ma-
terial properties. The small strain predictions are not affected
by the axial stress so, for the same case, they all have the same
response and only one dashed line per case appears. The results
show that axial tension stiffens, whereas axial compression
softens the response of the specimen under shear loading with
the given kinematic constraints. In contrast, the small strain
shear response is not affected by superposed axial stresses. A
simple rigid-plastic analysis of the same problem indicates that
the instantaneous shear stiffness is approximately the sum of
the material instantaneous stiffness without the axial load and
the superposed axial stress. These results indicate a need for
the finite deformation formulation when the applied loads in
the fiber direction are comparable to the instantaneous shear
stiffness. Due to the high stiffness and strength of fibrous
composites when loaded in the direction of the fibers, such
conditions may occur even at small to moderate strains.
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On the Anisotropic Elastic
Inclusions in Plane Elastostatics

By combining the method of Stroh’s formalism, the concept of perturbation, the
technique of conformal mapping and the method of analytical continuation, a general
analytical solution for the elliptical anisotropic elastic inclusions embedded in an
infinite anisotropic matrix subjected to an arbitrary loading has been obtained in
this paper. The inclusion as well as the matrix are of general anisotropic elastic
materials which do not imply any material symmetry. The special cases when the
inclusion is rigid or a hole are also studied. The arbitrary loadings include in-plane
and antiplane loadings. The shapes of ellipses cover the lines or circles when the
minor axis is taken to be zero or equal to the major axis. The solutions of the stresses
and deformations in the entire domain are expressed in complex matrix notation.
Simplified results are provided for the interfacial stresses along the inclusion bound-
ary. Some interesting examples are solved explicitly, such as point forces or dislo-
cations in the matrix and uniform loadings at infinity. Since the general solutions
have not been found in the literature, comparison is made with some special cases
of which the analytical solutions exist, which shows that our results are exact and
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universal.

1 Introduction

Determination of the stress fields induced by general elastic
inclusions has aroused considerable interest for almost half a
century. However, the analytical solutions presented in the lit-
erature are always restricted to some special loading conditions
such as uniform loading or a concentrated couple (Chen, 1967;
Yang and Chou, 1976; Hwu and Ting, 1989), special matrices
such as isotropic matrix (Eshelby, 1957; Jaswon and Bhargave,
1961; Sendeckyi, 1970; Stagni, 1982), special inclusions such
as rigid inclusions or holes (Santare and Keer, 1986; Hwu and
Yen, 1991), special shapes such as lines or circles (Wang et al.,
1985; Honein and Herrmann, 1990), or the uncoupling of in-
plane and antiplane deformations. To the authors’ knowledge,
there is no general analytical solution for the elliptical aniso-
tropic elastic inclusions imbedded in an infinite anisotropic
matrix subjected to an arbitrary loading.

In this paper, the Stroh’s formalism (Stroh, 1958; Hwu and
Ting, 1989) for anisotropic elasticity combined with the method
of analytical continuation (Muskhelishvili, 1954), which is sim-
ilar to the one proposed by Suo (1990), is developed to solve
the present problem. Moreover, the concept of perturbation
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given by Stagni (1982) is applied to formulate the general
solutions. A transformation function which maps the ellipse
onto a unit circle is introduced. However, a discontinuity prob-
lem occurs when the transformation is required to be single-
valued and conformal in the entire domain including the matrix
and inclusion. This is remedied by the way similar to those
proposed by Stagni (1982) for isotropic materials, i.e., a re-
stricted condition is introduced to force the continuity. The
general loading conditions considered include the cases of point
singularities such as point forces or dislocations. The analytical
closed-form solutions presented in this paper are universal in
the sense of materials (anisotropic elastic), loadings (arbitrary),
and geometries (elliptic). The solutions for stresses and de-
formations in the entire domain are expressed in complex ma-
trix notation. Simplified results are provided for the interfacial
stresses along the inclusion boundary through the use of ident-
ities developed in the literature.

Some special and interesting examples are solved explicitly
and are compared with existing analytical solutions such as
point forces in the matrix (Hwu and Yen, 1991), uniform
loadings at infinity (Hwu and Ting, 1989), and dislocations in
the matrix (Dundurs and Mura, 1964; Stagni and Lizzio, 1983;
Santare and Keer, 1986). Moreover, several new results about
the anisotropic elastic inclusions are given. The cases of point
singularities are important for practical application. The so-
lutions of dislocations are frequently used as kernel functions
of integral equations to consider the interactions between in-
clusions and cracks (Erdogan et al., 1974). The solutions of
point forces can be employed as the fundamental solutions for
the boundary element method (Ang and Clements, 1986; Hwu
and Yen, 1991).
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2 Preliminary Formulations

2.1 General Solutions. The basic equations for two-di-
mensional anisotropic elasticity are the strain-displacement
equations, the stress-strain laws, and the equations of equilib-
rium. To get solutions satisfying these equations there are two
different formulations in the literature. One is the Lekhnitskii’s
approach (1968) which starts with the equilibrated stress func-
tions then compatibility equations, the other is Stroh’s for-
malism (1958) which starts with the displacements then
equilibrium equations. The equivalency of these two formu-
lations has been discussed in Suo (1990). In this paper, we
follow Stroh’s formalism due to its elegancy and simplicity.
Using the notation employed in Hwu and Ting (1989), the
general solutions for the displacements and stresses have been
obtained as

3 3
u=2Re{Zaafa<za>z, ¢=2Re{Zbafa<za)z,
o=] =1

o=~ op=¢,, i=1,2,3,
Zo= X1+ PaXae 83
(x1, xp) is a fixed rectangular coordinate system. Re denotes
the real parts and a comma stands for differentiation. u, g;;,
and ¢ represent, respectively, the displacements, stresses, and
stress functions. p,, (a,, b,), a=1, 2, 3, are the eigenvalues
and eigenvectors of the materials. f,, (z,) are arbitrary functions
with complex arguments z,. Note that in Eq. (1), p, are the
eigenvalues whose imaginary parts are positive.

With similar reason as Suo (1990), that whether a function
is analytic is not affected by different arguments z, = x| + px,,
«a=1, 2, 3, another solution form appropriate for the method
of analytic continuation is written as

u=Af(z) +AT(z), ¢=Bf(z)+BI(z), (a)
where
A=][a;, a;, a3], B=[by, by, by,

2b
f(z) =fi(2) £2(2) f5(D]". 20)

The superscript 7 denotes the transpose and the overbar rep- .

resents the conjugate of a complex number. Note that the
argument of each component function of f(z) is written as
z=x; + px, without referring to the associated eigenvalues p,,.
Once the solution of f(z) is obtained for a given boundary
value problem, a replacement of z,, z,, or z; should be made
for each component function to calculate field quantities from

).

2.2 Conformal Mapping. Consider an elliptical aniso-
tropic inclusion imbedded in an infinite matrix. The contour
of the interface is represented by x; = a cos ¥, x, = bsin ¢, where
2a, 2b are the major and minor axes of the ellipse and ¥ is a
real parameter. It is known that the transformation function

1 ) , 1
Za=7 {(a—lbpa)s“ﬁ (a+ibp,) fj (3)

will map the region outside the elliptic inclusion onto the ex-
terior of a unit circle. .
The roots of the equation, dz,/d{,=0, are at

la+ ibp, ,
B=x —a_l.p’—":i:\/mae'o", @
a—ibp,

where </ m,, and 6, denote, respectively, the modulus and ar-

gument of the critical points (2. Since ~/m, <1, which can
easily be proved if the imaginary part of p, has been set to be
positive, the transformation is single-valued and conformal
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outside the elliptic inclusion. However, the inside region is
double-valued and nonconformal. Figure 1 shows the trans-
formation among the z-plane, z,-plane, and {,-plane. It can
be seen that there are two different {, inside the unit circle
corresponding to one z, inside the elliptic inclusion. To have
a one-to-one transformation, we designate the point nearest
the unit circle to be the mapped point. For this choice, a
discontinuity problem may happen when two originally con-
tinuous points (2,); and (z,), are mapped onto ({); and ({.)»
shown in Fig.- 1. Actually the points ({h =\)m7aa and
(t)2 =N mye*Pe/q correspond to the same point in the z,-
plane, where o=e" denotes the points located on the unit
circle. Hence, the transformation function (3) now maps the
whole z,-plane, cut along a slit, into the {,-plane deprived of
the circle of radius v/ m,. To remedy this discontinuity, i.e.,
eliminating the slit which does not exist in our problem, the
following restriction should be satisfied:

z—plane

Fig. 1(a) zplane (b/a=0.6, p,=0.3 +1.5})

z,—plane

Fig. 1(b) Zz,plane (b/a=0.6, p,=0.3 + 1.5/)
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LE TS

¢,—plane

Fig. 1(¢) ¢.-plane (b/a=0.6, p,=0.3 + 1.5/)

F(Nmgo) =f(Nmae*=/q). )

By applying the conformal mapping technique described
above and the perturbation concept given in Stagni (1982), the
general solutions for the inclusion problems can now be written
in terms of the variables ¢, i.e.,

= A [fo(§) + Fi (O] + A4 Eo§) + Fi ()]

= }, (€St (6a)
&1 =B [fo(8) + £1()] + B, [£o(5) + £1(D)]

and

W= A6 + Xzfz(g'*)} . fes,

T (60)
& =Bof5({7) + Bofo({)

where the subscripts 1 and 2 denote, respectively, the matrix
and inclusion. ¢, is the mapped point of z; =x, + p;x, where
De is the material eigenvalue of the inclusion. fo represents the
function associated with the unperturbed elastic field which is
related to the solutions of homogeneous media and is holo-
morphic in the entire domain except some singular points such
as the points under concentrated forces or dislocations, and
the points at zero or infinity. f; (or f;) is the function corre-
sponding to the perturbed field of matrix (or inclusion) and
is holomorphic in region S| (or S,) except some singular points.
S: and S, denote, respectively, the regions occupied by the
matrix and inclusion. Hence, in the {,-plane, S, is the region
outside the unit circle while S, is the region of the annular ring
between the unit circle and the circle of radius /.. Since f,
is holomorphic in the annular ring, it can be represented by
Laurent’s expansion,

0

B = D) el (Ta)
k=—oa
Satisfaction of (5) gives
* * a+ ibp* k
c_p=Trep, T=<< <7Z> >>, (7b)
a—ibp?

where the angular bracket stands for the diagonal matrix, i.e.,
<< f,>> =diag{f; f» f3} which will be used throughout this

paper.
Note that the general solutions of (2) and (6) require that
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each component of the column vector f have different argu-
ment z, or {,, =1, 2, 3. Hence, Eq. (7a) has the implicit
meaning that

BN = D) et (s (o).

k= —o

where (ci)o, =1, 2, 3, are the components of ¢,.

2.3 General Loading Conditions. For a given loading
condition, f; can be obtained immediately since it is related to
the solutions of homogeneous media. However, it is not nec-
essary to be exactly the same as the solutions of homogeneous
media. The choices of f; depend on the convenience in cal-
culation. The final solutions for the stresses and deformations
in the entire domain will not be influenced by the choices of
fo. To have a better understanding about the choices, two
special examples are discussed in the following.

(a) A Dislocation b or Point Force{ at z,=%,. Consider
a dislocation line in the direction perpendicular to the xx;
plane with Burger vector b, and a point force uniformly dis-
tributed along a line parallel to the x3-axis with force per unit
length f. Both singularities are at the point (%, £). If f, is
chosen to represent exactly the solutions of homogeneous me-
dia, it may be written as (Suo, 1990; Hwu and Yen, 1991)

fo() = <log(za—Za) >> 0, (8a)
where
q=B"b/27i or q=ATt/2xi. (8h)

However, it is inconvenient in calculation when our general
solution is expressed in terms of the variable ¢, not z,. An
alternative choice for f; is

fo(9) = <log(fa— {0 >>a, ()

where q is the same as (8b). This expression is more convenient
than the one given in (8a). Moreover, it also reflects the sin-
gularity characteristics of the original problems.

(b) Uniform Loading Applied at Infinity. The exact so-
Iution corresponding to the homogeneous media is (Ting, 1988)

fo(0) = <<z,>>q
a+ibp,

=1<<a—ibpa>> K lat— 20 '>>q,  (10a)
2 a—ibp,
where
) €1l
a=A"G+B, tT={05}, =1 €h (10b)
0% 263

a°,-°j, €% are the constant stresses and strains induced by the
uniform loading applied at infinity. An alternative choice may
be provided by

£o(§) = << o >> g0, qo=%<<a—ibpa>>q, (11)
where q is the same as (10b). The infinity loading conditions
are satisfied for both choices. The one given in (11) is not a
solution for uniform stress distribution, which can be seen
from the transformation function (3). However, in calculation,
(11) is more convenient than (10a), because the singular points
of (11) are at infinity while singularities occur at zero and
infinity for (10a).

Based upon the above discussion, we know that if all the -
singular points of the physical domain z, are considered to be
located in the matrix, for different choices the complex func-
tion f; associated with the general loading conditions may be
expressed as follows:
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(i) By Taylor’s expansion,

> 90 1
fo() = o
ol$) l;)ekﬁk, =" 27ri§

fo($)
dc.
Tt

{ belongs to a bounded region where f; is holomorphic. The

cases of fy= << log({, — £ >>q and fy= << {&>> Qo belong to
this category.

(iiy By Laurent’s expansion,

(12)

®

fo($) = Z ext’, e_p=Te,, ek:z;is ?(Rd(.
C

k=—oo

(13)

¢ belongs to an annular ring where f; is holomorphic. The
cases of fo= << log(z,—2,) >>q and fy= << z,>>q belong to
this category.

For the case that all the singular points of the physical
domain z, are located in the inclusions, similar approaches as
those described in Sections 2.2 and 2.3 can be applied.

3 Elastic Inclusions

If the inclusion and the matrix are assumed to be perfectly
bonded along the interface, the displacements and surface trac-
tions at the interface should be continuous. That is

w,=u,, ¢ =¢, along the interface {=0=e", (14)

where the second equation of (14) comes from the relation
t=0¢/ds in which t is the surface traction and s is the arc
length measured along the curved boundary. By using the
general solution given in (6) and the expression given in (7),
the traction continuity condition of (14) leads to

Bif(0) + Bifo(0) — | (BsT, + BalierJo
k=1

= =Bifi(0) ~ Bifo(0) + D (Boex + B} of.  (15)
k=1

One of the important properties of holomorphic functions used
in the method of analytic continuation is that if £(¢) is holo-

morphicin S, (or S;+ Sp), then £(1/¢) is holomorphicin S, + Sy
(or S)). Here, S, denotes the region inside the circle of radius
\/m_c,. From this property and Eq. (15), we may introduce a
function which is holomorphic in the entire domain including
the interface boundary, i.e.,

Bif,(§) +Bifo(1/0) — D (Bl + Bl )¢5, g€
— k=1
=4 .
—Bifi(1/3) —Bifo(0) + D) {Back + Bl 8} ¢, 168+ 5

k=t (16)

In the above, the singular points of f; is assumed to be located
in the matrix only, i.e., the case (i) given in (12). Since 6(¢) is
now holomorphic and single-valued in the whole plane in-
cluding the point at infinity, by Liouville’s theorem we have
0(%) =constant. However, constant function f corresponds to
rigid-body motion which may be neglected. Therefore, () =0.
With this result, Eq. (16) leads to

> B+ Bale ™ =Bifu(0) + Bifo(17),  {€Sy,

k

=1
> Bae+ Bl &) =BiR(1I/O+Bifo5), (€S, + S,
k=1

(17)

Similarly, the continuity condition u, =u, provides for
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(A + AT e ) E ¥ = A (O + A E(1/0),  (€Si,

11

s -

(A + AT, ) = AF (17D + Aifo(§), €S2+ So.
k=

(18)
Cancellation of f,({) between (17) and (18) leads to
£(0) = D ) AT (M + Mp)Age, + (M, - Mp) AT, € ) ¢
k=1
19

where M, is the impedance matrix (Ingebrigtsen and Tonning,
1969) defined as

M= — B A =H; '+ 8)=0+i8) "Ly, (20a)
where
S, =IiCABI-1),
Hy=2iAAL L= —2iBB], k=1, 2. (20b)

The second and third equalities of (20a) have been given by
Ting (1988) and S, H,, L, are real matrices which depend on
the material constants. Moreover, H; and L, are positive def-
inite if the strain energy is positive (Chadwick and Smith, 1977).
Hence, the inverses of H, and L, exist. By substituting (12)
into (19) and comparing the coefficients of corresponding
terms, the unknown constants ¢, are determined as

&={Gy— GG 'Gy) 't~ GGy G}, k=1,2, -+
(la)
where
Go= (M, +MAs, Gi=(M,~ M)Ay,
ty= —iAT Tey. (21b)

Note that the solutions associated with ¢, are ignored because
the constant stress function does not produce stress, which
represents a rigid-body motion. Having the solution of ¢,
function f£,(¢) can now be obtained from (17); or (18), with
the understanding that the subscripts of ¢ in (17) or (18) are
dropped. Once the solution of f,({) is obtained from (17), or
(18)y, a replacement of ¢, &, or {3 should be made for each
component function. This calculation procedure will be applied
throughout this paper. The whole field solution can then be
found by using Eq. (6).

If one is interested in the interfacial stresses along the in-
clusion boundary, calculation may be performed by using the
field solution of the matrix or inclusion. The stress components
based upon the coordinate system (n, m) which are, respec-
tively, the unit vectors tangent and normal to the interface
boundary, are obtained as (Hwu and Ting, 1989)

Omm = mT(0)¢,ns Omn = nT(H)d’,m O3 = (¢,Il)3a

Opn = — nT(0)¢,pny Onpm= — mT(0)¢,tn: Omny On3 = — (¢,m)3y
(22)

where the angle @ is directed counterclockwise from the positive
xi-axis to the direction of n. The derivative of ¢ along the
interface, ¢ ,, should be continuous across the interface since
¢, = ¢, along the interface boundary. However, ¢ ,, may be

‘discontinuous. The evaluation of ¢ ,, and ¢ , can be performed

by using chain rule as shown in Hwu and Yen (1991). If the
field solution of the inclusion given in (65) with f,({*) obtained
in (7) and (21) is used, we have
22k * ok
$om=— D ;— Im{B,P*(O)[e” T} — ™My},
1P . 23a)
S1n=b2n=0n=— ,—Im(Byle” *T; — ™y},

k=1
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where

* prcos@—sind
P ()= <<pi(6)>, pi(6)=—"""1— )
® pa(9) pa(9) pksinf+cosd

p=\/azsin21//+bzcos2¢,

and Im stands for the imaginary parts. Similarly, ¢, is ob-
tained by applying the field solution of the matrix given in
(6a), or by (Ting and Yan, 1991)

Wy u,
, =N(6 L
{d’l,m} ( )sz,n}

in which u , and ¢ , can be obtained by using the field solution
of the inclusion or matrix since they are continuous across the
interface. N(f) is the fundamental matrix of Stroh’s formalism,
and is a 6 X 6 real matrix composed of the material constants
of the matrix.

We now consider the function f; corresponding to the un-
perturbed elastic field is chosen to be the Case (ii) given in
(13). By the method of analytic continuation shown previously
for Case (i), one may find that the solution of ¢; for this case
has exactly the same expression as Eq. (21), and function £,(¢)
is obtained as

(230)

(24)

f1(H)= - ZBI—I{Elék'l'Bll‘kek—ﬁzak_BZI‘:ck}g‘vk» (25a)
=1

or

1) = — D>, AT A+ Alier— At — AT, )55 (25b)
k=1

Notice again that £, k=0, 1, 2, are required to have the form
of (f1(1) f2(52) f2(£3) 1£. The expressions for the interfacial
stresses are also the same as in Case (i).

4 Holes and Rigid Inclusions

In this section, the subscripts 1 and 2 used to distinguish the
matrix and inclusion are omitted for simplicity since only the
matrix is considered for the problems containing holes or rigid
inclusions.

4.1 Holes. When the inclusion is a traction-free hole,
¢ =0 along the hole boundary which leads to

Bf(0) + Bfo(0) = — Bf(0) — Bfs(0), (26)
if fo belongs to Case (i). By the method of analytic continuation

we find that
=- (1
()= —B"Bf()(z_).

By a way similar to those shown in (22)-(24), the hoop stress
0, along the hole boundary is obtained as o,,= —n’'(6)¢ ,,
where

@7

b= _§N3(0)L‘1Re{an(; 0}, (28a)

or

N3(OL™' D Re{ke"'Be;],

k=1

4
Om=—= (28b)
0
when f; is expressed by the Taylor’s expansion as (12). During
the derivation of Eq. (28), one should be very careful about
the f({) given in (27), whose argument of each component
function should be replaced by {1, &, and {, respectively.
Moreover, the identities provided by Ting (1988) have been
used, which are useful for the separation of a complex matrix
into its real and imaginary parts.
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If f, belongs to Case (ii), similar approach can be applied
and the results are

oo

f()=~B™') ] (Be +Bliej ¢ "

k=1

(29)

The expression for the hoop stress is the same as (28b).

4.2 Rigid Inclusions. Holes are extreme cases of elastic
inclusions for which the inclusion is extraordinary soft relative
to the matrix. The other extreme case is rigid inclusion which
means that the inclusion is absolutely rigid and can not be
deformed. However, a rigid-body rotation  relative to the
matrix may occur. Hence, the boundary conditions for the
cases of rigid inclusions are

ib
u=~2u—’(ka+ﬁ(fl), k={a (30)
0
Substituting (6) into (30), we have
Af(o)+Xf0(o)—§ko":—K@—Afo(a)ﬁ-%ko 31)

if fy belongs to Case (i). By the method of analytic continuation,
we find that

32
% (32)

To determine w we use the condition that the total moment
about the origin due to the traction t,, on the surface of rigid
inclusion vanishes (Hwu and Ting, 1989) and the solutions
siven in (6a); and (32). The result is

()= —A"Kﬂ)(é) +—A'k.

27
2SO ¥yTRe{A " TH)(e") )dy

7lm{kK'BA 'k} (33)

where

y'=(—bsiny acosy 0), (33b)
and the prime (') denotes differentiation with respect to its
argument. Similar to the problems of elastic inclusions, the

interfacial stresses can be determined by ¢ ,, and ¢ ,, which
are

4 i ’ 3 T
6 = —~NT(O)H 'Re{e“Af, (o)) + ~Refie” YBP(O)A 'k},
P P

4 o . -
6,=——H 'Re(eVAfy(0)} + “Refie BA 'k},  (34a)
I P

or

4 o . 4 _
6.m= —-NTOH "> Re(ke™*Ae,) +=Relie BP(O)A k),
P P

k=1
4 d ) ) _
¢,,= ——~H "> Re(ke™Ae,) + ZRelie”BA 'k},
k=1 p

(34b)

in which the identities provided by Ting (1988) have been used.
Similarly, if f, belongs to Case (ii), we have

_ —100 As -k, W oy
f(O)=—-A /Z::{Aek+AI‘kek}§' +2§A k, (35a)
and
—2Im{k"A " T¢,}
Im{k"BA 'k}

The expressions of the derivatives ¢ ,, and ¢, are exactly the
same as (34b).

(35b)

W=
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5 Examples

5.1 Point Force in the Matrix. Consider an infinite an-
isotropic medium containing an elastic inclusion, subjected to
a concentrated force applied on (£, %) located in the matrix.
The elasticity solution of this problem can be used as a Green’s
function for boundary element methods. For the case that the
inclusion is replaced by a hole, the complex function f({) can
be written explicitly by substituting (9) into (27) with the un-
derstanding that the subscript of ¢ are dropped before the
multiplication of matrices.and a replacement of ¢, should be
made for each component function of £({) after the multipli-
cation of matrices. The result is

3 = —- T~
£(5)= > <<log(ts '~ {0 >>B BLA 12

(36a)
k=1
where
100 000 000
L=|000|, L=]010(, =[{000}. (36D)
000 000 001

This explicit expression is exactly the same as that shown in
Hwu and Yen (1991). The derivative ¢ , shown in (28a) used
to calculate the hoop stress can be reduced to
2 i 1 o ~
¢,,,,:7r—pN3(0)L"Re{B<<ie"’(e"b—fa)">>AT}t. (37
Similar to (36), the explicit solution of £({) given in (32) for
the rigid inclusions subjected to a concentrated force applied
on (X, X,) is obtained as

3
f(5)= > <<log(t,' - T >> A "ALATY 2
k=1

@ _ T
+o<ciF > ATk

> (39%)

where the relative rotation w can be evaluated by (33) with fp
given in (9). With the aid of residue theorem, we obtain

RefkTA T I AT
alm{k'BA 'k}

(39

w=

If the load is applied on the interface boundary, i.e.,
t.=e ‘p, we have
— %l + X1y
wIm{k"BA k)
where (£, x2) = (acos ), bsin ¥) is the location of the apphed
force t= (£, £, £). This solution is equivalent to the one given
by Ting and Yan (1991).

For general elastic inclusion, no analytical solution has been
presented in the literature. To verify the present results, one
may consider (1) the simplest condition that the matrix and
inclusion are composed of the same material; and (2) the cases
that the inclusions are very soft or hard, which can be checked
by the results of holes or rigid inclusions. By setting A, = A, = A,
M, =M, =M in Eq. (21), and evaluating e, from (9) and (12),
one may obtain ¢, £,(¢) and £,() by (21), (17), and (7), re-

(40)

spectively. The infinite series representations of f; and f; can -~

then be shown to be a Taylor’s expansion of logarithmic func-
tion. Combining the results, one may prove that
fo($) + £1(2) = £2() = <<log(z,— Z,) >>q which is the solution
for a homogeneous medium under concentrated forces.

In the case that the inclusion is elastic, numerical calculation
has been performed (Yen, 1991) and the results show that the
solutions for holes or rigid inclusions are really approximated
by very soft or hard inclusions. To see the effect of elliptic
shape and the singular behavior near the crack tips or the tips
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of rigid line inclusions, a series of numerical data for the hoop
stress have been plotted (Yen, 1991) by using Eqgs. (23), (28),
and (34). A nearly constant value of the hoop stress for b—0
has been observed when the inclusion is not a hole or rigid
medium, which means that no singular behavior occurs for
the general elastic inclusions. For elliptic holes or rigid inclu-
sions, singular behavior occurs when b—0 which is expected
for the cracks and rigid line inclusions.

5.2 Uniform Load at Infinity. In the case when the elastic
inclusion in an infinite matrix is subjected to a uniform load
at infinity, detail analysis has been given in Hwu and Ting
(1989) by using the semi-inverse method, i.e., the function
form of £({) is chosen before calculation. In this paper without
any prior choices, general solutions of f({) are obtained for
arbitrary loading conditions. In order to verify this solution,
we reduce our results to uniform loading condition since it is
the only analytical solution available for the general elastic
inclusion problems. If the complex function fy({) associated
with the unperturbed elastic field is chosen as those shown in
(10a), it belongs to the Case (ii). For hole problems, the func-
tion f({) corresponding to the perturbative field of matrix is
then obtained from (29) with

1
e1=5<<a—ibpa>>q, =0, k=2,3, ---0. (41)
The final simplified result is
(0= ——<< s> B (atd - ibt?), (42)

which can be proved to be identical to those given in Hwu and
Ting (1989).
As stated in Section 2.3, f; can also be chosen as

1
K> qy, Q==<<a—

ibp,>>q.
2 D, q

fo($) =

For this choice, function f(¢) should be found by using (27)
instead of (29) since fo(¢) now belongs to Case (i). By careful
derivation, one can prove that the final results of f,+f, are
the same for different choices of fy. A real form solution for
the hoop stress along the hole boundary can be obtained by
substituting (41) into (285).

Similar to the hole problems, substitution of (41) into (35)
provides the solutions for the rigid inclusions as

()=

_ M), —abl(H'S &), + (H 'S )] - b*(H '),
QZ(H_1)22+20b(Hils)2l+b2(H_l)11 ’
(43)

which can be proved to be equivalent to the one given in Hwu
and Ting (1989).

For the case of elastic inclusions, we first check the condition
when the matrix and inclusion are composed of the same ma-
terial. If A; = A,, B;=B,, M| =M,, we have, by (21), (25), and
41), £,()=0. The zero perturbed solution means that there is
no inclusion effect for the homogeneous medium which is
expected, since the £y chosen represents the exact solution of
homogeneous medium subjected to uniform loading at infinity.

For general elastic inclusions, the functions f; and f, cor-
responding to the perturbed fields of matrix and inclusion are
obtained from (21), (25), and (7) as

_<< {a >> AT (aél +lb€2 +wk),

£,(0=— <<ts'>>Bi'(B§ +Ble,~ Byt B¢ ),
27k
)= <<—F—>>¢, 44q
A0 = << > (44a)
where
= —i{Gy—GG;'G,) '{ATTe, + GGy AT e}, (44b)
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and

e :%<< a—ibp,>> (ARG +Ble). (44c)
Note that f, obtained in (44a), represents a state of uniform
stress which has been observed by Eshelby (1957). By numerical
calculation (Yen, 1991), the solutions presented here have been
proved to be identical to those given in the literature (Lekh-
nitskii, 1968; Hwu and Ting, 1989).

5.3 Interactions Between Dislocations and Inclusions. In-
teractions between dislocations and inclusions have been a
topic of considerable research. Greater understanding of ma-
terial defects can be gained through the solution of suitable
elasticity problems. For the dislocation with Burgers vector
b located on %, the total stress field can be obtained in a
straightforward manner from the known solution for a point
force by using a certain analogy between dislocations and point
forces. The only difference is that q = ATt/2xi is now replaced
by q=B"b/2xi.

The interactions are usually shown by the contour of the
glide component of the image force (Hirth and Lothe, 1982).
For the purpose of verification, comparison has been made
for the case of isotropic materials. The results show that the
analytical solutions presented in this paper are exactly the same
as those given by Stagni and Lizzio (1983) for the holes in-
teracted with dislocations, and by Santare and Keer (1986) for
the interactions between rigid inclusions and dislocations. For
the general cases that both the inclusions and matrices are
elastically anisotropic, the detailed calculation and physical
explanation can be found in (Yen and Hwu, 1993).

6 Conclusions

A general analytical solution for the elliptical anisotropic
elastic inclusions embedded in an infinite anisotropic matrix
subjected to an arbitrary loading has been obtained in this
paper by combining the Stroh’s formalism with the method
of analytical continuation. The special cases when the elastic
inclusion is replaced by a hole or a rigid inclusion are also
studied. Some interesting and important examples such as point
forces or dislocations in the matrix, and uniform loadings at
infinity are solved explicitly.
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Frictionless Contact of Layered
Half-Planes, Part I: Analysis

A method is presented for the solution of frictionless contact problems on multi-
layered half-planes consisting of an arbitrary number of isotropic, orthotropic, or
monoclinic layers arranged in any sequence. A displacement formulation is employed
and the resulting Navier equations that govern the distribution of displacements in
the individual layers are solved using Fourier transforms. A local stiffness matrix

M.-J. Pindera

Assoc. Professor.

M. S. Lane in the transform domain is formulated for each layer which is then assembled into
Research Assoc. a global stiffness matrix for the entire multilayered half-plane by enforcing continuity
Mem. ASME. conditions along the interfaces. Application of the mixed boundary condition on

the top surface of the medium subjected to the force of the indenter results in an
integral equation for the unknown pressure in the contact region. The integral
possesses a divergent kernel which is decomposed into Cauchy type and regular parts
using the asymptotic properties of the local stiffness matrix and the ensuing relation
between Fourier and finite Hilbert transform of the contact pressure. For homo-
geneous half-planes, the kernel consists only of the Cauchy-type singularity which
results in a closed-form solution for the contact stress. For multilayered half-planes,
the solution of the resulting singular integral equation is obtained using a collocation
technique based on the properties of orthogonal polynomials. Part I of this paper
outlines the analytical development of the technique. In Part Il a number of numerical
examples is presented addressing the effect of off-axis plies on contact stress dis-
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tribution and load versus contact length in layered composite half-planes.

Introduction

The solution to the frictionless contact problem of a rigid
punch indenting an isotropic half-plane has been long known
(Gladwell, 1980). The problem is typically formulated as a
singular integral equation for the unknown normal stress dis-
tribution in the contact area using the constraint on the surface
displacement due to the punch’s profile. For homogeneous
half-planes the solution to the singular integral equation is
obtained in closed form for a parabolic or flat punch. For a
parabolic punch, the normal stress distribution in the contact
region is elliptical and the applied load varies parabolically
with the contact length in direct proportion to the Young’s
modulus of the material. For transversely isotropic or ortho-
tropic half-planes, the contact stress profile is also elliptical
and the applied load is a quadratic function of the contact
length (Conway, 1953; Chen, 1969). The dependence of the
applied load on the elastic constants, however, is more com-
plicated than for isotropic case and involves all the in-plane
moduli. Similar results have been obtained for monoclinic half-
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planes within the framework of plane stress or plane strain
(Chen, 1969; Conway, 1967). Recently, a closed-form solution
to the contact problem of monoclinic half-planes within the
framework of generalized plane deformation has been pro-
vided by the second author (Lane, 1991). The generalized plane
deformation formulation allows us to model the response of
composite materials with off-axis laminae.

Available solutions to layered media contact problems in-
clude Chen and Engel’s (1972) solution for one and two layers
bonded to a half-space based on an approximate treatment of
the pressure distribution in the contact region, Ratwani and
Erdogan’s (1973) solution of an elastic strip supported by a
half-plane indented by curved and flat rigid punches, Gupta
and Walowit’s (1974) Green’s function solution for a layer
bonded to a half-plane, and Shield and Bogy’s (1988) solution
to a flat punch contact problem of a layered half-plane using
the transfer matrix approach. Only isotropic strips, layers, and

“half-planes were considered by the cited authors. The authors

are not aware of an analytical solution to the contact problem
of a multilayered half-plane consisting of orthotropic and mon-
oclinic laminae. A summary of the different approaches for
the contact problem of layered media has been given by Chen
and Engel (1972) and most recently by Lane (1991).

The solution to the frictionless contact problem of a layered
half-plane requires separation of the integral equation for the
unknown pressure distribution in the contact region into sin-
gular and regular parts. The regular contribution to the integral
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equation results from the finite geometry effects (i.e., layer
thickness) and typically requires numerical solution techniques.
As discussed by Shield and Bogy (1988), this can be accom-
plished using the transfer matrix technique.

In this paper, we present an alternative method for solving
the frictionless contact problem of arbitrarily layered half-
planes that are indented by rigid punches with parabolic or
flat profiles, and present results for half-planes laminated with
differently oriented composite plies. The technique is based
on the local/global flexibility matrix approach outlined by
Bufler (1971) for isotropic layéred media with constant elastic
properties, that was later reformulated in terms of the local
stiffness matrix by Rowe and Booker (1982) and applied to
nonhomogeneous isotropic layered media. Chatterjee et al.
(1982) and Chatterjee (1987) extended the method to aniso-
tropic layered media for the interlaminar crack problem, and
most recently Pindera (1991) gave an outline of the applications
of the method to plane and axisymmetric problems in com-
posite mechanics. The local/global stiffness matrix approach
naturally facilitates decomposition of the integral equation for
the contact stress distribution on the top surface of an arbi-
trarily laminated half-plane into singular and regular parts
that, in turn, can be numerically solved using the collocation
technique outlined by Erdogan (1969) and Erdogan and Gupta
(1972). This decomposition uses the asymptotic properties of
the local stiffness matrix and a relation between Fourier and
finite Hilbert transforms of the contact pressure. Despite the
fact that there is some similarity between the transfer matrix
and the local/global stiffness matrix formulation of contact
problems, the authors are of the opinion that the present ap-
proach offers a more natural way of separating the integral
equation for the contact pressure into singular and regular
parts.

Problem Formulation

We consider a laminated medium comprising a number of
layers bonded to each other that, in turn, are bonded to a half-
plane, Fig. 1. The assemblage is indented by a rigid punch of
a parabolic profile. The individual layers and the half-plane
can be isotropic (or transversely isotropic), orthotropic, or
monoclinic. A local x-y-z coordinate system is placed in the
center of each layer such that the x and y-axes lie in the plane
of lamination and the z-axis is perpendicular to the lamination
plane. The layered medium is infinite in the x-y plane and the
loading is such that the problem is plane in the x-z coordinate
system. For the bottom half-plane, the local coordinate system
is placed at the bounding surface of the plane.

The stress-strain equations for a given layer are, in con-
tracted notation,

0;=Cye; for i, j=1, ..., 6. (1)

Each type of layer, monoclinic, orthotropic, or isotropic,
has a unique stiffness matrix C. Monoclinic materials have
elastic symmetry about one plane. In this study, the plane of
symmetry is orthogonal to the z-axis. The stiffness matrix for
a monoclinic layer has 13 independent constants. Its structure
for the specified plane of symmetry is

[C Cn Gy 0 0 Cy]
Cp Cpn Cxn 0 0 Gy
Csi Cy Gy 0 0 Cy @
0 0 0 Cyu Cys 0
0 0 0 C4is Cs5 0
| Cis C6 Cis 0 0 G

Orthotropic materials have elastic symmetry about three
orthogonal axes. The stiffness matrix for an orthotropic layer
has nine independent constants referred to the coordinate sys-
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Geometry of the layered half-plane

tem coincident with the three axes of material symmetry. In
this coordinate system, the coupling stiffness elements Cyg,
Cys, Cig, and Cys vanish in Eq. (2).

Unidirectional fiber-reinforced composite laminae are typ-
ically transversely isotropic, with one of the planes of material
symmetry being isotropic. For example, if the y-z plane is
isotropic, then C13 = ClZy 033 = C22, C66 = C55, and C44 =
1/2(Cy — Cy3) in Eq. (2). There are only five independent
elastic constants for transversely isotropic materials. A trans-
versely isotropic material rotated through an angle about the
z-axis behaves as a monoclinic material in the original coor-
dinate system. As is well known, the stiffness matrix for an
isotropic layer has only two independent constants, C;; and
Cp, With Cyy = Css = Cgs = 1/2(Cyy ~ Cy).

In the present investigation, a displacement formulation will
be employed. In this formulation, the equilibrium equations

a;,;=0 3

are expressed in terms of displacements using the strain-dis-
placement relations,

1
€= Wi+ u;), )

and the stress-strain equations, Eq. (1), in conjunction with
the appropriate form of Eq. (2), depending on the ply material
type. Due to the presence of monoclinic plies, generalized plane
deformation formulation is employed with the displacement
components given by

u=u(x, z), v=v(x, z), w=w(x, 2). &)

Using the above assumption for the displacement field in
each ply, the governing differential equations for a generic
monoclinic ply become

Cl U+ CSSu,zz + Clév,xx + C4SU,zz + (Cl3 + CSS ) W= 0
Cl 6u,xx + C45u,zz + C66U,xx + C44v,zz + (C36 + C45) W,xz =0

(Cis+ Css)th o+ (Cig+ Cus)U g + CssW o + Ciyw 5, = 0.
(©6)

We note that coupling exists between all the displacement com-
ponents for a monoclinic layer. The above equations can be
specialized for an orthotropic, transversely isotropic, or iso-
tropic layer by noting that for these layers the stiffness matrix
elements Cyg, Cy6, and Cys vanish. In this case, the out-of-
plane displacement component v (x, z) becomes uncoupled from
the in-plane displacement components u(x, z) and w(x, 2).
The solution of the equilibrium equations for each layer
must satisfy the external surface mixed boundary conditions
as well as the interfacial traction and displacement continuity
conditions. The external surface mixed boundary conditions

Transactions of the ASME



ensure that the normal traction component g, is zero outside
the contact area lx| > ¢, while inside the contact area the
vertical displacement w(x, z) conforms to the profile of the
punch. The condition on the vertical displacement is expressed
in terms of the slope of the punch’s profile to avoid logarithmic
singularity at infinity. Thus the external surface mixed bound-
ary conditions are given in the form’

wix(x, +7/2)=f(x) for IxI<cand o,=0 for IxI>c¢
: (7a)

(7b)

The continuity requirement for interfacial tractions and dis-
placements in generalized plane deformation imposes six ad-
ditional conditions at each interface. These conditions are

up(x, —h/2) =1y (X, Mgy 1/2)
(X, =/ 2y = Vg1 (X, By 1/72)

Oy =0y, =0 fOr —oo<x< + 0.

Wi (X, —he/2)=wi 1 (X, Brse1/2) (8a)
T, =i/ 2) =0l (X, Pyt 1/2)
ok, — M/ 2) =0k x, By 1/2)
ohx, — e/ 2) =k, Bisa/2). (8h)

Method of Solution

The solution to Eqs. (6) subject to the boundary and con-
tinuity conditions specified by Egs. (7) and (8) is facilitated
through the use of Fourier transforms. Defining the displace-
ment vector for the kth ply as uy = (wy, ty, vy), its Fourier
transform u,(s, z) along with the inverse transform is given by

A ;
(s, 7) =—= 5 u(x, z)e™dx,

NGTIE

+ 00
w(x, z) - S (s, z)e” Sds. )
21 e

Application of the Fourier transform reduces the system of
partial differential equations, Eqgs. (6), to a system of ordinary
differential equations in z with the transform variable s ap-
pearing as a parameter. For a monoclinic layer the transformed
equilibrium equations are

Csstl iz =5 Crili+ CusD =5 Cig0 — i (Cia + Css)W ;= 0
Cisll 33— 5 Cigll + CasD 1, — 5" Co0— i (Cag+ Cus) W ;=0

—is(Cy3+ Css)U ;—18(Cis+ Cys) U + Cy3W o, — $°Cssw=0.
(10

As indicated previously, the corresponding equations for or-
thotropic or transversely isotropic layers are obtained by setting
Cis, Ci, and Cys to zero.

The solutions to the preceding equations are sought in the
form W(s, z) = wee™, T (s, z) = ue™, and (s, 7) = v
If the thicknesses of the layers comprising the half-plane are
finite, the exponential terms in the transform domain solutions
are expressed in terms of hyperbolic functions to facilitate
construction of the local stiffness matrix for a given layer. The
solutions of Navier’s equations in the transform domain for
monoclinic, orthotropic (or transversely isotropic), and iso-
tropic layers are presented as follows.

Monoclinic Layers:

3
(s, 2) = » | [F;(s)cosh(shz) + G;(s)sinh(s\2)]
j=1

3
v(s, 2) = Z [Fj(s)cosh(s\z) + G;(s)sinh(s\;z)1L;(s)

Jj=1

3 .
W(s, 2) =i Y [Gj(s)cosh(s\z) + Fj(s)sinh(s\z) |R;(s)
J=1
D

Journal of Applied Mechanics

Orthotropic Layers:
2
(s, 2) =, [Fy(s)cosh(shz) + G;(s)sinh(sh;2)]
i=1
2
i Z [G;(s)cosh(shiz) + F;(s)sinh(s\z) 1R, (s)

w(s, z)

.

(s, 2) =H, (s)cosh(s\3z) + I, (s)sinh(sA3z) (12)

Isotropic Layers in the x-z7 Plane:
u(s, z) =[Fi(s) +zF(s)]cosh(sz) + [G;(5) +zG,(s)Isinh(sz)
(s, 2) =i[ <Gl<s> +Ruls)

N

Fy(s) +sz(5)> cosh(sz)

R (s)
s

+ <F1(s) + G, (s) +zF2(S)> sinh(sz)}

v(s, z) = H, (s)cosh(sz) + I, (s)sinh(sz) (13)

In the above, A/s are the eigenvalues of the characteristic
equation that ensures that Egs. (11)-(13) satisfy Navier’s equa-
tions (cf. Pagano, 1970, for explicit expressions), F;(s), G,(s),
H,(s), I,(s), are the unknown Fourier coefficients, and L;(s),
R;(s) are given in terms of the material properties of a given
layer in the Appendix.

For homogeneous monoclinic, orthotropic, or transversely
isotropic half-planes, the corresponding solutions are as fol-
lows.

Monoclinic Half-Plane:

3
ﬁ(s, Z) = Z F}'(.S‘)em}\jz

j=1

3
U(s, 2) = ) Li(s)Fj(s)e"™
j=1

3
w(s, z) =sgn(s)i Z R;(5)F;(s)e'™7
j=1

(14

Orthotropic Half-Plane:

2
U(s, z) = ), Fi(s)e"™
Jj=1

2
Ww(s, z) =sgn(s)i Z Rj(S)F‘j(S)elsn\jZ
j=1
D(S, Z) :Hl (S)e|s|)\3z

(15)

Isotropic Half-Plane in the x-z Plane:
(s, 7) = [F(s) +2F(s)]e""
R (s)
Isl
(s, 2) =H (s)e""

w(s, z)=sgn(s)i[F1 (s)+ Fz(s)+zF2(s)}e's'Z

(16)

The displacements given by Eqgs. (11)-(16) are substituted
back into the constitutive equations in order to determine in-
terfacial tractions needed in applying the continuity conditions
given by Egs. (8) in the transform domain. For a monoclinic
layer or half-plane, the continuous interfacial stresses given in
terms of displacements in the transform domain are

05(S, 2) = —IsCy3U + Cy3W ; — isCs6D
(_TXZ(S, Z) = C455,z + C55 (—l.l-‘z — ISW)
Eyz(s, 2) =C44E,Z+C45(ﬁ’z'—iSW). (17)
For an orthotropic layer or half-plane, these stresses are given
as follows:
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(_IZZ(S’ Z) = — iSClgﬁ'i' C33W‘Z

Exz(s, Z) = Css(u,z" ISW)

0y, (8, 2) = CagU,z, (18)
and for an isotropic layer or half-plane we have
Go(S, 2) = —isCp3u + C”W?z
TS, 2) = 1/2Cy = C13) (U, isW)
3,5, 2) = 1/2(C1y — C13) . (19)

To determine the unknown Fourier coefficients F;(s), G;(s),
H,(s), and I;(s) in the solutions for the displacements, in-
terfacial continuity conditions in the transform domain are
imposed and the external traction in the contact area is an
unknown. The resulting system of simultaneous equations
yields solutions for the unknown coefficients in terms of the
single unknown normal contact stress distribution. Application
of the remaining surface mixed boundary condition on the
slope of the vertical displacement in the contact area yields an
integral equation for the determination of the contact stress
distribution.

Reduction of the Contact Probliem to a Singular Integral
Equation

In this section, the multilayered half-plane contact problem
is reformulated using the local/global stiffness matrix ap-
proach. The local/global stiffness matrix approach eliminates
the necessity of explicitly finding the unknown Fourier coef-
ficients and directly leads to a singular integral equation for
the unknown contact pressure which, as previously mentioned,
is solvable by Erdogan’s collocation technique.

The problem is reformulated in terms of interfacial dis-
placements along the common interfaces separating the indi-
vidual layers in place of the unknown Fourier coefficients.
This is accomplished by formulating a local stiffness matrix
for the kth layer that relates the traction components on top
and bottom surfaces of the layer, o, 0y, 0y, and Gy, Ox,
0y, obtained from Egs. (17)-(19), to the corresponding dis-
placement components #*, 7", W" and %™, 7, W obtained
from Eqgs. (11)-(13). For monoclinic layers we have

[k ke ks ko ks k| (Wi
kiy  kn o ks —kis ks kas u’
kis ks ko —kis ks ki 7"
ku —kis —ki kn —kp —kpl||W/
kis ks ky —kn  kn  kn u
Lkie ks ke —kn  kn  knl \ U7
G /is
/S
L5 )
-0, /is
—Ox/S
G/

The above equation is expressed symbolically in the form

K, K| (U¢) (T}
Ky Ko [ (U) (Te)

In the case of orthotropic and transversely isotropic layers,
the elements ki3, k3, ki, and k,s vanish since there is no
coupling between the in-plane and out-of-plane displacements.
The elements &;; for monoclinic, orthotropic, and transversely
isotropic layers in terms of the transform variable, material
constants, and geometry of the layer are given in the Appendix.

An important feature of the transformed local stiffness ma-

@1
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trix of a layer is its asymptotic behavior at large values of the
transform variable. Examination of the local stiffness matrix
reveals that as the transform variable s approaches positive or
. e . . C ok k.
negative infinity, the coupling submatrices Ky, and Kj3; in Eq.

(21) vanish, yielding

) [k 0 (U

Ty 0 K| (Tp)
Tk*xe elements k,j of the asymptotic stiffness matrices K“ and
Kzz’ for monoclinic, orthotropic, and transversely isotropic
layers are also given in the Appendix. They are functions of
the material properties of the given layer but not functions of
the transform variable s or geometry.

If, instead of a finite height layer, a homogeneous half-plane
is considered, it can be shown, using Eqs. (14)-(16) and Eqgs.
(17)-(19), that the relationship between the tractions and dis-
placements on the top surface of the half-plane is given by

(T, ) = [K{{1(T, ). (23)
We note that the elements of the local stiffness matrix for a
homogeneous half-plane, K; , are precisely the same as the
corresponding elements of the asymptotic stiffness mamx given
for a finite height layer in Eq. (22).

Imposition of continuity of displacements and tractions along
the common interfaces together with the external boundary
conditions (Egs. (7)-(8)) gives rise to a system of equations in
the unknown interfacial displacement components. The con-
tinuity of interfacial stresses is guaranteed by requiring that
the resultant traction on the kth interface be zero,

Tf +T =0, k=1, (24)

whereas the continuity of interfacial displacements is directly
enforced by requiring the common interfacial displacements
Uy, in the expressions for the tractions given by Eq. (21) to be

Uy, =U; =0y, k=1,...,n—1. (25)
The system of equations is constructed by applying Eq. (24)
to each interface, starting with the top surface where the
boundary conditions are prescribed in terms of the unknown
contact pressure, and using the common interfacial displace-

ments defined by Eq. (25). In the case of layered medium of
finite height, this process yields

KU, +KLU,=T; for the top layer
KU+ K+ K YU, +KS Uy, =0

for the kth interface
for the bottom layer

22)

Lan—1,

KU, +KpU, =T, (26)
where 7 is the number of layers, The above system of equations
can be represented in the matrix form shown in (27). It is
observed that the assembly of the global stiffness matrix for
the entire layered medium is carried out by superposing local
stiffness matrices of the individual layers along the main di-
agonal of the global matrix in an overlapping fashion.

Ki,  Kj 0 SR VAT T/
Ky Kun+Kh K% U, 0
0 K3, KL+Ki, - - . =
0 0 K3, 0
0 0 0 K5 \U,ss T,

@7

If the bottom layer is a half-plane, T, in Eq. (27) is zero, the
last submatrix in the global stiffness matrix of Bq. (27) is
replaced by K% ! + K}, and the last subvector of the global
interfacial displacement vector is U,,.

By inverting the global stiffness matrix given in Eq. (27),
the top surface displacements may be related to the top surface
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tractions alone when the multilayered medium is a half-plane,
i.e., when T, vanishes

(U} =[H](T] ), 28)

where H!, is the first 3 x 3 submatrix of the inverse of the
global stiffness matrix. Defining the first element of the matrix
H!, by H;(s), the transform of the normal displacement on
the surface of the layered half-plane can be expressed in terms
of the normal contact stress azz in the absence of friction (i.e.,
oy, = Uyz = 0),

W, = Hy, ()33, (s)/s

with 5L(5) =D (s) = p(x)edx.

1 +c
V2 S —c

Imposing the top surface mixed boundary condition on the
slope of the normal displacement, w,, = f(x) in the interval
—¢ < x < ¢, an integral equation for the unknown contact
stress distribution p(x) is obtained in the form

Wy x=—"— S swe ds=—— S H, (s)p(s)e "*ds.

Var Var J-
(29)

The above is a singular integral equation because as s ap-
proaches =+ oo, the kernel H,;(s) does not vanish, making the
integral unbounded. The limiting value of H,,(s) for large s
is readily identified by observing that the asymptotic behavior
of the local stiffness matrix given by Eq. (22) ensures that in
the limit as s approaches oo, the resulting global stiffness
matrix has only diagonal elements, so that there is no coupling
between top and bottom surfaces of each lamina of the layered
half-plane for this limiting case. Consequently, for s ap-
proaching =+ oo

(U} = lim [H{]{T{)

S§— X0

= (K17 (T} ) (30)
and so lim,_. ..M, (5) = sgn(s)H],, where sgn(s)H7, is the
first element of the inverse of the asymptotic stiffness matrix
of the top layer. Thus, the first element of the inverse of the
global stiffness matrix as s goes to = oo is just the first element
of the asymptotic stiffness matrix of the top layer (or the
corresponding half-plane). This result is used to separate the
divergent integral in Eq. (29) into singular and regular parts
by first rewriting it as

w1,x=——lg sgn(s)HfLﬁ(s)e"'sxds
{ e * o — —isx
"ES (M (s) —sgn(s)Hy )p(s)e”™ds. (31)

In view of Eq. (30), a relation between the Fourier and finite
Hilbert transforms of the contact pressure can be derived in
the following form by considering lim,_ow ,(x, z) of the ho-
mogeneous half-plane problem (cf., Gladwell, 1980, p. 210),

1 S —isgn(s)p(s)e Fds = S p(x)

V2T Yo T x' -

reducing the dominant part of the singular integral to an in-
tegral containing a Cauchy kernel

_ELS P&,
X

1x=
or —x

dx"  (32)

. o] +c
_LS S HY\ (s)p(x")e'™ ~9%dx’ds, (33)

27 —c
where HS| (s) = Hy; (s) —sgn(s) H}, is the regular kernel. Using

the odd-even properties of the integrand, limits may be changed
and the following form obtained:
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<o +c
+71r S S HY\ (s)p(x")sin(x’ —x)sdx'ds.  (34)
0 -C
A singular integral equation of the same form is given by Shield
and Bogy (1988) for a layered isotropic half-plane indented by
a flat punch using the transfer matrix approach and arguments
based on the short wavelength limit of the Fourier transform
of the Green’s function for the considered problem. The pres-
ent approach clearly reveals that the asymptotic relation be-
tween the transformed displacements and tractions on the
surface of the layered half-plane is the same as that obtained
for a homogeneous half-plane having the properties of the
surface layer, naturally facilitating separation of the integral
equation into singular and regular parts.

Solution of the Singular Integral Equation

Erdogan and Gupta (1969, 1972) have developed a numerical
solution technique for singular integral equations such as Eq.
(34) using orthogonal properties of Chebyshev polynomials in
a Gaussian integration approach. To apply Erdogan and Gup-
ta’s solution technique, the interval [—¢, + ] is transformed

o [—1, +1] using x = ct. For the case where the unknown
function is bounded on the interval [—1, + 1], as is the case
for the rigid punch of a parabolic profile, the solution for the
contact stress p(¢) is given by the product

p()y=F(1)

1
L+ with F(1) =Y AUi(1)  (35)
0

where U;(?) is the Chebyshev polynomial of the second kind

and \/ 1—¢? is the weight function associated with the Che-
byshev polynomial of the second kind.

Erdogan and Gupta’s method results in a linear system of
collocation equations where the function F(#;) is found at
discrete points by matching discrete values of the integral equa-
tion’s nonhomogeneous term. The system of collocation equa-
tions is given by
Z": 1-
= on+ 1
fork=1,...

k 2) l
+1 2"‘*‘2

where, for a rounded indenter of radius R, the inhomogeneous
term is

(tk)|: +7I’K0(fn tk):l =f(4)  (36)

,nandr = 1,...,n + 1, with #; and ¢, given

w 1 ct
t - —
Ja= Hy, Hy R
while the regular kernel is given by

I * HO
Kumtm=ES-J49
™ Jo 11

sinfc(#, — £,)s1ds.

There are n + 1 possible points to determine F(#;). Only n

collocation points are required. For n even, the point r = 1

+ n/2isignored. The function F(#;) obtained from the system
of collocation equations is multiplied by the weight function
to give the contact stress profile. In establishing the system of
collocation equations, the regular kernel K, must be found by
numerical integration for each combination of # and ¢, in the
linear system.

Discussion and Closing Comments
The outlined method of solution for the contact problem of
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an arbitrarily laminated half-plane is the first step in investi-
gating the response of advanced composite materials under
concentrated loading. The layered half-plane solution can be
employed to study local distribution of stresses as a function
of layer thickness, off-axis layer orientation, and degree of
composite material’s orthotropy for lammates for which global
bending effects can be neglected.

It is possible to use this method to analyse a finite thickness,
multilayered laminate of infinite extent in the longitudinal
direction by modifying the formulation. Consider the possi-
bility of support by resultant reactions P distributed over the
distance e centered at points +xp and —Xx, along the bottom
surface of the terminal layer. In this case, the bottom traction
T, of Eq. (27) assumes the value of the Fourier transform of
the expression for the concentrated reactions and U, is re-
tained. Consideration of support tractions results in an ad-
ditional term in the singular integral equation that has the form

S Hy, . z(s) sin(es/2)
T Jo HU es/2

An iterative procedure may be applied to solve the modified
singular integral equation. For a prescribed contact length, a
value of P can be assumed and the singular integral equation
solved. The resulting integrated contact traction is compared
to the assumed reactions. This is repeated until 2P is found
to equal [*$ p(x)dx.

In Part II of this paper, we present numerical results for
layered half-spaces that address the effect of ply orientation,
surface layer thickness, and the properties of supporting half-
planes on the applied load versus contact length response and
the resulting contact stress distribution. The contact problem
of composite laminates of finite thickness using the outlined

cos(xps) sin(xs)ds.

local/global stiffness matrix approach will be addressed in,

future investigations.
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APPENDIX
Elements of Local Stiffness Matrix

The elements of local stiffness matrices for monoclinic, or-
thotropic, and transversely isotropic layers in the Fourier trans-
form domain for generalized plane deformation are given below
as

Monoclinic Layers.
ki (kia) = AP (L3~ Ly) + Py(L1 — L3) + P3(Ly— Ly)]
kiy(kys) = HI (P\Ly— P,L)R3+ EX (P3L;~P\L3)R,
+F* (P,Ly—P;L,)R,
ki3(kig) =HI(P,—P))R3+E* (P~ P3)Ry+FI(P;—Py)R)
ka(kas) =B* (ToR, — T\R2) L3+ CT (T\R;— T3R,) L,
+D¥ (TR, — ToR;3) L,
kas(kas) = BE (T\R,— ThR,) + CL (T3R, — TR3)
+ D (THRy—
—RiQy) + CT(R1Qy~ R3Q)
+DT (R3Qr— RaQs)

where the minus sign in the notation A*, etc., refers to the
elements k;; in the parentheses, and

: (C11 = Css\) (Ci+ Cus) = (Cis— CysN) (Cis + Css)
" (CisN = Ci6) (Cy6+ Cias) — (Caghi — Ceg) (Ci3 + Css)

T3R,)
k3 (kyg) = BX (R,Q,

Ri=
_ (Cashi = Ci6) (CasNe — Cig) = (Caah} — Co6) (CssN ~ Cip) 1
(Cyshi = Ci6) (Cy6+ Cus) ~ (Caahi — C) (Ci3+ Css) - N,

Pi= = Ci3a CysNR;— CygLyy,  Qi= CuahiLi+ Cys (N + Ry,

T;=CysMhLi+ Css(Ni+ Ry)
€100y

1 51528 1 e85, €168
At=§ <:I: A—1+—%23>’ B:’=E <-1—112:|:1A—223>,
1(025153:&0_1%) Dt = <0152S3iC203S,>
2\ A Ay A, )’
1
2
i

1
2
clc352ic23153 R 1 026‘351:&01st3
A, 2 Ay
CiC83 G355,
Ht = I ot
2 ( Ay A, >

c;=cosh(s\;a/2), s;=sinh(s\;h/2),

+

If

E*

h=ply thickness

Ay=cie8(La~ L) R3+ €135 (Ly — L3) Ry + €638 (L3 — La) Ry
Ay= 3515, (Ly— L1 )Ry + 038183(Ly — L3) Ry + €15:8: (L3 — L) R
Orthotropic Layers.
ki (ki) =AL (P~ Py)
kiy(kis) =DIPR,— EXP,R,
ky (kys) = BL (T\Ry— TaRy)

k33 (k) = CL Qs
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where

(CssNi = Cy)-
R;= _?E‘STS;:E_;;\“’ Pi=—Ci3+ CyNiR;,
55 i
O3=CuNy, Ti=Css(N+R))
1 C1Cy 518, 1 [s18 ¢
t== B == -1,
4 2<i A A ) 2\

ct :1 5,95
B 2 S3
C152 5102 81§26
Dt = — | ===

A= Clssz— 6‘251R1, Ay =681Ry — c15,R.

Isotropic Layers.
ki(ki)=AIP,
klz(k15) =Dipl "Eipz

ko (kys) =B (TR~ T7)

k33 (kye) =CE (05
where

(3Cy;—Cy)

(Cii+Cp)

=Cn—Cin, P=Cy(1+Ry), T=2Cs,
T3=Css(1+Ry), Q3=Cyy

e L (d 8V (g d)1
T2 A1 A2 S’ T2 Al Az S’

1 1
ct=3 <£l:l:ﬁ> Di=§(1i1),

Rl:_

(ST
1 fosy sy ]
Et= 5<;11i ”); (Cl sz)+ cisi,
(52 C2)+ C18y.

The elements of asymptotic local stiffness matrices as s —
+ oo for monoclinic, orthotropic, and transversely isotropic
layers and the corresponding half-planes are given as follows.
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Monoclinic Layers and Half-Planes.

1
£k = o Py(Ly—Lo) + Py(Ly = Ly) + Py (Ly— Ly)]

1
ki‘z=Z [Py (LoRs — L3R,) — Py (L Ry~ L3R,)

+ Py (LR — LyR))]

1
ki‘3=z [P, (Ry—R3) + Py(Ry— R,) + P3(R, — R;)]

1
thy= % [T1(LaRy = LyRy) = Ta(LiRy— LiR))

+ T3(L1Ry— LaoRy)]

1
+= [T1(Ry—R3) + TH(R;

ik;a‘—‘ A

—R)+T3(R~-Ry)]

* 1
tky= :!:K [Qi(Ry—R3) + Oy (R3— Ry) + Q3(R — Ry)]

where
A=(LyR3— LyRy) — (LiR3— L3Ry} + (L 1Ry — LoR))

and the notation :i:k;;- denotes limiting behavior of kj; as s goes
to + oo,

Orthotropic Layers and Half-Planes.

P,— Py

R,—-R,

»  RyP —R\Py

1= *_—"‘“Rz "R,

R, —R\Th

R;—R,

ﬂ:ks*a =£0s

*
:f:k“‘: =+

*
thkp=«

Isotropic Layers and Half-Planes.
(1+Ry)

R,
(14+Ry)
R
(1+Ry)
Ry

+ky==Cy

kia= (Cy— Cpp) = Cy
*

:I:k22= :i:C“

ik;3=

1
Zu-c
E3 > (Cui—Cy2)
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Frictionless Contact of Layered
Half-Planes, Part Il: Numerical
Results

In Part I of this paper, analytical development of a method was presented for the
solution of frictionless contact problems of multilayered half-planes consisting of

M.-J. Pindera

Assoc. Professor.

M. S. Lane an arbitrary number of isotropic, orthotropic, or monoclinic layers arranged in any
Research Associate, sequence. The local/global stiffness matrix approach similar to the one proposed
Mem. ASME. by Bufler (1971) was employed in formulating the surface mixed boundary condition

Sor the unknown stress in the contact region. This approach naturally facilitates
decomposition of the integral equation for the contact stress distribution on the top
surface of an arbitrarily laminated half-plane into singular and regular parts that,
in turn, can be solved using a numerical collocation technique. In Part Il of this
paper, a number of numerical examples is presented addressing the effect of off-
axis plies on contact stress distribution and load versus contact length in layered
half-planes laminated with unidirectionally reinforced composite plies. The results
indicate that for the considered unidirectional composite, the load versus contact
length response is significantly influenced by the orientation of the surface layer
and the underlying half-plane, while the corresponding contact stress profiles are

Civil Engineering and

Applied Mechanics Department,
University of Virginia,
Charlottesville, VA 22903

considerably less affected.

Introduction

Part 1 of this paper outlines the analytical development of
a method for the solution of frictionless contact problems of
multilayered half-planes consisting of an arbitrary number of
isotropic, orthotropic, or monoclinic layers arranged in any
sequence, indented by a rigid punch of parabolic profile. The
problem is formulated in terms of displacements and the re-
sulting Navier equations that govern the distribution of dis-
placements in the individual layers are solved using Fourier
transforms. A local stiffness matrix in the transform domain
is formulated for each layer which is then assembled into a
global stiffness matrix for the entire multilayered half-plane
by enforcing continuity conditions along the interfaces. Ap-
plication of the mixed boundary condition on the top surface
of the medium subjected to the force of the indenter results
in an integral equation for the unknown pressure in the contact
region. The integral possesses a divergent kernel which is de-
composed into Cauchy-type and regular parts using asymptotic
properties of the local stiffness matrix and a relation between
Fourier and finite Hilbert transform of the contact pressure.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS.
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This results in the following singular integral equation for the
unknown pressure distribution in the contact region (Eq. (34)
of Part I),

*

H +c ’ ,

WLX:JS P&
T Jo. X' —x

+1S S H (s)p(x")sin(x” —x)sdx'ds. (1)
0 c

T

In the above equation, H7; is the first element of the inverse
of the Fourier transformed global stiffness matrix for the lay-
ered half-plane when the transform variable s approaches in-
finity (see Bq. (30) in Part 1), HY(s) = Hj(s) -
sgn(s)H7, is the regular kernel (where Hy, (s) is the first ele-
ment of the inverse of the Fourier transformed global stiffness
matrix), and p{x) is the unknown pressure. For homogeneous
half-planes, the kernel consists only of the Cauchy-type sin-
gularity (H (s) vanishes), which results in a closed-form so-
lution for the contact stress. For multilayered half-planes, the
solution of the resulting singular integral equation is obtained
using a collocation technique developed by Erdogan (1969)
and Erdogan and Gupta (1972) which employs orthogonality
properties of Chebyshev polynomials.

In Part II of the paper, we present numerical results for the
contact problem of homogeneous and multilayered composite
half-planes with different fiber orientations. The quantities of
interest are the contact force and contact stress profile as a
function of the contact length. Specifically, the effects of ply
orientation, thickness, and stacking sequence on the afore-
mentioned quantities are investigated.
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Numerical Solution Technique

The collocation technique outlined by Erdogan and Gupta
reduces Eq. (1) to a system of algebraic equations for the
unknown coefficients in the Chebyshev polynomial expansion
of the unknown contact pressure (Eq. (36) in Part I of the
paper). In the course of generating.the algebraic system of
equations, it is necessary to numerically evaluate the regular
kernel Ky(t,, 1)

Ko(tr, r;):ﬂ B Ginter; —tsids 0
0 11

for each combination of the collocation points ¢, and 7. This
is accomplished by first investigating the behavior of HY, (s)/
HY, in order to determine the value of s = s, at which the
kernel becomes negligibly small. This depends on the geometry
of the layered half-plane and, in particular, the thickness of
the surface layer. The rate of decay of the function HY (s)/
H7| decreases with decreasing surface layer thickness and can
be quite slow for very thin layers. The numerical integration
effort can thus be quite time consuming due to the periodic
nature of the sinusoidal term appearing in the regular kernel.

The behavior of HY, (s)/H], was investigated for each lay-
ered half-plane configuration and the value of s = 5., de-
termined at which this function became very small. For instance,
in the case of the [90 deg/ +45 deg] layer sequence with 1,27
mm thick layers bonded to a 0 deg half-plane, the value of the
function HY; (s)/H}; decayed monotonically from —0.389 for
very small s to —0.142 x 107° at s,,,, = 200. The regular
integral was subsequently evaluated by dividing the interval
[0, Simay] into 16 subintervals that were mapped onto [~ 1, + 1}
using appropriate transformation. The individual contribu-
tions were then evaluated using Gaussian quadrature with 64
integration stations in each subinterval and summed up. For
the considered range of contact half lengths ¢, the outlined
numerical integration scheme of Eq. (2) was found sufficiently
accurate. Little difference was found between the results gen-
erated with 24 and 48 collocation points at which the pressure
distribution was evaluated. As a final check of the accuracy
of the integration scheme, the results presented by Gupta and
Walowit (1974) for a thin isotropic layer bonded to an isotropic
half-plane indented by a rigid punch were reproduced by the
present technique with very good accuracy for the surface layer
thickness of 1.27 mm and a range of different contact lengths
(Pindera and Lane, 1991).

Numerical Results for the Composite Half-Planes

The investigated composite half-planes consist of unidirec-
tionally reinforced plies with different fiber orientations bonded
to a half-plane of the same material. The different fiber ori-
entations are obtained by rotating each ply by an angle 6 about
the z-axis (see Fig. 1, Part I). The properties of the considered
composite plies are given in Table 1. This composite is trans-
versely isotropic when referred to its material principal co-
ordinate system 1-2-3, with the 1-axis oriented along the fibers
and coincident with the x-axis, the 2-axis coincident with the
y-axis, and the 3-axis coincident with the z-axis. It is charac-
terized by five independent stiffness elements and its stiffness
matrix is given by

¢y ¢, € 0 0 0
Cho Cn C3 0 0 O
Ch Cy & 0 0 0 3)
0 0 0 Cy O 0
0 0 0 0 Cyq O
. 0 0 0 0 0 G

where Cyy = 1/2(Cyp — Cn).
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Fig. 1 Stitfness elements E,-,- of unidirectionally reinforced plies and
half-planes as a function of the rotation angle ¢

Table1 Material properties of unidirectionally reinforced plies and half-
planes
Material property
Eyy (GPa) 42.74
E22 (GPa) 11.72
E33 (GPa) 11.72
Vi2 027
Via 027
Va3 0.55
Gy (GPa) 8.238
G13 (GPa) 8.238
Gos (GPa) 3.778

When a given ply is rotated by an angle § about the z-axis,
the material principal coordinate system no longer coincides
with the x-y-z coordinate system and the ply appears mono-
clinic when referred to the fixed coordinate system. The struc-
ture of its stiffness matrix in the x-y-z coordinate system is
now

[C1i C Cs 0 0 Ci
Cp Cp Cy 0 0 Cy
C;y Cy Cy _0 _0 Cys @
0 0 0 Cy Ci5 O
0 0 0 C4i Cs5 O
[ Cis Cys C 0 0 Cesl
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Fig. 2 Contact load as a function of half contact length for homoge-
neous half-planes with different fiber orientations

The barred stiffness elements C;; are related to the unbarred
stiffness elements C;; by the familiar transformation equations.
Inthe case of generalized plane deformation formulation, which
must be used if off-axis plies are part of the layered half-plane,
only nine of the stiffness elements Cj; appear in the governing
Navier equations (Eq. (6) in Part 1 of this paper). For com-
pleteness, these are given below as follows:

Ci1 = C1105%0 + 2 (Cyy + 2Ce6) c0s05in%6 + Coysind
C13= C15c05%0 + Cy35in%0
Cis=[(C1, = C1p— 2Cg5)cos’0
+(Ca — Cyy + 2Cgs) sin%g] cosfsing
Cy3=Cy
Cis= (C13— Cp3)cosbsing
Cys= C14c08%0 + Cagsin®0
Cus= (Cgs— Cag) cosfising
Css = Causin®6 + Cyucos0
Cos= (Cy) —2C12+ Cpy)cos’0sin®0 + Ceg (cos?0 — sin’6)

where 6 is the rotation angle about the z-axis measured from
the x-axis in the x-y plane.

Figure 1 presents the nine stiffness elements C; as a function
of the rotation angle. These stiffness elements can be related
to the more commonly employed engineering constants. It is
observed that the stiffness element Cs3, and thus the modulus
E.. in the direction of the applied force does not change with
the off-axis angle. Further, even though the stiffness element
Ces does change with the off-axis orientation, it can be shown
that for this particular material the shear modulus G,, remains
practically constant. Any variation in the contact force and
stress profile at a given contact length for differently oriented
surface plies must therefore be attributable to variations in the
inplane engineering moduli E,,, Gy, vy, and the out-of-plane
moduli Gy, Mxyx0 May,z @a0d py .. that couple the in-plane dis-
placements u (x, z), w(x, z) with the out-of-plane displacement
v(x, 2).

The results for homogeneous composite half-planes with
different fiber orientations are presented first, followed by the
results for multilayered half-planes. Cases considered include
layered half-planes with surface laminae of different orien-
tations bonded to a half-plane with fiber direction coincident
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with the x-axis or a half-plane with fiber direction coincident
with the y-axis, here called 0 deg and 90 deg half-planes, re-
spectively. Also considered are the layer combinations [90 deg/
+ 45 deg] and [0 deg/ =45 deg] bonded to 0 deg and 90 deg
half-planes, respectively.

In generating the numerical results, the radius of the punch
was fixed at 25.4 mm. For all the cases investigated, the layered
half-plane consisted of three layers bonded to a homogeneous
half-plane. Homogeneous half-plane cases were obtained by
setting the properties of each layer equal to the properties of
the supporting half-plane.

Homogeneous Half-Planes. In the case of homogeneous
monoclinic (off-axis), orthotropic, transversely isotropic, or
isotropic half-planes, the integral equation for the normal stress
distribution in the contact area, Eq. (1) reduces to

* +¢ ’
H ’
___JS At
T J_. X —X

Wl,x (5)
As is well known, the solution of Eq. (5) is obtained in closed
form for isotropic and orthotropic half-planes, yielding an
elliptical contact pressure profile and a parabolic load versus
contact length response. By extension, the solution to the con-
tact problem of a monoclinic half-plane for generalized plane
deformation is also readily obtained in closed form.

Contact loads as a function of half contact length for ho-
mogeneous half-planes of different fiber orientations are shown
in Fig. 2. The curves have been generated for half-planes with
fiber orientations of 0 deg, 15 deg, 30 deg, 45 deg, 60 deg,
and 90 deg. The results indicate that for a given contact length,
the contact force is largest for the 0 deg half-plane and smallest
for the 90 deg half-plane. The contact load response curves
for the 0 deg and 90 deg half-planes form an envelope bounding
the contact load versus contact length curves of the considered
monoclinic half-planes (i.e., those with fiber direction at an
angle § from the x-axis in the x-y plane). For monoclinic half-
planes, the contact force as a function of contact length di-
minishes in a monotonic fashion as fiber orientation increases
from 15 deg to 60 deg. For small off-axis angles, the contact
forces approach those of the 0 deg half-plane. For large off-
axis angles, the contact forces approach those of the 90 deg
half-plane.

Figure 3 shows the normalized contact stress o, distribution
for the considered half-planes when the half contact length is
2.54 mm. The same normalized profiles have been obtained
for the entire range of contact lengths examined (see Fig. 2).
As expected from the solution of Eq. (5), the curves are ellipses
superposed on each other regardless of the off-axis orientation
of the fibers and the contact length. Since the normalized
pressure profiles shown in Fig. 3 have been generated using
the aforementioned layered half-plane cross-section (consisting
of three layers bonded to a homogeneous half-plane), the re-
sults presented in Fig. 3 provide an additional check on the
solution technique. In fact, examination of the numerical val-
ues of the term HY\(s)/H7}, in the regular kernel in Eq. (2)
indicates that they are practically zero when all the layers have
the same properties as the supporting half-plane.

Monoclinic (Off-Axis) Lamina Supported by 90 Deg Half-
Plane. Figure 4 shows contact force as a function of half
contact length for laminae of different fiber orientations
bonded to a 90 deg half-plane. The surface laminae have ori-
entations of 0 deg, 30 deg, 45 deg, and 60 deg. The laminar
thicknessis 2.54 mm. The contact load curves for homogeneous
0 deg and 90 deg half-planes are included for comparison. It
is observed that these curves form an envelope containing the
curves for the half-planes having surface layer orientations of
0 deg, 30 deg, 45 deg, and 60 deg. For the half-plane with the
0 deg surface layer, the contact load versus contact length curve
coincides with the homogeneous 0 deg half-plane curve for
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Fig. 3 Contact stress profiles for homogeneous half-planes with dif-
ferent fiber orientations
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Fig. 4 Contact load as a function of haif contact length for differently
orienled laminae bonded to 90 deg half-plane

small contact lengths. As the contact length increases, the two
curves deviate from each other, pointing to the influence of
the underlying 90 deg half-plane. The response curves for the
surface layers with off-axis orientations are bounded by the
response curves of the half-plane with the 0 deg surface layer
and the homogeneous 90 deg half-plane. These curves decrease
monotonically with increasing off-axis orientations.

Figure S shows normalized contact stress profiles for each
of the cases presented above when the half contact length is
3.81 mm. At this contact length, the parameter « = ¢/his 1.5
when the surface layer is 2.54 mm thick, Fig. 5(a), and 3 when
the surface layer is 1.27 mm thick, Fig. 5(b). In both cases,
increasing the off-axis angle produces a stress profile which is
closer to elliptical (i.e., homogeneous 90 half-plane profile).
As expected, the half-plane with the thinner surface layer ex-
hibits greater departures from elliptical stress profile for a given
orientation at the considered contact length. .

The effect of changing the thickness of the 0 deg surface
layer also has been examined. Figure 6 shows the contact load

Journal of Applied Mechanics

08 Contact stress profile
— 80" half plane
—e— 0° over 90° half plane
—=— 30° over 90° half plane
-=— 45° over 90° half plane
|-o— 60° over 80 half plans
0.6
Gy C/P
0.4
0.2
0.0 + t u }
0.0 0.2 0.4 0.6 0.8 1.0
x/c
Fig. 5(a)
1.0 4 4 ' -
0.8 Contact stress proflle
e 90° hall plane
|-8—1/2 0° over 80° half plane
[——-1/2 30° over 80° half plane
—o—1/2 45° over 90° half plane
|-o—1/2 60° over 90" half plane
0.6
Gy, C/P
0.4
0.2
0.0 4 } 1 !
0.0 0.2 0.4 0.6 0.8 10

x/c
Fig. 5(b)

Fig.5 Contact stress profiles for monoclinic laminae bonded to 90 deg
half-plane for (4) « = 1.5, and (b) « = 3.0
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Fig. 6 The effect of surface layer thickness on contact oad for 0 deg
lamina bonded to 90 deg half-plane
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versus half contact length response curves for half-planes with
0 deg surface layers 1.27, 2.54, 5.08, and 10.16 mm thick.
These thicknesses are 1/2, 1, 2, and 4 times greater than the
standard thickness of 2.54 mm employed in generating the
response curves shown in Fig. 4. The contact load curves for
homogeneous 0 deg and 90 deg half-planes are included for
reference. The results presented in Fig. 6 indicate that the initial
response of the half-plane is dominated by the surface layer.
As the contact length increases, the response depends on the
thickness of the surface layer and the contact length. As the
surface layer thickness increases, the response of the layered
half-plane tends to the response of the homogeneous 0 deg
half-plane. For the half-plane with the surface layer of 1.27
mm, the response is dominated by the properties of the un-
derlying 90 deg half-plane at larger contact lengths. Decreasing
the thickness of the surface layer to 0.635 mm (not shown)
brings the response curve still closer to that of the homogeneous
90 deg half-plane at longer contact lengths. The above results
are commensurate with corresponding results obtained for iso-
tropic surface layers bonded to isotropic haif-planes.

Monoclinic (Off-Axis) Lamina Supported by 0 Deg Half-
Plane. Contact loads and normalized contact stress profiles
for layers of different fiber orientations bonded to a 0 deg
half-plane also have been generated. Figure 7 shows the contact
load as a function of half contact length for half-planes with
surface layers having orientations of 30 deg, 45 deg, 60 deg,
and 90 deg. The layer thickness is 2.54 mm. The contact load
curves for homogeneous 0 deg and 90 deg half-planes are
included as in the previous example. The results presented in
Fig. 7 can be compared and contrasted with those of Fig. 4.
In this case, the response of the investigated half-planes is also
bounded by the response of the homogeneous 0 deg and 90
deg half-planes. Further, the response curves for the surface
layers with off-axis orientations are bounded by the response
curves of the half-plane with the 90 deg surface layer and the
homogeneous 0 deg half-plane. These curves increase mono-
tonically with decreasing off-axis orientations, producing re-
sponses that tend to approach the response of the homogeneous
0 deg half-plane. This is the reverse of the behavior shown in
Fig. 4.

The normalized contact stress profiles (not shown) for the
contact half length of 3.81 mm indicate that, the half-plane
with the 90 deg surface layer exhibits greatest departure from
elliptical profile. In this case, the maximum value of the nor-
malized profile in the center of the contact region is greater
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Fig. 8 Contact load as a function of halt contact length for “quasi-
isotropic” layered half-planes

than the corresponding value for the elliptical profile, in con-
trast with the results shown in Fig. 5(a). Decreasing the thick-
ness of the surface layer by half increases the departure from
elliptical profile as in the preceding case illustrated in Fig. 5(b).

The effect of layer thickness on contact force for the case
of a 90 deg layer bonded to a 0 deg half-plane was also in-
vestigated. The layer thicknesses were the same as in the pre-
viously discussed example. The results indicate behavior
opposite to that shown in Fig. 6 and thus will not be discussed
in more detail here.

Quasi-Isotropic Half-Planes. As the final example, contact
load response curves and normalized contact stress profiles
have been generated for the following configurations: [0 deg/
+45 deg] layer sequence bonded to a 90 deg half-plane, and
[90 deg/ + 45 deg] layer sequence bonded to a 0 deg half-plane.
Symmetric laminates with these orientations are typically called
“quasi-isotropic” in the composites literature. The thickness
of the individual layers in these half-planes was 1.27 mm.

Figure 8 shows the contact load as a function of half contact
length while the normalized contact stress profiles are shown
in Fig. 9 for the contact length of 3.81 mm. Included in the
figures are the results for homogeneous 0 deg and 90 deg half-
planes. The results in Fig. 8 indicate that the initial contact
load response of the two configurations is dominated by the
surface layer. As the contact length increases, the response
tends to be influenced by the properties of the underlying layers
and the homogeneous half-planes. In fact, at a certain contact
length, the response of the half-plane with the 90 deg surface
layer becomes stiffer than that with the 0 deg surface layer.
Similar trends are observed in Figs. 4 and 7. Interestingly, the
response of the configuration with the 0 deg surface layer is
very close to the response of the 90 deg half-plane with 0 deg
surface layer shown in Fig. 4. The same applies to the con-
figuration with the 90 deg surface layer and the corresponding
0 deg half-plane with the 90 deg surface layer shown in Fig.
7. Apparently, decreasing the thickness of the surface layer by
half is offset by the inclusion of the two =45 deg angle-ply
layers. The results in Fig. 9 indicate that the configuration
with the 0 deg surface layer produces lower contact stress
profiles in the inner region and higher in the outer region than
the elliptical profile of a homogeneous 0 deg or 90 deg half-
plane. The contact stress profile of the configuration with the
90 deg surface layer exhibits opposite behavior. These trends
are commensurate with the previously discussed response of 0
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Fig.9 Contact stress profiles for “quasi-isotropic” layered half-planes
when o = 3.0

deg and 90 deg half-planes with 90 deg and 0 deg surface layers,
respectively.

Discussion

The contact problem of layered half-planes with off-axis
(monoclinic) plies introduces a number of additional param-
eters into the analysis in comparison with contact problems
involving isotropic or even orthotropic layers. First of all, the
presence of rotated plies introduces coupling between in-plane
and out-of-plane displacement components which requires the
use of generalized plane deformation analysis. This increases
the number of elastic parameters (i.e., ‘‘constants’’) in the
governing differential equations which influence the contact
stress profile and the contact load as a function of the contact
length. Equally important is the variation of the elastic pa-
rameters of a given ply with the off-axis or rotation angle.
Finally, the geometry and configuration (stacking sequence)
of the layered half-plane may be varied, producing a formi-
dable analytical test matrix.

For this reason, the objective of Part II of the paper was
to illustrate the applicability of the developed methodology
outlined in Part I for a specific material system and what the
authors believe to be fundamental half-plane configurations
which illustrate the influence of the off-axis ply orientation
on the quantities of interest. The authors are not aware of any
investigations in which these effects have been addressed. Fu-
ture investigations will be aimed at identifying the important
parameters that govern the response of arbitrarily layered half-
planes with isotropic, orthotropic, or monoclinic plies. The
results presented in Parts T and II of the paper indicate that
the developed technique can readily be employed to investigate
the contact problem of such layered half-planes in an efficient
manner.

Summary

The results presented in Part II of this paper indicate that
the load versus contact length response curves are parabolic
and the contact stress profiles elliptical for homogeneous com-
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posite half-planes regardless of off-axis orientation. For the
composite material used in this study, homogeneous 0 deg half-
planes generate the highest contact loads for a given contact
length while 90 deg half-planes generate the lowest. Homo-
geneous monoclinic half-planes with small off-axis angles have
contact loads approaching those of the 0 deg half-plane. As
the off-axis angle increases, the contact loads diminish in a
monotonic fashion, approaching the contact loads of the 90
deg half-plane. The monotonic decrease of the contact load
at a given contact length with increasing off-axis orientation
is accompanied by the decrease in the inplane moduli £, and
G, and increase in the inplane Poisson’s ratio vy,.

The contact load versus contact length response curves for
the investigated layered half-planes are bounded by the re-
sponse curves of homogeneous 0 deg and 90 deg half-planes.
In the case of layered half-planes, the contact load depends
on the orientation of the surface layer, relative size of the
contact zone and the surface layer thickness, and the properties
of the underlying half-plane. Monoclinic layers bonded to 90
deg half-plane generate loads tending to approach those of the
90 deg half-plane with increasing off-axis orientation. The
reverse is true for monoclinic layers bonded to 0 deg half-plane.
For contact lengths that are small relative to layer thickness,
the contact force depends largely on the surface layer prop-
erties. For contact lengths that are large relative to layer thick-
ness, the contact load is significantly influenced by the
properties of the underlying half-plane.

The contact stress profiles for the layered half-planes ex-
hibited departures from elliptical that depended on the off-
axis orientation and the relative size of the contact zone and
thickness of the surface layer. For the investigated cases, de-
partures from elliptical profile were not dramatic. In general,
90 deg half-planes with 0 deg surface layers produced lower
values of contact stress in the central region and higher in the
outer region of the contact zone in comparison to the elliptical
profile. Increasing the off-axis angle of the surface layer bonded
to the 90 deg half-plane produced more elliptical profiles. The
investigated half-planes with 90 deg surface layer bonded to
the 0 deg half-plane produced stress profiles that were higher
in the inner region of the contact zone and lower in the outer
region in comparison to the elliptical profile. Decreasing the
off-axis angle of the surface layer produced the same result as
in the preceding case. The departure of the contact stress profile
from elliptical increased with the relative size of the contact
length to the surface layer thickness.

In summary, the results presented in this chapter indicate
that while the load versus contact length response curves are
considerably influenced by the surface layer orientation and
the underlying half-plane, the corresponding contact stress
profiles are not influenced as much for the considered uni-
directional composite.
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Friction Force on the In-Plane
Stress and Stability of Transverse
Vibrations of a Spinning Disk

The membrane stress field in a spinning disk induced by a stationary circumferential
friction force is first derived in the form of an infinite series. It is then shown, both

by analysis and numerical computation, that this membrane stress field has no effect
on the stability of transverse vibration of the spinning disk.

Introduction

The effects of various load parameters in the stationary point
load system, such as friction force, transverse mass, damper,
spring and their pitching counterparts, on the natural fre-
quency and stability of a spinning disk are important to the
design of high-density floppy disk drives. Ono et al. (1991)
calculated the eigenvalues of the coupled system by the finite
element method. Chen and Bogy (1992) derived the first-order
derivatives of the eigenvalues with respect to various load pa-
rameters in the load system to obtain analytically a better
understanding of the calculated results. In all these calculations
and analytical derivations, however, the asymmetric membrane
stress field induced by the friction force was neglected. It is
known that the natural frequency and the stability of the system
can be modified by changing the in-plane stresses (Mote, 1965),
therefore, as suggested by a reviewer of Chen and Bogy (1992),
the friction force of the load system may be important in this
regard. Here we first derive the solution of the friction force-
induced membrane stress field in the form of an infinite series,
and then we obtain the derivative of the eigenvalues with re-
spect to the friction force to determine its effect on the stability
of transverse vibration. It is found that this derivative turns
out to be zero and so the asymmetric membrane stress field
has no effect on the eigenvalues of the system, at least to the
first order. Furthermore, we incorporate this membrane stress
field in the finite element program and confirm that its effect
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Fig. 1 Concentrated friction force in a disk

is negligible compared to the contribution from the transverse
component of the same friction force associated with the slope
change of the disk when it deflects. The results presented herein
complement the previous two papers.

The Asymmetric Membrane Stress Field

Figure 1 shows a circular disk, which is clamped on the inner
radius r=a and free on the outer radius r = b, subjected to
a concentrated force Fy at point (£, 0) in the negative y-direc-
tion, where ¢ < § < b. To calculate the stress field in the disk
due to Fy we consider first the displacement and stress fields
in an infinite domain due to the same force (Love, 1927), they
are

$1‘> = F—g——"; }11 ;j G") [(3 — »)GlogGsind + 2£(1 + »)sind(& — rcos)]
Fy(1+w)
my_Le\>+7v —
uy' = RThEG {(3 — »)GlogGceosd

+ (1 + »)[Hcost + rsin®0(rcosd — £)}

oD o Fy
" 4nhG?

{rsin®8[(3 + »)G = 2(1 + »)H]
— rcos29sinf(1 — »)G — 2(1 + v)H]
+$in26(rcost — E)[(1 — )G+ 2(1 + »)risin®g]} (1)
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(1) _
= g th

X [(1 = )G + 2(1 + »)rsin®] + 4rsin®fcosf[G — (1 + ) H]}  (2)

{ (rcosg — £)(cos?d — sin’@)]

obg = 2 Fh02 { rcos*8sinf[(3 + »)G — 2(1 + »)H]
— rsin’0](1 - v)G - 2(1 + V) H]
— §in26(rcosf — £)[(1 — )G+ 2(1 + v)r’sin®0])  (3)
where

G=r2+¢£2—2rkcosd, H=rcos®+ £2—2rtcosd.
E, v, and # are the Young’s modulus, Poisson’s ratio, and the
thickness of the plate, respectively. It is noted that Y and
u$ are even functions of 8, while ¢%; and " are odd functions,
and that these quantities are obtained from the two-dimen-
sional generalized siress solution divided by thickness & to
result in functions with units of displacement and stress. With
use of these equations we can find the displacement distri-
butions on # = @ and stress distributions on r = b and expand

them in Fourier series as follows:

Eu.(r=a)=F, i a,sinnf ©))
n=1
Eug(r=a)=F, i c,cosnd (5)
n=0
o, (r=b)=F, i b,sinnf ()
n=1
o4(r=>0)=F, i d,cosnf. @)
n=0

The coefficients in these expansions can be obtained easily by
numerical integration. In general, these series converge very
fast as long as £ is not very close to a or b, and 20 terms are
usually enough to obtain a satisfactory result We now solve
an auxiliary problem: Find the stress fields o', o3, and o{f) in
the annular disk with displacements on r = a described by
Egs. (4) and (5), and tractions on r = b described by Eqs. (6)
and (7). Following a procedure similar to that described in
Coker and Filon (1957), with some obvious modifications, the
general expressions of the displacement and stress fields of this
auxiliary problem can be obtained as

hEu®
Fy

1+7)B
- {(1—3V)A1r2+£_‘;;‘)‘—1

1
+3 [#*— 1+ @@+ D(»—3)logrlC +D1}sin0

+ i ([4-1+C+nlA," " + (1 + By

n=2
~ (A +)nCy" "+ 4= (1 + )2 =n) Dy~ "* ' }sinnd  (8)

hEUP (149G
Fg B r

(1 + V)Bl

—Dyr {(5+V)I‘ZA1+
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=S5 {1+ A+ mA (4 B e (L G

n=2
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By comparing the coefficients of cosnf and sinnf between Egs.
(4)-(7) and (8)-(11), we can determine A,, B,, C,, and D, in
terms of a,, b,, C,, and d, uniquely. The subtraction of the
stress fields in Egs. (10)-(12) from the stress fields in Eqgs. (1)-
(3) yields the desired solution for the membrane stresses in the
clamped-free annular disk due to a circumferential load. Figure
2 shows the stress distributions on the inner radius when a =
16.5 mm, § = 48.75 mm, b = 65 mm, A = 0.078 mm, Fy =
0.32 N, and » = 0.3. These are typical parameters for a con-
ventional 3.5-in. floppy disk. It is emphasized here that the
resulting o,, and oy are odd functions of 4, while 0,4 is an even
function.
Effect of Friction Force on the Eigenvalues of the Spin-
ning Disk

The equation of motion of a spinning disk subjected to a
concentrated friction force in the circumferential direction, in

terms of transverse displacement w and with respect to the
stationary coordinate system (r, 6), is

D
(W_”‘F ZQWIW + QZW,GO) +‘Z V4W+L1W+F9L2W
P

F,
—;,ﬁ wb(r—£)5(8) (13)

where Q, A, and D are the rotational speed, thickness, and
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Fig. 3 Convergence of the natural frequency and the real part of an
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flexural rigidity, respectively, of the disk. 8(:) is the Dirac delta
function. L, is the membrane operator associated with the
axisymmetrical stress due to centrifugal force, whose effect
has been discussed in Chen and Bogy (1992). L, is the mem-
brane operator associated with the asymmetrical stress due to
the friction force,

Lot |9 (, 0, 0\ o f 8 L 9§
2 o F, {ar N ar % 50) Ta0 \° ar” 7 7% 59

where o,,, 0,4, and og have been calculated in the preceding
section. Since the membrane stress field is proportional to Fy,
the operator L, is independent of Fy. To evaluate the effect
of the friction force associated with the asymmetric stress on
the eigenvalues NS, = iw,, of the freely spinning disk, we
calculate the first-order derivative (see Chen and Bogy, 1992,
for details of the method)

N

aFy

: 0 0
I Wins LaWpn)

A7 (0 £ NE) S R, (ryrdr
a

where wh, = Rum(r)e*™ is the eigenfunction, with m nodal

circles and » nodal diameters, of the freely spinning disk. The
inner product in the numerator can be expressed as
b — _
S SW r aw?)m aw?nn +@ aw?ﬂﬂ aw?nn
e S-x| " Or dr r 060 a0

aw(r)nn a w?nn aw?ﬂn a W?nn
+ 0, + drdb
""( or a0 a0 or )|V

1
(W9nn’ Llw?nn) ::P_F'o
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where the overbar represents complex conjugate. It is noted
that the integration associated with o,y always vanishes because
the two terms in the parenthesis cancel, while the contributions
from o, and oy also vanish since they are odd functions of 6.
So we can conclude that the membrane stress field induced by
the friction force has no effect on the eigenvalues of the spin-
ning disk, at least to the first order in the sense of a Taylor
series expansion.

We next incorporate the asymmetric membrane stress field
due to the friction force into the finite element program de-
veloped in Ono et al. (1991). In order to study the effect of
this membrane stress field on the eigenvalues, we first consider
the case when the right-hand side of Eq. (13) vanishes. Since
there exists a singularity of order r~' in the membrane stress
field at point (¢, 0), it is expected to cause some problems in
the convergence of the eigenvalue calculations. Figure 3 shows
the relations between the element size in the radial direction
and the imaginary (natural frequency w) and real (stability
parameter o) parts of the eigenvalie of the mode with one
nodal diameter and zero nodal circle. The parameters used in
the calculation are the same as those in Ono et al. (1991) and
Q = 100 rpm. It is observed that as the element size approaches
zero, the natural frequency converges to its correct value while
the real part of the eigenvalue approaches zero almost linearly.

Additional eigenvalue calculations using Eq. (13) show that
including or excluding the membrane effect L, alters the results
by less than one percent. So, the significance of F, on the
stability of the spinning disk-stationary load system is solely
through the right-hand side of Eq. (13), and not through L,
on the left-hand side.

Conclusions

We have shown both by analysis and numerical computation
that the in-plane membrane stress field induced in a spinning
disk by a stationary circumferential friction force has no effect,
at least to the first order, on the stability of transverse vibration
of the disk.
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with damping included, and solved in integral form. The boundary conditions are
that the inner boundary of the plate is clamped and the outer boundary is free. An
analytical expression in Fourier-Bessel series form is obtained for the forced de-
Slection response to an arbitrarily moving concentrated load. This study includes
radially moving loads and is a significant extension of the understanding of circular
and annular plate dynamics. This understanding of radially moving loads is used

to examine the nature of resonance conditions and corresponding critical values of
the load parameters. The shapes of deflection modes of plate vibration are also
presented. Damping and loading parameter sensitivities are studied in detail.

Introduction

The use of circular and annular plates in design and engi-
neering of mechanical systems is very widespread and quite
pervasive in certain industries. Particular applications of this
type of mechanical component include turbines, saw blades,
computer magnetic recording disks, grinding wheels, gears,
phonograph records, and percussion musical instruments. The
relative importance of these components in engineering ne-
cessitates a comprehensive understanding of their mechanical
behavior. One critical facet of this behavior is the vibration
response of circular and annular plates when used in mechan-
ical system operation, particularly rotational operation.

This study examines the vibration response of an annular
plate. A review of the literature briefly cites the history of the
study of vibrations of circular and annular plates and a few
of the primary studies of the free and forced vibrations of
circular and annular plates. This foundation is heavily utilized
in the analysis. The literature review focuses, however, on the
vibrations of rotating circular and annular plates and on the
response of plates to moving loads.

It must be noted that a difference exists between the problem
of a rotating plate with a stationary or radially moving load
and the problem of a stationary plate with a circumferentially
moving load (Iwan and Stahl, 1973; Huang and Soedel, 1987).
In the latter case, the complicating centrifugal effects of plate
rotation are not encountered. Within certain ranges of rota-
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tional speed and excitation frequency, the differences between
these two problems are not appreciable.

The general analysis and solution of this problem are de-
veloped utilizing classical plate theory. Therefore, it must also
be recognized that for the response of rotating plates, both
centrifugal and flexural effects are operative (Lamb and South-
well, 1921; Southwell, 1922) and the frequencies and modes
of vibration will depend on the relative importance of these
effects. Previous studies (Eversman and Dodson, 1969; Bar-
asch and Chen, 1972) indicate, however, that the centrifugal
membrane effects will be of the order of the bending effects
only at very large rotational speeds for thin plates. It is common
practice in both industry and the literature to neglect, when
appropriate, the centrifugal effects due to rotation in analysis
and design for many practical problems of interest. Further
analytical research on the influence of centrifugal stiffening
should be carried out.

Starting from the previous work cited in the literature review,
the general analysis and solution of the problem of annular
plates subject to arbitrary moving transverse loads is developed
utilizing classical plate theory with damping included. Damp-
ing is included as a parameter, in the form of linear viscous
damping, to provide further understanding of the nature of
the solution.

The response of a plate to a general load p(r, 0, f) is first

‘derived as an integral solution. Then any special case of surface

loading can be studied as a special case of this general solution
in Fourier-Bessel series form. As stated above, this problem
has utility for studying the inverse problem of a rotating plate
with an arbitrary moving load.

Specifically, the general analysis is applied to obtain an
analytical solution for the case of an arbitrary circumferentially
and radially moving load. This type of loading occurs in many
of the applications mentioned above. Previous literature on
circular and annular plate response to moving loads has dealt

SEPTEMBER 1993, Vol. 60 / 649
ASME

opyright; see http://www.asme.org/terms/Terms_Use.cfm



only with circularly orbiting loads, i.e., loads at constant radial
position. The general solution for the response of annular
plates to arbitrary radially moving loads is then applied to the
special case of a load with circumferential and harmonic radial
motion. In addition to this detailed special case, the methods
of analysis to obtain solutions for the more general cases of
a concentrated load with arbitrary périodic radial motion and
of an arbitrary periodically varying amplitude load are given.

The analytical expressions and resulting understanding of
radially moving loads are used to examine the nature of res-
onance conditions and corresponding critical values of the load
parameters. The shapes of deflection modes of plate vibration
are also presented for several sets of input system parameters.
These sets of parameters are used to determine damping and
loading parameter sensitivities, which are studied in detail.

The study of circular and annular plate vibrations has a long
history. Beginning with the first mathematical approach to the
membrane theory of plates (Euler, 1766) and the observation
of sand patterns on copper plates excited by a violin bow
(Chladni, 1787, 1802; Waller, 1938, 1961), later work includes
the classical thin plate formulation (Kirchhoff, 1850).

Vogel and Skinner (1965) derived the characteristic equation
for all nine combinations of the classical boundary conditions
associated with the transverse vibrations of uniform annular
plates. A very thorough general analysis considering many
different types of boundary conditions has been presented by
McLeod and Bishop (1965).

Many more works on the free vibrations of plates are cited
in the literature survey papers by Leissa (1977, 1978, 1981,
1987), Mote et al. (1978, 1982), D’Angelo et al. (1985), and
Weisensel (1989).

The earliest study of a vibrating, rotating elastic plate ap-
pears to be by Lamb and Southwell (1921) who derived the
linearized equations of transverse deflection and identified the
respective contributions to the equations from bending stress
and in-plane stress due to rotation. In that paper, and a sub-
sequent one by Southwell (1922), they examined the frequencies
and modes of free vibration for complete circular plates which
were either very flexible or very stiff.

Mote (1970, 1977) investigated the stability of annular plates
and plate/collar ‘systems subjected to moving loads with har-
monically varying amplitude. Benson and Bogy (1978) studied
the deflection of a very flexible rotating annular plate due to
a concentrated transverse load that is fixed in space.

Honda et al. (1985) have analyzed the steady-state response
of stationary annular plates to concentrated harmonic forces
moving in concentric circular paths at constant speed. The
modal response is discussed in detail, with emphasis on the
vibratory modes. The theoretical analysis described in that
paper is useful for plates rotating at slow constant speeds.
Weisensel and Schlack (1988, 1989, 1990) have very recently
studied the natural frequencies and deflection profiles of ro-
tating thin annular plates due to concentrated transverse loads
of harmonically varying amplitude moving at constant angular
speed relative to the plate surface. Their works treat both the
case of constant radial position and the case of sudden changes
in radial position. This work is similar in analysis to that cited
above by Honda et al., but the conclusions derived are quite
different.

The only text devoted entirely to the study of the vibration
of elastic bodies due to moving loads is by Fryba (1972). This
work definitely provides the most comprehensive treatment

Nomenclature

coefficient functions in varia-
tion of parameters method
Qo,mn» bomn = coefficient constants

= coefficient constants

Amn (), Bun (1)

a"l"! bmm Cmm mn

a = outer radius of annular plate
_ b = inner radius of annular plate
b=b/a = ratio of inner radius to outer
radius of annular plate
¢y dy = coefficient constants
D=ER/[12(1—9)] = flexural modulus of rigidity
E = modulus of elasticity
fnm = undamped natural cyclic fre-
quencies of plate
h = thickness of plate
I,(*) = modified Bessel function of the
first kind of integral order n
Jy(*) = Bessel function of the first kind
of integral order n
K,(+) = modified Bessel function of the
second kind of integral order n
k = integer index
m = integer index, number of nodal
circles
n = integer index, number of nodal
diameters, integral order of
Bessel function
N = sample size for arithmetic mean
P(t) = amplitude of concentrated load
P(¢t) = dimensionless amplitude of
concentrated load
» = maximum amplitude of concen-
. trated load ‘
P, = dimensionless maximum ampli-

tude of concentrated load
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P,., P, = coefficients of Fourier series
representation of general peri-
odic amplitude variation

p(r, 6, t) = transverse load distribution
o (force per unit area)

p(7, 0, t) = dimensionless transverse load
o distribution

Do(F, 6, t) = component of Fourier series

representation of load with
general periodic amplitude vari-
ation”

components of Fourier series
representation of load with
general periodic amplitude vari-
ation

Puc(Fy 0, 7), Birs(F, 8, 1) =

g = integer index
Qmn = radial characteristic function
normalization constant
r = radial coordinate variable
ro = radial position constant
ry = radial motion amplitude
F=r/a = dimensionless radial coordinate
variable
Fo=ro/a = dimensionless radial position
constant
71=r/a = dimensionless radial motion
_ amplitude
F(t) = dimensionless radial motion
function
Tres Tks = coefficients of Fourier series
representation of general peri-
odic radial motion function
R,..(F) = characteristic function in radial

coordinate
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available on this subject. An extensive bibliography is also
included.

Significant background directly related to this problem is
contained in the works by McLeod and Bishop (1965), Raske
(1966), Raske and Schlack (1967), Mote (1970), and Fryba
(1972). The current state of the art for this problem is rep-
resented in the works by Honda et al. and Weisensel and
Schlack. These latter studies give a complete treatment of the
response of circular and annular plates to circularly orbiting
concentrated transverse loads.

Much of the work in thé literature deals with natural and
resonant frequencies of circular and annular plates with mov-
ing loads. Only a small portion further reports the influence
of moving loads on mode shapes or studies system parameter
sensitivities in detail. Benson and Bogy (1978) studied the de-
flection of very flexible rotating annular plates due to con-
centrated transverse loads that are fixed in space; first within
the context of membrane theory, and then with bending stiff-
ness inclided. Very nice graphical results are presented for
various values of the stiffness parameter and load position.

Starting from this previous work the present study develops
the general analysis and solution of the problem of annular
plates subject to arbitrary moving transverse loads using clas-
sical plate theory. The current understanding of plate response
to moving transverse loads is extended to include a component
of motion in the radial direction in addition to a component
of motion in the tangential direction. This achievement pro-
vides an understanding for cases of an arbitrary moving trans-
verse load and can be used in any of the areas of practical
application noted above.

Nomenclature (cont.)

pir, 6,0

@#ﬂ;@% ,,

Fig. 1 Rotating thin annular plate with clamped inner boundary and
free outer boundary subjected to arbitrary transverse load

Analysis

A homogeneous, isotropic, thin annular plate of uniform
thickness is shown in Fig. 1. The plate is rigidly clamped at
its inner boundary and free of support at its outer boundary.

_ t = time variable
t=t/~pha"/D = dimensionless time variable
w(r, 8, t) = transverse deflection of plate

middle surface

dimensionless transverse deflec-
tion of plate middle surface
component of Fourier series
representation of deflection re-
sponse

components of Fourier series
representation of deflection re-
sponse

fundamental solution of homo-
geneous equation of motion
characteristic function

W(F, 0, =w/a =

W0(?) 6! ;) =

W/((’(7'y 61 ;); Wks(f’ 51 E) =

WII(F: 5’ f =

wmn(;, 5) ;) =
n\®

Y,(*) = Bessel function of the second
kind of integral order n
Greek
o« = arbitrary separation constant
omn = dimensionless frequency param-

eter (characteristic value)

B = oscillation frequency of radial

_ motion of load

B = dimensionless oscillation fre-

quency of radial motion of

_ load

Bi,mng = dimensionless critical oscillation
frequency of radial motion of
load

v = equivalent viscous damping
density of plate (damping con-
stant per unit volume)

6(+) = Dirac delta generalized function

Journal of Applied Mechanics

¢ = dimensionless damping ratio
N2,mns N3,mn> Ma,mn = coefficient constants
0 = tangential coordinate variable

0=0/27 = dimensionless tangential coordi-
. nate variable
6(t) = dimensionless tangential motion
function
_» = Poisson’s ratio
II(7, 8) = spatial distribution of loading
function
p = mass density of plate (mass per
unit volume)
7 = dimensionless time integration
. variable
¢ = angular speed of plate rotation
¢ = dimensionless angular speed of

. . plate rotation
Srmns Pimng = critical rotational speed of plate

dimensionless critical rotational
speed of plate

undamped vibration circular
frequency of plate
dimensionless undamped vibra-
tion circular frequency of plate
undamped natural circular fre-
quencies of plate

dimensionless undamped natu-
ral circular frequencies of plate
oscillation frequency of ampli-
tude of concentrated transverse
load

dimensionless oscillation fre-
quency of amplitude of concen-
trated transverse load

(—b-k,mn ’ a;k,nmq =
Q =

g =

Qupn =

Qp =

€
I

el
I
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The transverse surface load acting on the plate is taken in the
general form p(r, 0, ), which can be used to represent all
possible surface loadings that can be described as functions of
position and time. According to classical plate theory, the
governing partial differential equation of transverse motion
for a damped plate subjected to a general transverse surface
load is given by

w(r0 1)

t
DY W(r8,0) +ph === 4 yh ow(r.0,0) _

at

where v*=v?v? is the biharmonic operator.

It is convenient for later analysis to render this governing
equation dimensionless. For this purpose, introduce the fol-
lowing dimensionless quantities:

F=r/a, §=0/Qxn), W=w/a, b= b/a, t=~v/(209),

_ 3 1 3 1 &
N - -7
t=t/ pha /D p p/(D/a ), V 3_2 7 a?+47('27'2 602.
)

Equation (1) can now be written in dimensionless form as

p(r,0,ty (1)

iBW(F,?,?)__(FE;
pD a; =plru, )

3
where Vv *=v 2V ? is a dimensionless biharmonic operator.
A fundamental set of solutions of the homogeneous governing
partial differential equation of motion can be determined (by
the method of separation of variables using Fourier-Bessel
series techniques) as

Wa(F, 0,8) =

+94,.K, (o )] (c, COS 278 +d, sin 27nf
xe_§a;<aoeiﬁa;+ boefiﬁav @

where n=0,1,2,....

The boundary conditions for this problem are functions of
the spatial variables only, thus they are time-independent
boundary conditions. The classical boundary conditions at
7=0b, describing the fact that the deflection and slope are zero
at the clamped inner boundary of the annular plate, are given
in dimensionless form by

[J,,(Ol? ) +772,nYn(O‘? ) +773,71117(a7)

w=0, ~-=0. )

The boundary conditions at 7=1, describing the fact that
the moment and resultant transverse shear are zero at the free
outer boundary, are given by the so-called Kirchhoff boundary

conditions
dw, (1w 1 #w\ o
o7 \F o7 an’F 007)
(P 1w L Fw\ Loy & (0% W) o
GF\ a7 F OF 4w 30°) 4AnF a0°\oF F)

The allowable values of the parameter « can be determined
by satisfying the boundary conditions in (5)-(6) for the fun-
damental solution given in (4). This results in a family of
characteristic equations, a different equation for each value
of n. Thus, for each value of n, this equation will be satisfied
only for certain values of the parameter «. These characteristic
values, or eigenvalues, will be denoted oy,

Utilizing these eigenvalues, the dimensionless undamped
natural frequencies of vibration of the plate are Q,,,=0o?,
where the undamped natural frequencies of vibration 2, are

related t0 2y bY Qon= L/ N D/ (pha) .
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Since the partial differential equation (3) and boundary con-
ditions (5)-(6) are linear, the general deflection equation for
free vibration can, by superposition, be written as

W(—f‘,é,;) = Z 2 [ (emal ) + N2,mn Y, (ol )

m=1n=0

+ 773,mn[n (ctyl ) + 7]4,ann (sl )1 (CpcOS 27nb +d, sin2wnd )
- o -
x e~ {mn! (aO n€ iN 1= 1200 + bo e~ iN1=¢ nmn’) . D

Since a fundamental set of solutions of the homogeneous
partial differential equation is known, it is appropriate to use
the method of variation of parameters to determine a particular
solution to the corresponding nonhomogeneous partial dif-
ferential equation of motion.

Using the Fourier-Bessel series representation for the plate
transverse deflection given in (7), an appropriate solution for
the forced response may be assumed in the form

Z Z Rmn( r )[Amn( t ) cOos 271'}'29

m=1n=0

7.0,1)
+ B (7)sin27nd] (8)

Where R"III( ? ) - JH (O‘mnf ) + nz,""l YH (amn?_) + 773,)7111111(_0‘111117 )
+ 94, mnKy (cmy? ) and the coefficients A,,,( 1) and B, ( 1) are
now functions of time that must be determined through further
analysis. These coefficient functions depend upon the physical
plate parameters, the boundary conditions, and the loading
function.

Using standard Fourier-Bessel series techniques, we obtain
an ordinary differential equation for 4,,,( ¢) in the form

.- } ho. -
AI"II( t ) + ’Yaz p_D AI"II( t ) + a??IIIAI""( t )

1

)
= Aﬂnm ( ; ) (9)

where (;) and (:) represent ordinary derivatives with respect
to ¢.
The total solution of (9) for 4,,,(¢) is

Amn(}) :A‘mn(?) +A:m(?)

1
S_ R, (T) cos 27nbp ( 7,0,1 )7dTdh
b

(10)

where the homogeneous solution A,,,,,(?) is given by

A I _3q,.7 i _72q. 1 - I
Am(t)=e pnt <amne‘ NVI=04Q +b,e iVi-¢ ﬂmn’> i
an

The particular solution A, (7) can be represented as a Du-

hamel convolution integral. For this purpose, note that the
dimensionless Green’s function for this problem is

1
\Y I- '§:2§mn

Using the approprlate Green’s function (Moshaiov and Ear-
eckson, 1988), A, (¢) can be given as
7

Amn(?)G(?“?)d?Z

- 2
Amn( )= S D e
0 Qmm \Y) 1- g‘ 29mn
T 1
<[]
0 0
X e~ fmn=D gin /1 -72Q,,, (I—7)d7. (13)
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G(7) = el sin A/1-F2Q,f.  (12)

1
S_ Rmn ( 7) CcOoSs 27("’165 ( 7,5,7)7[170’5}
b
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In a completely analogous manner, an expression for By, (1)
can be obtained in the form

an(?) :Emn (?) +B:m (?) (14)
where the homogeneous solution B,,, (1) is given by
Byn(F) =™ mn <c,,,,,e“ Nl g eI N “) (15)

and the particular solution By, (?) is of the form
_ 2
B:m ( t ) =
an

[ opl
<] [S
0 0

e 0@ sin A/ 1= 1°Q,,, (I-7)dr. (16)

In (11) and (15), the constants @, Ppn, Cpn, and d,,, must
be determined from the initial conditions and represent a tran-
sient state of vibratory motion resulting from the initial con-
ditions. The nature of the steady-state forced response of the
rotatlng annular plate is contained entirely in the functions

Amn(1) and B, (1) which are defined by (13) and (16).

Substituting the expressions for the coefficient functions in
(10)~(16) into (8), the general deflection solution for the forced
response of a thin annular plate to an arbitrary transverse
surface load p (7, 0, 1) is given in integral form by

W(7,0.7) Z Z} Ry (e~ Omnl

m=1n=

P Al -2 7 —ial1-720. 7
X iiam"e’ I=¢ Qnm“.}.bm"e Nt

QIIIII

1
S_ mn(r) sin 27[‘)’1617( )rd'd@il
b

an(F) cOoS ZWHEﬁ(F,g,?)?dfdg

| S

) Tl Al
—2—{1] ]
an 1 - §-2 Qnm 0 0 b
x 5™ gin A/ 1 — (T — ?)d?} cos 2wnd

ial1-72Q. 7 i~ 1-220. .7
+ {Cmnel ) Qm"""dmne INE Gt

2 el ol o )
+__——:2—_— X |:S S_ R,y (7) sin 2wnbp (7,0,7)rdrdd
O N 1-1°Q,,, “0L"0 ¥

x et mnsin - F)d?} sin 27rn§} . 17

The general solution presented above can be integrated to
determine the response of the annular plate for an arbitrary
applied surface load 5 (7, 0, 7).

Concentrated Load With Arbitary Motion

Essentially no research has been published addressing the
problem of circular or annular plate dynamics with radial load
motion. Introducing a radial component in the motion of the
load substantially complicates the deflection expression. The
argument of the Bessel functions now becomes a function of
time through the radial motion function. Thus, in general, the
Bessel functions must remain inside the Duhamel convolution
integral. The resulting integral expressions are extremely dif-
ficult to evaluate analytically. However, the general analysis
developed above will now be applied to obtain the solution
for the case of a concentrated transverse load with arbitrary
tangential and radial motions and arbitrary amplitude varia-
tion.

Journal of Applied Mechanics

A concentrated load with general motion and amplitude
variation can be expressed as

~B () 6[?—f(t)2]:§6—6(t)]

p(7,6,1) =pIF(1),0(D),1] (18)
where P = P/(D/a).

Substituting the load function given by (18) into the general
deflection solution and noting that the spatial integrals in (17)
can be readily evaluated as

8IF — F(7)1810 — B F il
=

1 1
S S_ R, (F)cos 27nd P(7)
0o Y5

_P cos 2wnB(T) R (F(T))
27

8[F —7(7)1610 — 6(7)] T drd

1 1
S S R, (F)sin 2700 P (7) —
0o vh 277

T)(T)

sin 20n0(DR (F(7)), (19)

we obtain the following general expression for the deflection
of a plate due to an arbitrarily moving concentrated load:

W(F,0,f) = Z ZR,,,,,(r)e E

m=1n=

i 1=12Q,,7f —-iVi1-720,,,1
* {iamne £ +bmne ! E

S P( ) COS 271"15 (;)Rmn(f(?))

an \Y Q”T”
X 0" sin

- (F— ?)d?} cos 2wnf

. /1_—2—‘ - i 528 -
' {Cmnel A

S PG )sin 2B @R (F(T))

Qlﬂ" V an

x 5 Omngin -Z‘2§,,,,,(?~?)d?} sin 21rn5}. (20)
To further evaluate the solution for arbitrary concentrated
moving loads, the functional form of the load amplitude P15,
the tangential motion §(¢), and the radial motion 7(f) must
be specified.

Concentrated Load With Harmonic Radial Motion

Analysis such as that above has been used in the literature
to describe the special case of harmonically varying concen-
trated loads at constant radial position with constant-speed
tangential motion (Mote, 1970; Honda, et al., 1985; Weisensel,

1988: Weisensel and Schlack, 1988, 1989, 1990). Such a load

can be described as
' 7 8(F=T0)8(6- 1)
2nr

D(7,0,1) =Py cos & @D
where _
Po=Py/{D/a), w=uw/(i/1), b=/ (1/1).

(22)

It is assumed that the angular position of the load at time 7
= 0is # = 0 for convenience.

As an extension of the case of constant radial position,

7027'0/(1,
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Py cos wt

b,
,' T

Fig. 2 Rotating thin annular plate with clamped inner boundary and
free outer-boundary subjected to harmonic concentrated transverse load
with harmonic radial motion oscillation

another special case of interest and of much practical impor-
tance involves harmonic oscillatory motion of the radial po-
sition of the load as shown in Fig. 2. As mentioned previously,
essentially no research has been published addressing the prob-
lem of circular or annular plate dynamics with radial load
motion. The component of the load motion for harmonic
oscillation in the radial direction with frequency 8 can be
described as

70+7\ sin E?

(1) = 23)

where
Fi=ri/a, B=8/(1/1). (24)

If the load amplitude function is harmonic as given in (21),
the deflection response for this special case will be given in
integral form by (20) as

W(r,0,7) Z Z Ry (FYe™ Omil

m=1n=

iaJ1-R20. 7 —iaf1-729. 7
8 {{am"el o anl+brripxe INI=E gt

2 1Py cos o7 —
+ S 0 . @7 cos 2wnpTR (7o

an 1- ?Zﬁmn

+7 sin E?)e?ﬁm"; sin v/ 1 —fzﬁm,,(?—?)d?} cos 2wnd

ial1-720. .7 _iaJ1-72g . 3
+ {cm"el 1-¢ ant_l_dmne PN 1=04Q,,01

2 "_—13 cos W7 . -
+ S 0 o OT sin 25nb 7R, (Fo

an 1 _Z‘Zﬁmn
+7, sin Be msin A/ 1— P20 (7 —F)a’?} sin 27rn5}. ©5)
Note that R, (7) is now an implicit function of time. Thus,

it must remain inside the convolution integral.
It is readily apparent that to determine the explicit analytical
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solution for this special case, some extremely difficult integrals
must be evaluated. The general approach used here is to expand
the Bessel functions, trigonometric functions, logarithmic
functions, and polynomial functions present in these inte-
grands in appropriate finite and infinite series (Abramowitz,
1965; Spiegel, 1968). The deflection expression for the forced
response of an annular plate to a harmonically varying con-
centrated transverse load with constant-speed tangential mo-
tion and harmonic radial motion can be written in the form

5; Z Z Jn(amnr)‘*""lz wmn Y n (Ol )

m=1n=0

+ 773,17111111 ( 0{,,,,,7 ) + 774,mnKn (Olmn7 )]

8,0 i
xe Sl | | g6l 1 p,,e” "

&, | cos2wnb

P
7‘-an \Y 1_E'Z—(imn

+ Cmne +dmne_llt EZ sin2whé |.

Py
TQmn \Y) 1- g‘Zan
27
The definite integral functions %, and Z, are evaluated in
Weisensel (1988) for the general case of transient vibrations.
However, to understand the fundamental nature of the sys-
tem response, it is sufficient to consider here only the steady-
state response of this system. The steady-state deflection re-
sponse is readily obtained from the general solution given in
(27) by neglecting all the transient terms. The steady-state
solution is also given explicitly in Weisensel (1988). These equa-
tions are the first known analytical solutions for the deflection
of a circular or annular plate due to a transverse load with a
nonconstant radial motion function. As such, this work rep-
resents a significant extension of the knowledge of plate dy-
namics as a result of moving loads.

Concentrated Load With General Periodic Radial Mo-
tion

The special cases of the forced dynamic response of a ro-
tating thin annular plate to a moving concentrated load have
been presented in the literature for constant radial position
and herein for harmonically varying radial motion. These re-
sults can be extended beyond these cases to demonstrate the
analysis for a load with general periodic radial motion by using
Fourier decomposition to determine the individual harmonic
components of the general periodic load radial motion.

Thus, the radial motion of the load used in (18) and defined
in (22)-(24) can be viewed as simply the initial components of
the infinite Fourier series expansion of the general periodic
radial motion function,

F(T) =Fo+Fy. cos BT+ T, sin BI+Fac cos 267+7, sin 287
+ o =Fot D Fe cOS kBT Z . sin kB7. (28)
k=1

The radial motion function given by (23) can be obtained from
(28) by setting Fig = T, Fie = 0 (kK =1,2,3, .. ), F,s = 0
(k=2,3,4,..).

Thus, the general approach to determine the response to a
load with general periodic radial motion begins with substi-
tuting (28) into (20). The critical step in this approach is to
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evaluate integrals similar in form to those in (25), but with the
argument of the characteristic function in the radial coordinate
R,,,(T) being the entire series given in (28),

7
S COS WT COS 27rn¢>TR,,,,, [r0+ Z Tre COS kBr
0 k=1 =~

%

* 25T

k=1

= S e-fﬁmn?
0

X [J,,[a,,,,,{ro—i- Z Tre COS kBT + Z Tis Sin kﬁr}]

k=1

sin kEF] 5% sin \/ 1- ¢ Qu(T~-7)d7

_?2 ﬁmn (?_?)

COS WT cos 27N ¢ T sin

+ N2,mn Yn [amn |:70+ Z Tge COS kﬁ?"’ Z Fis sin kBF:I:I

k=1 k=1

oo o0
+ 7I3,nmln|:O‘nm I:FO"' Z ch Cos k6?+ Z st sin kBF]:l
k=1

k=1

(=]
+ 04,mnK ,:amn':ro"‘z Fre cOS kBT

s SIN kﬁ?} J ] a7 (29)
k=1

! . =]
S cos wT sin 2w7nd TR, [70+ Z Fre COS kBT
0 k=1

Me

+ 2 Tas
k=1
T -
= S efmn™ cos BT sin 20n 7 sin A/ 1= ¢ Qpy (7 ~7)

0

X {J,, [a,,,,, [?0+ D) Tae €08 kBT + ) Fy sin kﬁ?}:|
k1

sin kg?i| e?ﬁmn? sin _ ?.2 ﬁmn (; _ F)d?

k=1

+772,ann|:anm':r0+ Z Ik COS kBT+Z Ts Sin kﬁle:l

k=1

+ 73 mnllr[alnn[r0+z Fie COS kBT+Z Tys Sin k67j|:l

k=1

+ 7)4,an11 I:Olmn l:FO + Z Fie COS k,@?

k=1

+ D P sin kE?}Hd?. (30)

Admittedly, these integrals appear formidable. However, by
carefully and consistently using the series representations of
the Bessel functions and other functions, these integrals can
be evaluated in terms of multiple infinite series. Then the
corresponding analytical deflection expressions can be derived.
This approach has special application to treating problems
where the load radial motion function is analytically compli-
cated or is the result of experimental measurements. In such
cases, the load radial motion function may be adequately rep-
resented by just a few terms of its series expansion.
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General Periodically Varying Load

The special case of the forced dynamic response of a rotating
thin annular plate to a moving concentrated transverse load
of harmonically varying amplitude (in time) has been discussed
herein. This result can be extended beyond these cases to dem-
onstrate the analysis for a load of general periodic amplitude
variation by using Fourier decomposition to determine the
individual harmonic components of the general periodically
varying load amplitude. The responses to each of these com-
ponents can then be superposed to obtain the response to a
general periodic amplitude load. This approach has special
application to correlating experimental measurements and an-
alytical results.

Thus, the temporal harmonic amplitude variation of the load
used in (18) and defined in (21) can be viewed as simply one
component of the infinite Fourier series expansion of the gen-
eral periodic amplitude variation,

P(7)=Py+ Py, cos GI+ Py, sin G7+ Py, cos 2wl + Py, sin 2w7
+ - -=1_30+Z}—3kc cos k5?+2ﬁks sin kwi. (31)
k=1 k=1

Each component amplitude Py, or Py, of a general load am-
plitude variation function may be determined in any of several
ways. These include direct application of Fourier analysis for
analytical functions, spectral analysis for empirical functions,
or simply assuming that a load is comprised of only specific
components. Once the component amplitudes are determined,
they can be used to define component loading functions of the
form

Po(7,0,F) = PolL(7,6)
D1c(F,0,1) =Py cos i (F,0)
Dis(7,0,F) = Py sin wII(7,0)

Do (7,0,1) = Py cos 2wt (F,0)

Das(F,0,1) = Py, sin 2w 7IL(F,0)

(32)

where II(F, §) describes the spatial distribution of the loading
function. The total periodic loading function can now be de-
scribed as

P(FO,E) =Do(F0,1) + D Due(F,0,7) + D Prs(Fo0:1)
k
=PyII(F,0)+ ) Py cos kaTIl(F,0) + | Py sin kaIL(F,0)
k=1 k=1

[P0+ Z Py cos kot + Z Py, sin kwt]ﬂ(r 0)
k=1
=P (DHII(70). (33)
Each component loading function can be used as the non-
homogeneous term of a separate partial differential equation
of motion of the form given in (1). Solving the equation of
motion for each component Ioading function results in a set
of general solutions of the form given in (7). These solutions
can be denoted in a corresponding manner as Wy (7, ,1), Wi (F,
6, 1), Wis (7, 6, 1), W (7, 8, ), W (F, 6, 1), . . . . Since the
partial differential equation of motion and the boundary con-
ditions are linear, the total deflection response to the total load
given by (33) in just the superposition of the component de-
flection responses, i.e.,
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Table 1

Eigenvalues and undamped natural frequencies of a thin an-
nular plate with geometric and material parameters b-0.5, »=0.3

e} fmn
m n Qmn (Hz)
0 13.026426 362.16054
1 13.28978 369.54389
1 2 164.70381 408.86331
3 18.56199 516.14615
G 25.59582 711.73313
5 35.73009 993.53304
0 85.03283 2364 .67537
1 86.70583 2410.99601
2 2 91.73815 2550.92791
3 100.16746 2785.31826
[ 112.04960 3115.72066
5 127 .44669 3543.86150
0 263.69404 6776.30723
1 265.643582 6826.74022
3 2 250.68249 6970.63238
3 259.49153 7215.58200
% 271.94106 7561.76145
5 288.11390 8011.47341

Resonance Conditions and Critical Frequencies

The conditions for system dynamic deflection resonance oc-
cur when specific relationships exist between the system load
parameters and the system natural frequencies. The lowest
natural frequencies for the system studied are given in Table
1. For any particular special case of interest, the resonance
conditions can be obtained by considering the expression for
the motion as given by (27).

The resonance conditions are most clearly exhibited when
damping is neglected. Thus, for a conservative system, the
resonance conditions occur whenever any of the denominators
in the steady-state deflection expression vanish. For example,
for constant radial position, the resonance conditions can be
stated as

- - _ ﬁmn +w
¢'I,mn - ¢3,mn - 27(')'1
- = Qi+ @
¢2,mn =- ¢4,mn = ';n (35)
wH

where ¢ = ¢/(£/t), @ = Q/(1/t), @ = w/({/t). Negative
values of ¢ simply indicate plate rotation in the opposite di-
rection. Also note that (35) is valid form = 1,2,3,...;n
=1,2,3, ... . Thus, there are no critical rotational speeds
for the degenerate forms of the original resonance conditions
when n = 0, corresponding to the axisymmetric component
of the deflection response (Honda et al., 1985).

In addition to the resonance conditions given in (35), those
for a load moving harmonically in the radial direction can be
identified as

= - ~QuntG—qf

d’l,mnq = ¢’6,mnq = m"27l'l’l

?5 _ _$ :_an'l'z’-’-'*'qg
2,mnq S,mnq 2mh
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- - Qun+o+gB
¢3,mnq == ¢)7,mnq = Lm~_
= = - ﬁmn +w '" CIB
¢4,mnq =~ ¢8,mnq = T (36)

where 8 = 3/(t/t).

Equations (36) define the critical rotational speeds of the
plate, i.e., those rotational speeds that cause a resonance con-
dition to be satisfied for the undamped annular plate system,
for a specific load amplitude oscillation frequency w and a
specific load radial motion oscillation frequency 8.

In the degenerate case of loads at constant radial position,

e., 8 = 0, (36) reduces to the resonance conditions given by
(35). In the degenerate case of constant amplitude loads, i.e.,
w = 0, (36) reduces to

""7 q6

- ¢3,mnq 2an

d) L,mng =

- _ﬁ nt B
- ¢4,mnq:#nq' (37)

T4)-2,nmq:

In the further degenerate case of constant amplitude loads

at constant radial position, i.e., = 0 and 8 = 0, (36) reduces
to the widely known resonance conditions given by

an
¢1 Jmng = d’Z Jmng d’7 Jmng — ¢8 mng 27wn
an
¢3 Jmng ¢4 mng — d’S Jamng — ¢6 mng = 2nh . (38)

In a similar manner, the original resonance conditions can
be solved for the radial motion oscillation frequency as a func-
tion of the plate rotational speed and the load amplitude os-
cillation frequency,

— Qo + 21rn¢> 7}
B 2,mng = — B 1,mng =™ o

q
- Q 27rn¢ +w
B4,nmq :83 mng = o

q
- — Q 27rn¢> w
ﬁs,mnq = - Bﬁ.mnq e

q
= = Qo+ 2710+
Bs,mnq == B7,mnq = . (39)

q

Equations (39) define the critical load radial motion oscil-
lation frequencies, i.e., those frequencies of the load radial
motion oscillation that cause a resonance condition to be sat-
isfied for the undamped annular plate system for a specific
load amplitude oscillation frequency @ and a specific plate

rotational speed ¢. It is important to note from (39) that

= B
6k,mnq = k;;rml . (40)

However, note further that a relationship similar to (40)

"between ¢ and n cannot be derived from (35) because 7 is also

an index of the natural frequencies ,,,, whereas g is not.
In the degenerate case of constant amplitude loads, i.e., &
= 0, (39) reduces to

- — Qn + 27rn_.
ﬁZ,nmq = ﬁs,mnq = u
q
— — Qi — 27rn$
ﬂ4,mnq = BS,mnq = ._'I'_"_q..__ . (41)

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 2 Definition of parameter values and resulting maximum deflec-
tion magnitude values for particular sets of input system parameters
that correspond to specific near-resonance conditions

Parameter m | n ¢ 1) B r 3 1]
Set No. 9 | (rad/s) | (rad/s) | (rad/s)| (mm)
1 ' Q 0.72735
2 1 1 -- 370 0 0 0 0.02 0.04625
3 0.05 0.02138
A o 1.19204
5 1 1 1 385 0 100 25 0.02 0.02119
6 0.05 0.02918
7 0 1.44155
8 1 1 1 G601 0 200 25 0.02 0.04253
9 0.05 0.01446
10 0 1.14870
11 1 1 -- 688 2000 0 0 0.02 0.04383 -
12 0.05 0.02891
13 0 0.05005
14 1 5 1 266 2000 100 25 0.02 0.05120
15 0.05 0.03698
16 0 0.90178
17 1 1 2 720 2000 200 25 0.02 0.03696
18 0.05 0.01221

In the degenerate case of loads with no tangential (rotational)
motion, i.e., ¢ = 0, (39) reduces to

e .
Bz,mnq = 65,nmq =~
q
- = [
B4,mnq = BS,mnq = q (42)

In the further degenerate case of constant amplitude loads
with no tangential (rotational) motion, i.e., @ = 0 and ¢ =
0, (39) reduces to

= o n = _ ﬁmn
Bl,mnq = 63,mnq = 66,nmq = B7,nmq =

. Q"lll

62,mnq = B4,mnq = BS,mnq = Bﬁ.nmq (43)

Note from (41) and (43) that even constant amplitude loads
can excite resonances of annular plates with radially oscillating
loads. This is possible whether or not the plate is rotating. For
design purposes, this type of loading must be thoroughly ana-
lyzed to ensure resonance is not a problem.

It should again be noted that if any of the above resonance
conditions is satisfied, the expression for the dynamic deflec-
tion of the conservative system as given by the conservative
degenerate form of (27) is indeterminate. The deflection
expression at resonance can be determined from particular
forms of (27) by using appropriate limiting procedures. How-
ever, for nonconservative systems (¢ # 0), the deflection
expression given in (27) is valid and the deflection remains
bounded for all parameter values.

This type of critical frequency information is very valuable
and useful in the design of annular plate systems with the types
of loading described.

Dynamic Deflections and Mode Shapes

The dynamic transverse deflection at any location on the
surface of the plate and at any time can be computed using
(27). The significance of the contribution of each individual
mode to the total dynamic deflection decreases quite rapidly,
especially for damped nonresonant conditions. Thus, based
on the higher-frequency modes having negligible contributions
in these cases, six modes were included in the dynamic de-
flection computation (m = 1, n = 0, 1, 2, 3, 4, 5). Precedent
exists in the literature for using a small number of modes to
approximate the total dynamic deflection. One common cri-
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terion is to only include modes that contribute more than one
percent of the total deflection (Ramakrishnan and Kunuk-
kasseril, 1974). Another is simply to include only the single
mode that corresponds to the lowest values of the modal indices
(Raske, 1966, 1983; Raske and Schlack, 1967; Laura et al.,
1976).

Fo)r each set of input system parameters studied, several
important quantities of interest were computed. These quan-
tities were computed for each of the six modes included in the
dynamic deflection. First, the mode shape was computed and
the deflection values were analyzed to determine the maximum
deflection magnitude (absolute value) for each mode shape.
The mode shapes are used to gain insight into the nature of
the dynamic response of the plate to a particular set of input
system parameters. The deflection values for each of the six
modes were summed to obtain the total dynamic deflection.
The maximum total deflection magnitude values are used to
compare different sets of input system parameters.

To demonstrate the nature and utility of the analytical results
and the expressions for critical system frequency parameters,
18 particular sets of input system parameters are studied. These
sets correspond to six near-resonance cases of the dynamic
deflection at three levels of damping. The definition of these
sets of input system parameters is given in Table 2, along with
the resulting maximum deflection magnitude values. The in-
fluence of the system parameters on the dynamic deflections
is readily apparent from this table.

As an example, whenm = 1, n = 1, the resonance condition

for the critical rotational speed 52,,,,,, in (35) is satisfied for the
degenerate case of a constant amplitude load (v = 0) at con-

stant radial position (8 = 0) when ¢,y = ¢2.41 = 2.12 (2,
= ¢p,11 = 369.54 rad/s = 370 rad/s). These values correspond
to parameter sets number 1, 2, and 3 in Table 2 for damping
parameter values { = 0, 0.02, and 0.05, respectively (the values
of { are assumed to be approximately constant for each pa-
rameter set). The total dynamic deflection for parameter set
1is 1wl = 0.72735. The prominent mode shapes, including
the mode shape corresponding to the resonant condition, i.e.,
m = 1, n = 1, have maximum deflections of |W;y| = 0.00547
and Iw;;1 = 0.65946. The predominance of the selected mode
for which the resonance condition was satisfied in the previous
case is clearly evident. It must be noted that the maximum
dynamic deflection magnitude for the undamped case near
resonance admittedly exceeds the bounds of applicability of
classical plate theory. Thus, the results for these undamped,
near-resonance conditions must be viewed rather qualitatively.

Parameter sets number 13, 14, and 15 in Table 2 for damping
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Fig. 3(c)

Fig. 3 Dynamic deflection of thin annular plate with clamped inner
boundary and free outer boundary subjected to concentrated transverse
load. Geometric, material, and loading parameters are: b/a=0.5,
h/a=0.01, »=0.3, «_/pha‘/D=A0.0057 s, T=0, t=0, P;=0.011, 7,=0.75,
7, =0.25, 5=11.45, 8=0.57, ¢ = 1.52. (a) Total deflection. Maximum de-
flection 1wl =0.05005. (b} Mode m=1, n=0. Maximum deflection
1wyl =0.03724. (¢) Mode m=1, n=5. Maximum deflection
1'Wy5} = 0.00533.

parameter values ¢ = 0, 0.02, and 0.05, respectively, corre-
spond to the case of a load with amplitude oscillation frequency
w = 2000 rad/s and load radial motion at an oscillation fre-
quency 8 = 100 rad/s and a maximum oscillation amplitude
ry=25mm.Form = 1,n = 5,q = 1, theresonance condition
for the critical rotational speed ¢3 mn, in (36) is satisfied for

this degenerate case when ¢ 3 yng = b3,151 = 152(h3,mnq = 03,151
= 265.6 rad/s = 266 rad/s). The total dynamic deflections
for these parameter sets and the prominent mode shapes, in-
cluding the mode shape corresponding to the resonant con-
dition, i.e., m = 1, n = 5, are shown in Figs. 3(a)-(c). This
particular set of input system parameters demonstrates that it
is plausible that the higher modes may be excited to a significant
degree, particularly when there is no damping. Notice from
Figs. 3(a) and 3(c) that the influence of the m = 1, n = 5,
mode is clearly evident in the total dynamic deflection. When
damping is introduced, the influence of the resonant higher
mode is no longer predominant. However, the magnitude of
the m = 1, n = 5, mode is significantly greater than it is for
the other resonance cases in which this higher mode is not
specifically excited.

It must be noted at this point that the resonance conditions
in (35) and (36) simply define relationships between the fre-

quency parameters of the system, namely £,,,, @, ¢, and 8.
Thus, the perception of which parameter is responsible for a
particular resonance condition being satisfied is, in general,
not analytically meaningful. For example, the specific set of
system frequency parameters defined as parameter set number
13 in Table 2 may be viewed as defining a critical rotational
speed ¢ = 266 rad/s of a system that has a load amplitude
oscillation frequency w = 2000 rad/s and a load radial motion
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oscillation frequency 8 = 100 rad/s. Alternatively, this set of
system frequency parameters may be viewed as defining a
critical load radial motion oscillation frequency 8 = 100 rad/
s of a system that has a load amplitude oscillation frequency
w = 2000 rad/s and a rotational speed ¢ = 266 rad/s. Which
particular viewpoint is adopted in practice will depend upon
the specific design and operating conditions of the system under
consideration, along with any degenerate conditions. This un-
derstanding of the resonance conditions certainly applies to
all the sets of input system parameters listed in Table 2.

Parameter Sensitivity

Special Cases of System Parameters. To investigate the
sensitivity of plate dynamic deflections to the system param-
eters, especially the damping and loading parameters, 27 ad-
ditional special cases of system parameters were examined.
The definition of these nonresonance sets of input system pa-
rameters is given in Table 3, along with the resulting maximum
deflection magnitude values. Again, the influence of the system
parameters on the dynamic deflections is readily apparent from
this table.

The dependent quantity for which system parameter sensi-
tivities are desired is the maximum total deflection magnitude
value |Wl. The selected system parameters for which the sen-
sitivity of the maximum deflection magnitude value is studied
include damping, load amplitude oscillation frequency, load
radial motion oscillation frequency, and load radial motion
oscillation amplitude. Whereas the sensitivity to rotational
speed of the plate is not selected for further study, note from
Table 3 that this parameter has been fixed at ¢ = 300 rad/s
for these additional particular sets of the input system param-
eters.

Damping Sensitivity. To study the effect of system damp-
ing on the maximum total deflection magnitude value, three
levels of this parameter were investigated, namely, { = 0, 0.02,
and 0.05. The effect of damping was examined for both the
near-resonance cases defined in Table 2 and the nonresonance
cases defined in Table 3.

From Table 3, it can be seen that damping plays a significant
role in determining the resulting maximum total deflection
magnitude value for the nonresonance cases. Similarly, from
Table2, it can be seen that damping also plays a significant
role in determining the resulting maximum total deflection
magnitude value for the near-resonance cases. The average
total deflection magnitude value for the nonresonance cases
and the near-resonance cases for each value of the damping
parameter is given in Table 4.

It is readily apparent from Table 4 that the average total
deflection magnitude value decreases markedly as the damping
parameter increases. As would be expected, this effect of
damping is more pronounced for the near-resonance cases than
for the nonresonance cases. This is because of the tendency
of the deflection magnitude in the undamped near-resonance
case to become unbounded, whereas in the nonresonance case
the deflection magnitude is limited to a certain maximum
steady-state value, even for an undamped system.

Another interesting influence of damping on the resulting
deflection is the location of the maximum deflection magnitude

‘value. Since damping (and also rotation) induces phase changes

in the deflection expression, it is expected that the maximum
deflection occurs in general at an angle away from the load
location (Huang and Soedel, 1987a, 1987b). This effect can
be clearly observed in the deflection shapes shown for the near-
resonance parameter sets. For example, the location of the
maximum deflection for the undamped case (parameter set 1)
is at the load application point (¢ = 0). This is quite signifi-
cantly different from the location of the maximum deflection

. for the nonconservative case (parameter set 2, { = 0.02) which
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Table 3 Definition of parameter values and resulting maximum defiec-
tion magnitude values for particular sets of input system parameters
selected from a matrix of combinations of input system parameters

Table 5 Definition of parameter values and resulting maximum deflec-
tion magnitude values fornonresonance sets of input system parameters

for different values of the load amplitude osciilation frequency

Parameter ¢ w I r 7 Ed Parameter 1] w I n 7 |l
Set No. | (rad/s) | (rad/s) | (rad/s)| (mm) Set No. | (rad/s) | (rad/s) | (rad/s)|(mm)
19 300 0 0 "0 0 0.01120 19 0 0.01120
20 100 0.01548 26 300 200 1] 0 0 0.01232
22 300 o) 200 10 |0 8.064251 31 2000 6.02608
24 300 0.11771 20 D 0 0.01548
21 100 0.02606 27 30 200 100 10 1] 0.01864
23 300 o 200} 25 |0 0.05658 34 2000 0.03802
25 300 0.12075 21 0 0.02606
i} K 28 300 200 100 25 [} 0.02619
26 300 2060 0 0 1) 0.01232 37 2000 0.06927
27 300 200 100 10 0 0.01864
29 200 0.02363 22 0 8.04251
29 300 200 200 10 [t} 0.02363
28 300 200 100 25 0 0.02619
40 2000 0.08713
30 200 0.05315
23 0 0.05658
31 300 2000 e 6 | o 0.02608 30 300 200| 200 | 25 [ © 0.05315
34 300 2000 100 10 0 0.03802 43 2000 0.10117
G0 200 0.08713
37 300 2000 100 25 0 0.04927
43 200 0.10117 Table 6 Average total detlection magnitude value for nonresonance
32 300 2000 0 6 | 0.02) 0.02556 cases of system input parameters for different values of the load radial
35 300 2000 100 10 0.02 0.03138 motion oscillation amplitude
41 200 0.03329
38 300 2000 100 25 0.02 0.05079
GG 200 0.02383 |——|
33 300 2000 0 0 0.05 0.02297 n N lwl w
36 300 | 2000 100 | 10 | 0.05| 0.02837 (mm) |w]
42 200 0.02630 Wi=o0
39 300 2000 100 25 0.05 0.03762
45 200 0.01393 0 5 0.01962 1.0
10 11 0.04424 2.25
Table 4 Average total deflection magnitude value for cases of system 25 11 0.05085 2.59

input parameters for different values of the damping parameter

= _ |w

Case ¢ N 1wl — l
wlz_,

0 17 0.04858 1.0
non-resonance 0.02 5 0.03297 0.68
0.05 5 0.02584 0.53

0 6 0.91025 1.0
near-resonance 0.02 6 0.04033 0.05
0.05 6 0.02385 0.03

isrotated through a large angle away from the load application
point. It has been shown previously that the shape of the
resulting deflection profile of the plate is strongly dependent
upon the speed of propagation of the load as well as the
magnitude of the damping coefficient (Reismann, 1963). These
damping sensitivity results confirm this prior finding.

Load Amplitude Oscillation Sensitivity. To study the effect
of the amplitude oscillation frequency of the load on the max-
imum total deflection magnitude value, three levels of this
parameter were investigated, namely, w = 0 rad/s, 200 rad/
s, and 2000 rad/s. The effect of the load amplitude oscillation
frequency was only examined for the nonresonance cases de-
fined in Table 3. It is not particularly meaningful to examine
the effect of the load amplitude oscillation frequency for the
near-resonance cases since this parameter is not independent
in these cases, but rather plays a role in defining the resonance.

The effect of the load amplitude oscillation frequency is
relatively subtle in comparison with the other parameter sen-
sitivities investigated. This is as expected over the ranges of
nonresonance system configurations. Therefore, to look more
closely at this parameter, the influence of the other parameters
was eliminated by considering the effect of the load amplitude
oscillation frequency for subsets of the results in which all
other parameters were constant. These subsets can be easily
examined if the entries in Table 3 are rearranged as in Table

5.
From Table 35, it can be seen that the load amplitude oscil-
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lation frequency has some effect on the maximum total de-
flection magnitude value for the nonresonance cases. For values
of 8 = Orad/s and 8 = 100 rad/s, the influence of w appears
to be monotonic in that the maximum total deflection mag-
nitude value increases as the load amplitude oscillation fre-
quency increases. However, for values of 8 = 200 rad/s, the
effect on the maximum total deflection magnitude value is not
clear for low values of the load amplitude oscillation frequency.
As the load amplitude oscillation frequency increases further,
the relationship that exists for lower values of § seems to again
emerge. More investigation is needed to explore the nature of
this parameter interaction.

Load Radial Motion Oscillation Sensitivity. The sensitivity
of the maximum total deflection magnitude value to the load
radial motion oscillation is actually dependent upon two in-
dependent load parameters, namely, the load radial motion
oscillation amplitude r; and the load radial motion oscillation
frequency §. Each of these parameters will be examined sep-
arately as well as jointly.

In a coarse sense, the average total deflection magnitude
value for the nonresonance cases for each value of the load
radial motion oscillation amplitude can be examined in Table
6. This table indicates that the total deflection magnitude value
is a strong function of the load radial motion oscillation am-
plitude, regardless of the value of the other parameters. This
table further indicates that as the load radial motion oscillation
amplitude increases, so does the resulting total deflection mag-
nitude value of the plate.

Similarly, in a coarse sense, the average total deflection
magnitude value for the nonresonance cases for each value of
the load radial motion oscillation frequency can be examined
in Table 7. This table indicates that the total deflection mag-
nitude value is also a strong function of the load radial motion
oscillation frequency, regardless of the value of the other pa-
rameters. This table further indicates that as the load radial
motion oscillation frequency increases, so does the resulting
total deflection magnitude value of the plate.
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Table 7 Average total deflection magnitiude value for nonresonance
cases of system input parameters for different vaiues of the load radial
motion osciliation frequency

Elw | 1wl ]
w
(rad/s) 'IW‘/EO
0 5 0.01962 1.0
100 10 0.03218 1.64
200 10 0.04615 2.35
300 2 0.11923 6.07

Table 8 Definition of parameter values and resulting maximum deflec-
tion magnitude values for particular sets of input system parameters for
ditferent values of the load radial motion oscillation amplitude

Parameter ¢ ® i 7 7 1%
Set No. | (rad/s) | (rad/s) | (rad/s){ (mm)
19 0 0 0.01120
20 100 10 0.01548
21 100 25 0.02606
22 300 0 200 10 0 0.04251
23 200 25 0.05658
24 300 10 0.11771
25 : 300 25 0.12075
26 0 0 0.01232
27 100 10 0.01864
28 300 200 100 25 1] 0.02619
29 200 10 0.02363
30 200 25 0.05315
31 0 0 0.02608
34 100 10 0.03802
37 300 2600 100 25 d 0.06927
40 200 10 0.08713
43 200 25 0.10117
32 0 0 0.02556
35 100 10 0.03138
38 300 2000 100 25 0.02 0.05079
61 200 10 0.03329
G4 200 25 0.02383
33 0 0 0.02297
36 100 10 0.02837
39 300 2000 100 25 0.05 0.03762
42 200 10 0.02630
45 200 25 0.01393

A more subtle look at the joint effect or interaction of the
load radial motion oscillation amplitude and the load radial
motion oscillation frequency can be achieved by again elimi-
nating the influence of the other parameters and considering
the effect of these two parameters of interest for subsets of
the results in which all other parameters were constant. These
subsets can be more easily examined if the entries in Table 3
are rearranged as in Table 8 to highlight the effect of the load
radial motion oscillation amplitude or as in Table 9 to highlight
the effect of the load radial motion oscillation frequency.

From Tables 8 and 9, it appears that the influences of these
two load radial motion parameters interact in such a way as
to strengthen each other for most of the sets of input system
parameters. This is particularly true when there is no damping.
When damping is present, however, it appears that the inter-
action between these two load radial motion parameters is such
that the maximum dynamic deflection magnitude value is re-
duced for cases where 8 = 200 rad/s. The fine details of this
interaction would require more analysis using several sets of
parameters at several more levels of each of these two param-
eters.

For further insight into the nature of the dynamic deflections
resulting from the nonresonance sets of input system param-
eters, the total dynamic deflection shapes for each of the 27
sets are shown in Figs. 24-50, as well as others, of Weisensel
(1988). By examining the entire plate deflected shape, the na-
ture of the influence of the various system parameters is often
much more clearly demonstrated.
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Table 9 Definition of parameter values and resulting maximum deflec-
tion magnitude values for particular sets of input system parameters for
different values of the load radial motion oscillation frequency

Parameter ¢ @ B r 3 %]
Set No. | (rad/s) | (rad/s) | (rad/s)}(mm)
19 1] 0 0.01120
20 100 10 0.01548
21 100 25 0.02606
22 300 0 200 10 0 0.04251
23 . 200 25 0.05658
26 300 10 0.11771
25 300 25 0.12075
26 0 0 0.01232
27 100 10 0.01864
28 300 200 100 25 1} 0.02619
29 200 10 0.02363
30 200 25 0.05315
31 1] 0.02608
32 300 2000 0 0 0.02 0.02556
33 0.05 0.02297
34 0 0.03802
35 300 2000 100 10 0.02 0.03138
36 0.05 0.02837
37 0 0.06927
38 300 2000 100 25 08.02 0.05079
39 0.05 0.03762
490 0 0.08713
61 300 2000 200 10 0.02 0.03329
42 0.05 0.02630
43 0 0.10117
46 300 2000 200 25 0.02 0.02383
45 0.05 0.01393
Summary

This work has practical use in any application that requires
knowledge of the dynamic deflection (transient or steady state)
due to loads with arbitrary circumferential and radial motion.
The general analysis presented examines the vibration response
of annular plates subject to arbitrary moving loads. The so-
lution is developed using classical plate theory with damping
included. The dynamic response of plates to general loads is
first determined in the form of an integral solution. Then the
solution for loads that move along the plate surface is deter-
mined as a special case of this general solution.

The general analysis is used to obtain the solution for the
case of an arbitrary circumferentially and radially moving load.
Previous literature in the area of circular and annular plate
response to moving loads has dealt only with circularly orbiting
loads, i.e., loads at constant radial position. This is one of the
very few works addressing the problem of circular or annular
plate dynamics with radial load motion. Thus, the current
understanding of the response of circular and annular plates
to moving transverse loads is extended to include a component
of motion in the radial direction in addition to a component
of motion in the tangential direction. In addition to the detailed
special case, the methods of analysis to obtain the solutions
for the more general cases of a concentrated load with arbitrary
periodic radial motion and of an arbitrary periodically varying
amplitude load are given.

The analytical results are used to demonstrate the nature
and utility of the expression for the dynamic deflection. Res-
onance conditions are obtained from the deflection expression,
and corresponding critical system parameter expressions are
derived. The critical system parameter expressions indicate
numerous critical system parameter values that satisfy the res-
onance conditions. Thus, this problem of moving loads, es-
pecially in the area of design, is much more complicated when
radial load motion is present. This is one of the very few works
addressing the problem of circular or annular plate dynamics
with radial load motion.

Dynamic deflection shapes for numerous particular sets of
input system parameters and maximum dynamic deflection
magnitude values are presented. These results are used to com-
pare various sets of system parameters. Parameter sensitivity
of the maximum dynamic deflection magnitude value is also
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examined for both near-resonance and nonresonance sets of
input system parameters. The nature of the parameter sensi-
tivities is discussed in detail. In particular, the importance of
system damping is emphasized by the fact that physical systems
with moving loads operate in the range of the critical parameter
values without experiencing the large dynamic deflections in-
dicated for the undamped sets of parameters.
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Equations of Motion for
Nonholonomic, Constrained
Dynamical Systems via
Gauss’s Principle

In this paper we develop an analytical set of equations to describe the motion of
discrete dynamical systems subjected to holonomic and/or nonholonomic Pfaffian
equality constraints. These equations are obtained by using Gauss’s Principle to
recast the problem of the constrained motion of dynamical systems in the form of
a quadratic programming problem. The closed-form solution to this programming
problem then explicitly yields the equations that describe the time evolution of
constrained linear and nonlinear mechanical systems. The direct approach used here
does not require the use of any Lagrange multipliers, and the resulting equations
are expressed in terms of two different classes of generalized inverses—the first class
pertinent to the constraints, the second to the dynamics of the motion. These equa-
tions can be numerically solved using any of the standard numerical techniques for
solving differential equations. A closed-form analytical expression for the constraint
Sforces required for a given mechanical system to satisfy a specific set of nonholonomic
constraints is also provided. An example dealing with the position tracking control
of a nonlinear system shows the power of the analytical results and provides new
insights into application areas such as robotics, and the control of structural and
mechanical systems.
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1 Introduction

D’Alembert’s principle, which gives a complete conceptual
solution to problems of classical mechanics, hinges upon the
first-order virtual work done by the impressed (given) forces
and that done by the forces of inertia (Lanczos, 1970). The
former can often be expressed in terms of the variation of a
potential energy function (Lanczos, 1970). By integrating with
respect to time, the virtual work done by the forces of inertia
can be transformed into a true variation (Rosenberg, 1972).
Thus for holonomic systems, D’Alembert’s principle can be
reformulated as Hamilton’s variational principle, which re-
quires that a definite integral be stationary (Lanczos, 1970).
The set of Lagrangian equations of motion that follow remain
invariant under arbitrary, one-to-one point transformations.

It was in 1829 that Gauss (1829) gave an aesthetic and in-
genious reinterpretation of D’Alembert’s principle, changing
it into a true minimum principle. This principle is applicable

"The names of the authors are listed in alphabetical order.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
oF MEeCHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS.

Discussion on this paper should be addressed to the Technical Editor, Pro-
fessor Leon M. Keer, The Technological Institute, Northwestern University,
Evanston, IL 60208, and will be accepted until four months after final publication
of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. )

Manuscript received by the ASME Applied Mechanics Division, July 5, 1991;
final revision, Oct. 30, 1991. Associate Technical Editor: R. L. Huston.

662 / Vol. 60, SEPTEMBER 1993

Downloaded 03 May 2010 to 171.66.16.245. Redistributi&oﬁ%{égn% QS]R?I:QE?CQX% orc

to systems with general constraints, including configuration
constraints (Rosenberg, 1972). Gauss argued that the deter-
mination of the motion of an n-degree-of-freedom system in
which positions and velocities were known, hinged on our
ability to determine the accelerations under the given applied
forces. He formulated the principle of ‘‘least constraint® for
describing the motion of mechanical systems. This principle
is closely analogous to his celebrated ‘‘method of least squares,”’
a method he developed and applied to the adjustment of errors
in measurements. Unlike Hamilton’s principle, the principle
of least constraint has the additional advantage of not requiring
any integration in time. Hertz gave a geometrical interpretation
of Gauss’s principle for the special case when the impressed
forces vanish (Hertz, 1917). He showed that in this case Gauss’s
‘‘constraint’’ can be interpreted as the geodesic curvature of
the configuration point in 3z-dimensional space. Appell and
Gibbs (see Pars, 1979) further extended the principle to apply
to nonholonomic conditions and in cases where it may be
advantageous to use kinematical variables (Lanczos, 1970).
They used the idea of pseudo-coordinates (see, Pars 1979)
which has, more recently, been again explored by Shan (1975)%.
Synge (1926) has also provided an alternative set of equations
of motion of nonholonomic systems in terms of the geometry

*The authors are thankful to an anonymous reviewer for pointing out this
reference to them.
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of the resultant trajectories. As such, his formulation is dif-
ficult to directly apply to engineering problems.

From a practical standpoint, however, the computational
difficulties of directly solving a minimization problems at each
instant of time to describe the motion of a mechanical system
made Gauss’s principle unattractive at the time. This caused
mechanicians of the late 18th, 19th, and 20th centuries to
expound on, and mainly utilize the methods of Jacobi and
Hamilton in the solution of problems in mechanics. Modern
day texts in classical mechanics usually concentrate on these
two latter approaches (e.g., Arnold, 1980), often relegating
Gauss’s principle to the position of a theoretically insightful
approach, yet practically speaking, an unusable novelty.

In this paper we show that with our improved understanding
of generalized inverses of rank-deficient matrices, Gauss’s
principle may offer a new, direct and oftentimes simpler ap-
proach to handling complex problems in mechanical systems.
This is true in particular where nonholonomic and rheonomic
constraints may be present. The key idea is that Gauss’s Prin-
ciple allows us to reformulate the equations of motion of
constrained mechanical systems as a quadratic programming
problem. In this paper we solve this quadratic programming
problem, and thereby obtain a new set of explicit equations
governing the motion of constrained, discrete dynamical sys-
tems. In contrast with the hereto used standard approach,
which requires the use of Lagrange multipliers (e.g., see Ro-
senberg, 1972) or an expanded set of coordinates (Appell,
1925), the new approach developed here does away with the
need for Lagrange multipliers. Furthermore, these equations
are valid for both holonomic and nonholonomic constraints
thereby treating both these types of constraints with equal
consideration, and ease. The paper thus presents a unified
approach to the handling of equality constraints in the ana-
lytical mechanics of discrete systems. In addition, an explicit
expression is provided for the determination of the forces-of-
constraint required so that a discrete mechanical system sat-
isfies & given set of nonholonomic constraints.

Wang and Huston (1989) have looked at the representation
of the equations of motion for nonholonomic systems, more
from a matrix algebra standpoint. They also obtain equations
of motion which do not involve any Lagrange multipliers. The
equations obtained in this paper are, in a sense, generalizations
of their results because we present the results in terms of non-
specific generalized inverses which belong to certain classes.
With the flexibility of choosing any generalized inverse from
a given class of inverses, specific generalized inverses suitable
for specific problem situations can often be found quickly and
efficiently.

In Section 2 we present a simple, short derivation of Gauss’s
principle for nonholonomic systems. The constraints are taken
to be in Pfaffian form. The exposition in this section, we belive,
is not available in the current literature (e.g., in Whittaker
(1917), Synge (1926) and Pars (1979)), and provides some new
insights. In Section 3 we use the results obtained in Section 2
to provide an exact solution to the constrained quadratic min-
imization problem governing the motion of constrained, dis-
crete mechanical systems. In Section 4 we obtain explicit
expressions for the constraint forces needed to satisfy the im-
posed constraints. Explicit equations for systems subjected to
nonholonomic constraints are also provided. Section 5 illus-
trates our results using three numerical examples. The first
deals with nonholonomic constraints, the second with the non-
linear oscillations of a pendulum subjected to nonlinear con-
straints. The third deals with the determination of the forces
of constraint that need to be imposed on an oscillatory system
described by a coupled Duffing’s oscillator so that a specified
time-dependent trajectory (constraint) is followed in config-
uration space. This latter example shows the power of our new
formulation to possible applications in the field of robotics
and position-tracking control of mechanical systems.

Journal of Applied Mechanics

2  Gauss’s Principle

Consider a holonomic mechanical system with n-degrees-of-
freedom whose generalized coordinates are g, a2, g3, . . , Qn.
The Lagrange equations describing the motion of the system
may be written as

aT

4 (9T
dt \ag,) ~ dq,

where T denotes the kinetic energy and Q, is the generalized
impressed force. The kinetic energy can be expressed as

Z a,,q,q,—i-z bigi+e,

lJl

Qn:”-« (1)

s 1,

@

where, in general, the g; and b; and c are functions of the
generalized coordinates and time.

Assume now that the system is subjected to an additional
p(p < n) independent nonholonomic, Pfaffian constraints of
the form

H
Zakrer+Bktdt:07 k=1) 2: Y 4 (3)

r=1

where ay, and 8, are functions of the generalized coordinates
and time. We note that the constraints may be scleronomic or
rheonomic, catastatic or a catastatic (Rosenberg, 1972). These
p constraints may be thought of as imposing additional con-
straint forces, Q/, on our system, thereby altering the set of

Egs. (1) to
BT

4 (3T
dt \3q,)  aq,

Expanding the first term in Eq. (4) we get
) Sl s
=Dt 335t 3. "’;’; i,
Js=1 s=
+ Z

Expanding the second term we similarly get
a7 1

dq, 2

=0+0Q/, r=1,2, @

(5)
Jj=1 aqf

aa;j..

6
aq, 1Y ©

ij=1

Denoting ¢: = [¢1 @2 g5 . . q,]7, and substituting expressions
(5) and (6) in relation (4), we obtain Lagrange’s equations as

AG+f(q, g, )=0+Q", g0)=qo, §(0)= go M

where the vector function fis in general a nonlinear function
of its arguments and Q:=[Q), Oy, . . . , Qn). The vector Q'
is similarly defined. The n X » matrix A4 is positive definite
and symmetric, and is related to the inertial properties of the
system (Rosenberg, 1972, pp. 202).

Given the generalized coordinates and the generalized ve-
locities ¢, and ¢, let §; be any kinematically admissible ac-
celeration which satisfies the p nonholonomic constraints given
by equation set (3). Thus, the set (g,, g,, q,) satisfies the
differential constraint equations

aakr . Bk: :
A7 +
Zak rzl]sz; a
+Z aakr . %—0 k._l 2 s P (Sa)

Furthermore, if g, are the actual generalized accelerations
of the mechanical system satisfying both the Lagrange equa-
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tions and the constraints (3), then the set (§,, ¢, g,) satisfies
the set of equations
1 " 1 4 aak, - n 6 kt -
oG+ 4+ ), 4
,Zl] rr Z aqs sHr ; aqs 5

r=1s=1

dour . 8
+Zﬂq+—@=o,k'=1,z;...,p. (8b)

ar T ot

Subtracting the corresponding equations from the sets (8«)
and (8b), we obtain
n
D ouddi —d)=0,k=1,2,...,p. ©

r=1
Thus,

8G,=Gr ~ G r=1,2,...,n, (10)

are kinematically admissible instantaneous variations of the
acceleration; i.e., virtual accelerations which are consistent
with the nonholonomic constraints. Thus, by D’Alembert’s
principle, the total virtual work done by the forces of con-
straint, Q,, under these virtual accelerations equals zero. This
requires

D 0/86,= > 04, -4 =1Q'1"(§" = §) =0, (11)
r=1 r=1

where in the last expression we have denoted Q' = [Q/, 05
05 .. 0,1". Using Eq. (7), this in turn entails

[AG+£(q, ¢, ) - Q1" (¢" —§) =0. (12)
This condition is equivalent to
[AG" +/(q, 4, ) - QI"A"'[AG" +f(q, ¢, 1) - Q]
=[AG+f(q, ¢, 1) - QA" [AG+[(q, ¢, ) - Q]
+(dr —dnTA(d; —G).  (13)

Since A is positive definite, the second term on the right-
hand side is always positive. Hence, we obtain the condition
that the generalized accelerations, ¢,(¢) of the constrained
mechanical system are such as to minimize

178G ()1 g (1), q(2)}I3: = NA""*[AG (¢)
+f(q) ‘.]’ t)_Q]"%y

at each instant of time t, while satisfying the set of constraints
(3). We note that both g,(f) and ¢(f) are known at time ¢.

We have thus reduced the problem of the determination of
the evolution of a mechanical system subjected to given forces
to that of solving a constrained quadratic minimization prob-
lem at each instant of time. We note that while the expression
J in (14) may be nonlinear in terms of the generalized coor-
dinates and velocities, it is always linear in the unknown ac-
celerations.

We point out here that were we to have chosen rectangular
coordinates (x;, ¥i, zi), i = 1, 2, .., n, for the 3n degrees-
of-freedom of a discrete system of n masses m;, I = 1, 2, ..,
n then expression (14) would reduce to

(14

o . X)) Ak AL
Z m, xr__} +mr{yr“_r + M2 ’ (15)
& m, m, m,

where X,, Y,, Z,, refer to the x, y, z-components of the im-
pressed forces on mass m,. This expression was first ennuciated
in words by Gauss (1829) who called it the ‘‘constraint,”’ thereby
ennuciating the ‘““principle of minimum constraint’’ (Whit-
taker, 1917). It was further elaborated on by Hertz (1917) and
many others.

Since the forces of constraint Q satisfy Eq. (7), the min-
imization in (14) can also be expressed as

Minimize{ 14 ~2Q"13}. 16)
q
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Thus, we see that for the mechanical system to satisfy a
given set of constraints at each instant of time, Gauss’s prin-
ciple requires that at each instant the norm of the constraint
forces Q' weighted with respect to A~ 2 be minimized—hence
the name, the principle of minimum constraint. In addition,
the p constraint equations need to be satisfied. We show in
the next section how this minimization can be carried out
explicitly and also the explicit expression that can be written
down for the constraint forces.

3 Solution of the Constrained Quadratic Minimization
Problem

Using Gauss’s Principle, we have thus reduced problems in
mechanics to finding the accelerations G-(t) at each instant,
¢, given g(¢t) and g (¢), so that we require to

Minimize {IA~"*[44(t) +/(q, ¢, )-QUI3},  (17)
q

while satisfying the constraints (85). These constraints are

again linear in the accelerations and can be written in matrix

form as

Dg(t)=glq(t), q(1), t} (18)
where we have denoted by D the p X » matrix [o]; and by g
the vector containing the remainder of the terms in Eq. (8b).
The right-hand side of Eq. (18) is known. For convenience,
we shall now drop reference to the independent variable ¢,
remembering that Eqgs. (17) and (18) need to be satisfied at
each instant of time. The solution of the consistent set of Eqs.
(18) is obtained as (Rao and Mitra, 1972)

G=D" g+ (I~-D " D)h 19)
where the n X p matrix D™ is any generalized inverse (g-
inverse) of D which satisfies the relation
DD D=D. (20
The vector A is arbitrary. Substituting relation (19) into relation
(17), we obtain

Min I HA—zI3 D
h
where
H=AY2(]-D™D):=A"H, (22)
and
z=—{A"’D g+ A2 ([~ 0)}. (23)

For brevity, we have dropped the arguments of the vector
function f. We next obtain the solution, A, of the least squares
problem (21) as (Rao and Mitra, 1972),

h=Hgz+ (I-HZH)w, 24)
where the matrix H; ;is the generalized ‘‘least-squares’’ inverse
defined as satisfying the relations

(HH;H)=H, (25)
and
[HH;\"=HHj.

The vector w is again an arbitrary vector.

Using expression (24) in (19), we thus obtain the explicit
solution to the constrained minimization problem given by Eqs.
(17) and (18) as
G=D g+ (I~D " D){Hz+ (I-H;H)w) (27a)

=D g+(I-D D)Hz+ (I-D D)Yw— (I-D D)H; Hw.
7b)

We now express the matrix H, as in Eq. (22), by A?H. The
least squares g-inverse, H,, , can now be expressed as

Hp:=H;A *=(I-D"D); 47",

(26)

(28)
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where

HHA;H=H, and [AH ;174 = A[HH}]. 29
Relations (29) follow from the definition of H in Eq. (22) and
that of H in relations (25) and (26). Using relation (28) in
(27b), we observe that the last two terms on the right-hand
side cancel out, yielding : .

G=D"g+(I-D"D)Hjz
=D g-(I-D"D)(I-D D) (D" g+A™' (/- Q).

(30a)

(30b)

We have thus obtained exp/zczt expressions for the accel-
erations at time t for the constrained motion, given the gen-
eralized coordinates and velocities.

Heuristically speaking, the inverse, D™, comes about (and
is related to) to the constraints on the mechanical system, while
the inverse, H;, comes about (and is related to) the motion
of the dynamical system. These two inverses employed in
expression (30a) are in general different in nature from each
other (Rao and Mitra, 1972). The matrix D~ refers to any g-
inverse of D (i.e., satisfying relation (20)), while the matrix
Hj; refers to any ‘least-squares g-inverse’’ of H (satisfying
relations (25) and (26)). From a practical standpoint, the flex-
ibility of choosing any g-inverse belonging to the requisite
classes stated above is a useful advantage in obtaining the
equations of motion of complex dynamical systems, for, de-
pending on the situation at hand, certain g-inverses are easier
to determine than others.

For example, a possible candidate for H;; might be
[HTH]  HT. Another might be the often-used Moore-Penrose
(MP) inverse. However, the MP inverse is an element of both
the set of g-inverses and the set of least squares g-inverses,
and is a useful candidate because of the several computer codes
available for its ready determination. The MP inverse can thus
be used for both D™ and Hy in Eq. (30a).

Even if the matrix D has rank p; < p, we are assured (Lawson
and Hanson, 1974) that the accelerations thus obtained are
unique because the matrix 4 is of rank n. However, when p,
< p, the equation set (18) may not be consistent (Dahlquist
and Bjorck, 1974) for all right-hand sides g. When the rank
of D is p, a unique solution to the constrained minimization
problem exists for all g.

4 Explicit Form of Constrained Equations of Motion
and the Constraint Forces

We have obtained in Eq. (30) an explicit expression for the
generalized accelerations at time ¢, given the generalized co-
ordinates and the velocities. Using this, we can therefore ex-
press the constrained equations of motion, valid at any time,
t, for a general system in first-order form, as

d| g q .
dt[d] - [D‘g+ (FDD)H,;J’ v a©

={o, Q(O)=QG (31)
The guantity z is defined in Eq. (23). We note this explicit set
of equations for the system include the effects of the Pfaffian
constraints. They can therefore be thought of as the new equiv-
alent equations of motion; they constitute a generalization of
the equations found in Wang and Huston (1989).

The equation set (31), which in general will be nonlinear,
can now be numerically solved using any of the standard nu-
merical integration schemes, such as the fourth-order Runge-
Kutta method, or other methods like the predictor corrector
methods. The right-hand side of Eq. (31) guarantees that the
accelerations satisfy both the constraints and Gauss’s Principle
simultaneously at each instant of time.

Furthermore, comparing Eqs. (7) and (30a), the forces of
constraint can also be explicitly written as

Journal of Applied Mechanics

Q' =(-AXA™Hf(q, 4, )~ Q+AUI-X)D"g, (32)

where we have denoted by the matrix X the quantity (I —
D™D)YHj; A%, Often the constraints require that the system
follows a given trajectory in configuration space. The con-
straint forces can then be thought of as the control forces
necessary to cause the system to follow this particular trajec-
tory.

The satisfaction of the constraint equations at each instant
of time for the mechanical system entails the development of
constraint forces which, at each instant of time, satisfy Eq.
(16); the constraint forces Q by Guass’s Principle, must there-
fore minimize 4 ~2Q"I*. We note the the constraint forces
acting at any instant, thus require for their determination noth-
ing other than the displacement and velocity information at
that instant, along with information about the constraints, at
that specific instant. These forces of constrain can hence be
determined at each time instant as the system’s dynamics evolve.
This makes the approach useful in real-time control, especially
when the complete constrained trajectory is not known a priori.
Thus, use of relation (32) may be made in the determination
of real-time control required for tracking a given trajectory.

Equation (32) also shows that, in general, the control force
vector, Q', is dependent on g, ¢, and £, and therefore con-
stitutes closed-loop control. We note that the elements of mat-
rices D and A depend on the coordinates g; and time. Similarly,
elements of the vector g depend on g;, ¢; and time. In certain
special situations the elements of D, A, and g may depend
solely on time; then, the second term on the right-hand side
of Eq. (32) is not dependent on ¢;, and g; and may be thought
of as the feed-forward component of the total control force
which is required to generate the constrained motion. Thus,
in this special case, the control force may be thought of as
being composed of a feedback control force (the first term of
Eq. (32)) and a feed-forward control force.

5 Numerical Examples

In this section we consider three examples, the last two of
which are numerical. The first deals with the constrained mo-
tion of a particle free of any ‘‘given’’ forces, where the con-
straint is nonholonomic. The second deals with the large
amplitude motion of a planar pendulum. The pendulum bob
is provided with two degrees-of-freedom and a constraint re-
lation is provided on the length of the pendulum. We first
constrain the length of the pendulum to be a constant. We use
this example as a base line to check our results with the direct
use of Runge-Kutta integration where the angle coordinate is
used to preserve the length constraint. We next consider a more
general, nonlinear constraint on the length of the pendulum.
The third example is related to the problem of controlling a
dynamical system (e.g., a machine tool) so that it follows a
given trajectory. Here we show the ease with which the feed-
back tracking control force can be obtained using Eq. (31). In
all the computations, a variable-step Runge-Kutta integration
scheme is used with a local error tolerance of 10~ '%. The Moore-
Penrose inverse is used for each of the generalized inverses in
Eqgs. (31) and (32).

(1) Consider the motion of a particle of unit mass, free of
any ‘‘given” forces, moving in three-dimensional euclidean
space (g, = X, ¢ = ¥, g3 = Z). Let the particle be subjected
to the nonholonomic, catastatic constraint

y=zx. (36)

At time ¢ = 0, the initial conditions of the particle are
compatible with this constraint. We want to find the equations
of motion for the particle for z = 0.

The system has two degrees-of-freedom; yet, the nonholon-
omic nature of the constraint requires three coordinates for a
specification of the system’s configuration. This example is
taken from Rosenberg (1972, p. 204). Since there are no ‘‘given”’
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motions using the new constrained equations of motion

forces, Q= f = 0. The matrix D = [~z 1 0] here, and the
matrix D~ = {1/(1+z%)}[—-z 1 0. The matrix A and the
vector g are scalars equal to unity and zx, respectively. The
vectors f and Q are zero, and the MP inverse of (I — D™ D),
obtained by using full rank factorization, is given by

1 z
(1+z%) (1+729
z 2

(1+2z9) (1+29 0l

(I-D"D)* = 37
0 0 1

Using Eq. (29), we obtain explicitly the constrained equations

of motion as

Zx -2

T+

(38)

A =

which are, of course, the same as Rosenberg’s result.

(2) Using rectangular axes in an inertial frame of reference,
we can express the motion of the pendulum bob in the x and
y-directions (y taken downwards) as

mi=0, mj=g; x(0)=y(0)=0, x(0)=a, y0)=L, (33)
along with the constraint given by ‘

x*+y2=L*{1—psin(x?)}. (34)
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Fig. 2 Response of a pendulum with nonlinear constraints with p =
-0.1and a = 4.0 .

The value of m is taken to be unity, that of L was chosen to
be 20 units, and that of g to be 4. Figures 1(a-d) show the
results obtained by using Eq. (31), for ¢ =20 units, with g =
0. The fourth-order Runge-Kutta scheme (RK) was used. The
oscillations are in the nonlinear range; the maximum angle
made by the pendulum bob with the vertical during the oscil-
lation being about 80 degrees. These results are the same (to
within the error tolerance) as those obtained using the direct
Runge-Kutta (RK) integration taking the angle of rotation
(about the vertical) of the pendulum bob as the generalized
coordinate. Figures 1(¢) and 1(f) show the phase plots in the
x-x and the y-y planes. Figure 1(g) shows the extent to which
the constraint is satisfied during the numerical computations.
Here, the error is defined as the difference between the left-
hand side and the right-hand side of Eq. (34), a quantity which
should theoretically be zero.

Figures 2 (a-d) show the response of the system when ¢ =
4and p = —0.1. We again integrate Eqgs. (31) using the fourth-
order RK method. Figures 2 (e) and 2 (f) show the phase plots.
As before, Fig. 2(g) shows the error in satisfying the con-
straint.

Figure 3 shows the phase trajectories of the same system
starting with different initial velocities, @ = 0.5, 1, 2, and 4.

(3) The third example deals with a coupled, damped Duf-
fing’s oscillator described by the equations

g+ ki (= X3) + ¢ (%) — %3) + k1 (61— %,)° =0 (35a)
Ma¥y + KaXy = Ky (X1 —X3) + €22 = €1 (X
—X2) +hox3— ki (x1=x;)*=0,  (35h)
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Fig. 3 The phase plots for p = - 0.1. Figs. 3(a) and 3(b) show the
response for a = 0.5; Figs. 3(¢) and 3(d) show the response for a = 1.0;
Figs. 3(e) and 3(f) show the response for a = 2; and, Figs. 3(g) and 3(h)
show the response for a = 4.0

with
xi(0)=a, xx0)=b, x,(0)=c, and x,(0)=d.

We aim to determine the tracking control forces required
so that the relative displacements of the masses are constrained
to follow the exponentially decaying sinusoidal trajectory given
by

x1 (1) —x2(1) = Ae ™ “'sin(wt). (35¢)

The parameters describing the system and its constraints are

m=2, m=1, k=10, k=12, k; =1, k,
=2,¢=0.1, ,=0.15, A=1, w=2m.

The initial conditions are takentobea = 1, b = 1, and d
= 2. We note that the initial conditions must satisfy the con-
straints and hence the parameter c¢ is determined from d and
Eq. (35¢). Figures 4(a) and 4(b) show the time histories of
the displacement and velocity, obtained by integrating Eq. (31),
when the parameter o equals 4 in Eq. (35¢). The solid lines
show quantities relevant to the 1>’ coordinate (i.e., to mass
m,), and the dashed lines show quantities relevant to the 2”’
coordinate (i.e., to mass #1,). Figure 4(c) shows the control
forces (fi and f3), calculated using Eq. (32), required to be
applied to masses m; and m;, respectively, to track this tra-
jectory appropriately in configuration space. Figure 4 (d) shows
the computed value of [x,(f) — x;(¢)]. We find (see, Fig.
5(a)) that the constraint is tracked to within an error (i.e.,
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Fig. 4 Figures 4(a) and 4(b) shows the constrained response of the
coupled Dutfing’s Oscillator, with & = 4.0; Fig. 4(c) shows the two com-
ponents of the control force needed to have the system follow this
constrained trajectory; Fig. 4(d) shows [x,(f} — xx(f)]. Figures 4(e-h) show
similar results when the constraint is enforced with « = 0.4.
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Fig. 5 (a) position tracking error for « = 4; (b) position tracking error
fora = 0.4

LHS-RHS of Eq. 35(c)) of 107°, a number consistent with
the local error tolerance level of 107!% used for the RK inte-
gration, Figures 4(e-#) show similar results when the value
of « in Eq. (35¢) is now taken to be 0.4. All other parameter
values are left unchanged. As before, the solid lines show
quantities relevant to the ““1°’ coordinate and the dashed lines
show quantities relevant to the ‘“2”’ coordinate. The error in
tracking this trajectory is shown in Fig. 5(b), and is again
found to be of the order of 107°,

6 Conclusions and Discussion
This paper deals with discrete, dynamical systems which are
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subjected to Pfaffian, holonomic, and nonholonomic con-
straints. By using Gauss’s Principle of Least Constraint, we
have recast the Lagrange equations which describe the con-
strained motion of such a system in the form of a quadratic
programming problem. In this paper we present an explicit
analytical solution to this constrained quadratic minimization
problem and thereby obtain an exact-and explicit set of equa-
tions that describe the constrained motion of discrete, me-
chanical systems subjected to Pfaffian constraints. These
equations can be numerically integrated using standard nu-
merical techniques like the Runge-Kutta and Predictor-Cor-
rector methods.

We summarize our finding as follows:
1 We have used Gauss’s Principle to obtain a new concep-
tualization of the equations of motion of a constrained, discrete
dynamic system. The equations of motion that we develop,
directly vyield the time evolution of the system; we do away
with the need to use any Lagrange multipliers. Thus Gauss’s
principle, though largely neglected by the mechanicians of this
century, is shown to yield significant insights into the dynamics
of constrained systems.
2 Besides its aesthetic appeal, the method proposed herein has
special advantages when working with nonintegrable con-
straints. In fact it does away with the somewhat unnecessary
categorization of Pfaffian constraints into: (a) holonomic and
nonholonomic constraints and (b) rheonomic and scleronomic
constraints—the approach being able to handle all these types
of equality constraints with equal ease. The equations devel-
oped here can be used in situations where the derivation of
the equations of motion (using Lagrange multipliers) for con-
strained systems may become cumbersome and/or difficult to
implement computationally. The approach thus provides a
conceptual and practical simplicity in the formulation of the
equations of motion of complex mechanical systems, because
the constraints can be explicitly handled as additional equations
whose effect can be directly incorporated in the equations of
motion. The flexibility that this formulation affords in the
specific choices of the generalized inverses D™ and Hy,, is an
added feature which is new, and particularly helpful from a
practical standpoint. Response sensitivity studies related to
altering the constraints can thus be easily carried out.
3 Even for systems, where it may be possible to eliminate
certain variables directly from the equations of motion, the
method provides a direct and more aesthetic approach by not
favoring any particular subset of coordinates over any other.
4 The explicit expressions obtained for the constraint forces
may be used to advantage when dealing with the determination
of control forces required to control a system so that it follows
a certain trajectory in configuration space, or more generally,
satisfies a given set of Pfaffian constraints. Such problems
arise in many areas of application, like position tracking of
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machine tools (Tomizuka, 1987) and robotic manipulator con-
trol (Seraji, 1987).

Furthermore, we obtain the additional insight from Gauss’s

Principle that for the system to satisfy the constraint equations
at each instant of time, a specific quadratic function of the
constraint forces, namely, Q74 ~'Q’, must be minimized at
each instant of time. This sheds light on the reason why least-
squares formulations of the tracking control problem have
often not led to proper trajectory tracking when minimizing
the integrals of ‘general quadratic functions of the control
forces.
5 The three examples considered here illustrate that the ap-
proach may be useful in answering the two commonly occur-
ring problems in particle mechanics (Rosenberg, 1972): (a)
finding the response of mechanical systems subjected to general
types of time-dependent, Pfaffian equality constraints and (b)
finding the control forces required to be imposed on a system,
in real-time, so that it satisfies a given set of holonomic or
nonholonomic Pfaffian constraints. Our third example shows
that by using the new set of dynamical equations obtained
herein, the accuracy with which the system is led to follow a
constrained trajectory can indeed be high.
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Jumps to Resonance: Long
Chaotic Transients, Unpredictable
Outcome, and the Probability

M. S. Soliman'

Department of Civil Engineering,
University College London,
London, WC1E 6BT, U.K.

of Restabilization

For nonlinear oscillators with the ability to escape from a potential well, jumps to

resonance from a fold can result in qualitatively different types of response. They
may be safe where the system always restabilizes onto a oscillation within the well;
unsafe where the system always escapes out of the well; or indeterminate where the
outcome is unpredictable. In the indeterminate case, long chaotic transients may
persist before the system decides to which long-term behavior it will settle upon.
We determine at which control parameters indeterminate jumps occur. We also
examine how the transients scale as well as the probability of restabilization after

the bifurcation.

1 Introduction

The periodically driven motions of a mass in a potential
field, with one or more minima, have often been used to model
the nonlinear oscillations of a wide class of mechanical and
electrical dynamical systems. The single well problem has been
used to model the nonlinear rolling motions of a ship (Thomp-
son, 1989; Soliman and Thompson, 1989); the Duffing two-
well potential has been used to describe the motions of a column
loaded beyond its buckled state (Holmes and Whitley, 1983;
Moon and Li, 1985; Holmes and Moon, 1983); and multiple
wells have been used to model the motions of a pendulum
which is of importance in the study of Josephson junctions
and charge density plasmas (Huberman and Crutchfield, 1979).

Through analytical investigations, numerical simulations and
experimental observations, all of these systems have exhibited
a wide range of complex nonlinear phenomena; multiple co-
existing attractors, quasi-periodic, subharmonic and chaotic
oscillations, cross-well motions, discontinuous jumps, and hys-
teresis phenomena as well as other bifurcational behavior.
Basins of attraction, associated with each attractor, and the
boundaries that separate them also undergo changes.

Recent studies have shown that for such nonlinear oscillators
with the ability to escape from a potential well, qualitatively
different types of response can occur after a jump to resonance
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at a fold or a saddle-node bifurcation (Soliman and Thompson,
1991; Thompson and Soliman, 1991).

In this paper we consider the various types of jumps, their
associated transient behavior, and the nature of the long-term
response that can occur for a typical softening sinusoidally
forced damped mechanical oscillator with a cubic potential,
V = 1/2x* — 1/3x°. This particular potential is the universal
form always encountered just before a mechanical oscillator
loses its stability at a fold catastrophe; this being the only
typical mode of instability that can be generically encountered
by a gradient system under the variation of a single control
parameter (Virgin, 1986).

We hence consider the equation of motion

xX=y 1)
where x is the dependent variable and a dot denotes differ-
entiation with respect to time . The positive coefficient, 8,
represents the magnitude of damping, and the oscillator is
driven by the sinusoidal force of magnitude F and circular
frequency w. We fix throughout on 8 = 0.1, and focus atten-
tion on driving phase ¢ = 180 deg, so that o = n/w. We pay
particular attention to jumps fo resonance, which from a prac-
tical point of view have important implications since they can
result in large amplitude oscillations that may be dangerous
or even catastrophic.
" In Section 2 we look at safe determinate jumps to resonance.
We show that under the slow variation of a control parameter,
a small stable oscillation can become a large amplitude oscil-
lation which remains within the well (Fig. 1, Case (i)). This
bifurcation is not catastrophic in the sense that the system
always restabilizes onto the bounded oscillation. Long, almost
periodic transients can persist until the system settles onto the
large amplitude oscillation.

In Section 3, we consider indeterminate jumps to resonance.
Here, jumps can result in a long-term oscillation that remains

X+ Bx +x—x*=Fsin{wt)
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Fig. 1 For the anharmonic potential, V(x) = 1/2x* — 1/3x%, a jump to

resonance at a fold can result in qualitatively different types of response.

After some initial transient, the system may either restabilize to a large

amplitude osciilation within the well (Case (i)) or may “escape” to a

remote attractor outside the well (Case (ii)).

bounded or can result in motions that explode and escape over
the hilltop and out of the well to the remote attractor at infinity,
with x — o0 as ¢ — oo (Fig. 1, Case (ii)). In the physical sense
escape can be regarded as failure of the system: in the case
of the ship problem this would mean capsize; in the case of
the buckled beam problem it would mean snap-through. For
these indeterminate jumps we may not predict the final out-
come, whether it be safe or unsafe, but long chaotic transients
can occur until the system finally settles down,

In Section 4 we consider unsafe jumps to resonance. Here,
under small parameter changes the system a/ways escapes out
of the well.

By establishing the events which render a system indeter-
minate, we determine, in the (F, w) control space the critical
control parameter values which put bounds on the type of
jump that occur. For control parameters in which indeter-
minate jumps occur, we examine the probability of restabili-
zation, and how such a measure may be useful when defining
the robustness of a system that is liable to such bifurcations.

2 Safe Determinate Jumps: Predictable Transients and
Outcome

In order to illustrate the jump phenomena it is useful to plot
the steady-state resonance response diagrams showing how x,,,
the maximum value of x(¢), varies with w at different F levels.
Figure 2(a) shows such a diagram which clearly delineates the
softening hysteresis phenomena; here a fourth-order Runge-
Kutta numerical algorithm was used to integrate Eq. (1).

If the system is started at a relatively high frequency, and
then one slowly decreases the excitation frequency there is an
increase in amplitude along the resonant part of the response
curve, S,. The smooth variation of amplitude and frequency
continues until point C; near the peak of the response curve.
Here there is a flip bifurcation where the n = 1 oscillation
loses its stability and becomes an n = 2 subharmonic oscil-
lation. There is then an infinite period-doubling cascade which
eventually results in a chaotic attractor, which is then destroyed
in a crisis (Grebogi et al., 1983, 1987). The system may then
restabilize or escape out of the well (Stewart and Ueda, 1991).
There is also an opposing cascade and a jump from resonance
at fold point B, which always restabilizes onto the nonresonant
attractor (Soliman and Thompson, 1991).

Conversely, by slowly increasing the frequency from a rel-
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Fig. 2 (a) Resonance response curve, where a safe jump to resonance
from fold A occurs. Here, under small parameter changes, the system
always restabilizes at R. (b) Attractor-basin phase portrait at § = 0.1, F
= 0.0562, w = 0.873 just prior to the jump at A. The saddle-node pair,
D,and S, (whose basin of attraction is shaded in grey dots), are indicated
by black dots within white circles. The large amplitude oscillation, S,
is indicated by a white circle, whose basin of attraction is shaded in
black. White denotes the unsafe (escaping) basin of attraction for the
attractor at infinity. Here it can ciearly be seen why the forthcoming
bifurcation will result in the system settling onto S,.

atively small value, one suddenly encounters a jump #o reso-
nance from fold A. Here the system which was originally
oscillating with a small amplitude (lying on the nonresonant
branch, S,) settles on to a large resonant amplitude oscillation,
R.

Between fold points 4 and B there is the well-known region
of resonant hysteresis. Here the two stable steady-state oscil-
lations are separated by an unstable saddle solution, D,. To
which of the stable co-existing attractors the system will ap-
proach depends upon the initial conditions. In the space of
the starting conditions (xg, X¢) at £ = 0, there will be domains
or basins of attraction such that motions originating in the
basin of S, will lead, after the decay of transients, to S,, while

‘initial conditions in the basin of S, will lead to S,. Although

physically unrealizable, the unstable saddle solution D, plays
an important role in the basin organization; the stable mani-
fold, W*(D,), of D, determines the boundary between the two
co-existing stable attractors. Furthermore it is the stable man-
ifold, W*(D,), of the hilltop saddle cycle D, (which originates
from the unstable equilibrium {F = y = 0, x = 1}) that
determines the boundary between the safe starts (all initial
conditions generating orbits that remain bounded) and unsafe
starts that tend to x — o0 as t — oo.
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Figure 2(b) shows the basin organization, in the Poincaré
section, just prior to the jump to resonance at 4. Here 200 X
200 initial conditions were chosen in the form of a grid and
integrations were continued until the system either stabilized
onto one of the bounded attractors, or escaped out of the well.
Here it can clearly be seen that when the saddle-node anni-
hiliation of S, — D, occurs, the system will restabilize onto
the resonance attractor S, as it is located in the interior of the
safe basin well away from the smooth escape boundary, giving
a totally determinate jump to S, which is preserved under
conditions of small external noise or small but finite incre-
mentation of a control parameter.

Long transient behavior is observed after the saddle-node
bifurcation as is seen in Fig. 3(@). Here the system is set on
the saddle node and then given a small increment AF = F- ~
F4. There is no significance whether we chose to cross the
saddle-node boundary by an increment of F or by an increment
of w, or indeed by any other parameter. Here long, almost
periodic transients occur which mimic the behavior of the
destroyed saddle node until the orbit settles onto the steady-
state large amplitude oscillation. Moreover, it would be not
only the initial conditions of the former saddle node that would
exhibit this type of behavior, but a// the initial conditions which
constituted its basin prior to its destruction that would generate
orbits with long transient behavior; they would rapidly ap-
proach the remnant of the destroyed attractor, remain there
for some time, and then be expelled towards the resonant
attractor (Van Damme and Valkeering, 1987).

In our studies we have considered the transient length 7 of
a given initial condition as the time to reach a given attractor.
This would be a combination of the trapping time spent in the
vicinity of the destroyed saddle node, the intermediate tran-
sient, and thereafter the time taken to reach the chosen at-

1.0 | x(t)

0.0

0 100 200 300 400
Fig. 3(a)

tractor to within a specified criterion. Figure 3(b) shows that
the ““time”’ taken to reach the resonant attractor for several
increments of AF. It can be seen that 7 approximately scales
with the system parameter such that

Te(u—p") ",
where p” is the critical parameter and v is the critical exponent.
For relatively small values of AF, we find v = 0.49 which
corresponds very closely to the analytical predictions (y =
0.50) and numerical results of Van Damme and Valkeeing
(1987) concerning the scaling of transients in the Jocal neigh-
borhood of a fold bifurcation for the two-dimensional quad-
ratic map. This suggests that for very small changes in the
incremental bifurcation parameter, the criterion for steady-
state oscillations would not adversely effect the value of the
critical exponent although it may have a significant effect on
the constant of proportionality.

3 Indeterminate Jumps: Unpredictable Chaotic Tran-
sients and Unpredictable Qutcome

As parameters are varied both qualitative and quantitative
changes occur not only to attractors (and their corresponding
resonance responses), but as a result of global bifurcations
their basins of attractions also undergo metamorphoses. It has
been shown that at critical parameter values, a homoclinic
tangling of the stable and unstable manifolds of the hilltop
saddle cycle, Dj, can generate a fractal escape boundary
(McDonald et al., 1985; Moon and Li, 1985; Thompson and
Soliman, 1990). A further increase in a parameter can result
in the unstable manifold of the resonant saddle D, which leads
towards the resonant attractor, becoming heteroclinically tan-
gled with the stable manifold of D;,. Under these conditions a
jump to resonance at fold A becomes essentially indeterminate
because the saddle node lies on the fractal escape boundary
with an infinite number of escaping fingers having accumulated
on to it (Soliman and Thompson, 1992a). If w were increased
slowly at an infinitesimal rate, the system would find itself at
A, sitting precisely on the escape boundary. It would therefore
experience an infinite chaotic transient as its Poincaré point
maps along the stable manifold of D, leading to the unstable
oscillation of the hilltop saddle cycle. After the saddle node

Safe and determinate jump to resonance
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Fig. 3 (a) A typical time history illustrating the long transients that
occur just after the bifurcation. Here w = 0.873, F = 0.0569, AF = F —
F* = 0.0002, x(0) = 0.243, y{0) = — 0.209. (b) Long transients beyond
the saddle node bifurcation occur. Scaling of the transients gives 7 =
k(F — F?)~7, where 7 is the time to reach the attractor and v is the critical
exponent. Here k = 0.826, v = 0.49. In this figure, the time to reach the
attractor is measured in the number of forcing cycles.
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Fig.4 (a) Here an indeterminate jump to resonance from fold A occurs.
Under small parameter changes, the system may restabilize at R (or
indeed any other existing attractor within the well), or may escape to
infinity. (b) Attractor-basin phase portraits at 8§ = 0.1, w = 0.83 just
before (F = 0.0800) and after (F = 0.0805) the jump at A. The saddle-
node pair, D, and S,, are indicated by black dots within white circles.
The large amplitude oscillation, S, is indicated by a white circle. (¢)
Blow-up in the region of phase space close to the saddle and node just
before and after the bifurcation. The large solid circles represent the
saddle-node pair, and the small solid circle denotes the position of the
destroyed saddle node.

annihilation, the basins that were accumulated onto the stable
manifold of D, will rearrange themselves and ‘‘sweep’’ through
and fill the region of phase space previously occupied by the
nonresonant basin (Enschenzi et al., 1989). The value of the
bifurcational increment AF, will determine to which basin the
initial conditions of the saddle node will preside. However, in
any real situation, due to the inherent uncertainties in the
specification in the parameter values, long-term predictability
will be lost and hence the jump will become indeterminate.
This behavior is clearly seen in Fig. 4. The system will expe-
rience a long chaotic transient leading either to the stable res-
onant attractor (or indeed any other attractor present within
the well), or escape over the hilltop with x — o as f — oo,
Figure 5(a) shows three possible outcomes under three slightly
different increments of AF. The first time history shows the
jump settling onto a n = 3 subharmonic oscillation; the second
trace, from the same starting conditions but at a slightly dif-
ferent F, leads to the attractor at infinity; and the final trace
shows the system settling onto the stable » = 1 resonant at-
tractor S,. In all three time histories initially long, almost pe-
riodic transient behavior occurs; this is as a result of the co-
existing basins being highly intertwined in the vicinity of the
saddle node; points mapping from one finger to the next will
remain there for long periods until the system converges to its
final outcome. Indeed the highly intertwined basin structure
will result in fingers folding back upon on one another where
longer thinner fingers wrap around the shorter fatter fingers,
will result in unpredictability in both outcome and transient
length which is clearly seen in Fig. 5(b). Here it can be seen
that the transients are not typically scaled; an increase in AF
does not necessarily imply a decrease of transient length. How-
ever, if one was to consider separately those transients that
were qualitatively and quantitatively similar (i.e., those that
lead to the same type of attractor; and neglect trials that in-
itialized on relatively thin (fat) fingers that obviously generated
“‘exceptionally’’ long (short) transient times) a general scaling
trend may be estimated.

4 Unsafe Determinate Jumps: Predictable Transients
and Outcome

At a higher forcing level, several qualitative differences in
the response curves occur as can be seen in Fig. 6. First, there
is the growth of the superharmonic at about half the linearized
natural frequency, but more importantly is the fact that the

| x@

Fig. 5(a)
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Indeterminate jump to resonance
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Fig. 5 (a) Indeterminate chaotic transients under a small forcing in-
crement. Three possible outcomes from values of F just beyond the
indeterminate tangled saddle-node bifurcation at F = 0.08, w = 0.83, 8
= 0.1. Trace (a) at F = 0.080068 restabilizes on an n = 3 attractor. Trace
(b) at F = 0.080069 escapes to infinity. Trace (c) at F = 0.008070 re-
stabilizes on the resonant n = 1 attractor. Poincaré points are marked
at phase ¢ = 0. Window is —1.2 < x < 1.2, 0 < t < 900. All runs start
from x(0) = — 0.04166, y(0) = 0.3119. (b) Scaling of the transients beyond
the saddle-node bifurcation becomes arbitrary; circles represent bifur-
cation realizations that escaped; triangles represent bifurcation reali-
zations that restabilized. The dominant trend for the escaping trails is
estimated, with y = 0.52.

b X, forcing frequency at E is greater than that at A. This leaves a
ol TTT- regime where there is no attractor within the well and hence
- an inevitable jump to escape under both decreasing frequency,

0.8 o after the crisis of the chaotic attractor, and under increasing
frequency from fold A. Figure 6(b) showing the basins of

06 attraction just before the jump at fold A4 clarifies this situation.

A typical time history just beyond the jump at 4 is shown in
Fig. 7(a). The behavior observed here is similar to that seen
for the safe jump but here rather than restabilizing onto the
bounded attractor, the system always escapes out of the well.
© This situation may thus be deemed to be unsafe buf deter-
minate. The transients can be long but are determinate with

0.4 Supernarmonic
resonance

0.24

0.0

0.4 0.6 0.8 1.0 . . . . .
12 respect to their scaling properties as seen in Fig. 7(b).
Fig. 6(a)
5 (ritical Frequencies and the Probability of Resta-
bilization
10 In most mechanical systems, sudden jumps to resonance are
y undesirable. It is thus important to know, over a wide range

of operating parameters, whether jumps exist and if they do
whether they are safe, unsafe, determinate, or indeterminate.
However, as in all dynamical systems there are uncertainties
in the specification of the initial conditions and the parameter
; values, it is useful to know the probability of restabilization,
b as it would give a measure of the relative robustness of a system
liable to experience these types of bifurcations. By determining
critical control parameters which place limits on the type of
jumps that occur, and analyzing the probability of restabili-
zation, systems may be designed accordingly such that dan-
gerous frequencies may be avoided or indeed the level of
damping level may be prescribed such this type of resonant

X

-1.0
-0.8 1.2

Fig. 6(b)

Fig.6 As in Fig. 2 but here the jump is unsafe at F = 0.1211. All small
changes in parameters will result in escape.

Journal of Applied Mechanics

behavior is suppressed (Soliman and Thompson, 1992b).
Figure 8 show the bifurcation diagram in (F, ) control space
at 8 = 0.1. Here, we are mainly concerned with the region
around the primary resonance. Lines 4 and B are saddle-node
folds corresponding to jumps to and from resonance. They
meet at a cusp point P, which limits the hysteresis domain.
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Fig. 7 As in Fig. 3 but here the jump is unsafe at F = 0.1211. All small
changes in parameters will result in escape.

For forcing levels below P, there are no jumps to resonance.
Line C is the first period-doubling flip bifurcation at which
the resonance harmonic attractor period doubles to a stable
subharmonic of order 2. There is an infinite cascade of these
flip bifurcations leading to a chaotic attractor which finally
loses its stability at a crisis at E. Line E meets fold line 4 in
a codimension-two bifurcation at Q (Stewart et al., 1991). Line
M is the locus of the homoclinic tangency between the stable
and unstable manifolds of the hilltop saddle; W*(D,) and
W*(D,). Line H is the heteroclinic tangency between the stable
manifold of the hilltop saddle, W*(D;), and the unstable man-
ifold of the resonant saddle, W*(D,); this bifurcation will
generate an indeterminate jump to resonance at the saddle
node A.

There are several important parameter values that concern
the jump to resonance from fold A. The first critical control
parameters, (F', ") are those at the cusp point P. For this
particular softening system, for frequencies above w” or forcing
levels below FF, no jump to resonance occurs. The second
critical frequency is (F7, w”) corresponding to the intersection
of line H with line A where there is a simultaneous simple
saddle-node bifurcation and a heteroclinic tangency between
W*(D;) and W*(D,). This is the smallest forcing is required
to cause an indeterminate jump to resonance;.an infinite num-
ber of fingers of the escaping basin line up along the unstable
manifold, W*(D,), and simultaneously the saddle-node an-
nihilation occurs. Figure 9 shows the manifold organization
close to these parameter values. These manifolds were located
numerically using a technique similar to that described by
Alexander (1989). This involves mapping backwards in time
from a ladder of starts along the ingoing eigenvectors of (Dy)
to determine W*(D;), and forwards in time along the outgoing
eigenvectors to determine W*(D,). The Poincaré sections em-
ployed are at phase ¢ = 180 deg. The final critical control
parameter is at (F2, w9). This corresponds to where line E

674 |/ Vol. 60, SEPTEMBER 1993

intersects line A. Just below this forcing level, the jump to
resonarnce is indeterminate; here the outcome is to any available
attractor present (including possibly a chaotic attractor) or
escape. Just above this forcing level there are no available
attractors to jump to, and hence a purely deterministic but
unsafe jump occurs.

We may estimate the probability of restabilization at various
frequency values along the fold line 4, by various realizations
of the bifurcation. Figure 10 shows the results in which we
have considered an array of different increments of AF; here
the probability of restabilization was defined as the ratio of
those trials which restabilized onto a bounded solution within
the potential well, to the total number tested. It can be seen
that for frequencies above «” all the jumps lead to restabili-
zation. Below w” gradually less and less restabilize until about
w? in which all the trails escape. In order to understand this
behavior we have to consider the organization of the co-existing
basins at the saddle-node bifurcation, namely those accumu-
lating on the saddle node. We may say that the degree of erosion
of the safe (recipient) basin by the escaping fingers (Soliman
and Thompson, 1992a) will determine the probability of re-
stabilization. For low forcing levels, the recipient basin is not
highly eroded such that there is a high probability of resta-
bilization. At intermediate forcing levels this erosion will be
more developed such that there is a reasonable chance of re-

*stabilization (Fig. 10). For bifurcations occurring at forcing

levels just below F2, where the resonant attractor is chaotic,
the safe basin is very small indeed. This is shown in Fig. 11,
which when compared to the basins of attraction at the lower
forcing values (e.g., see Fig. 4), clearly illustrate a high degree
of basin erosion and thus very small chance of restabilization.
Indeed it has been shown that even the resonant steady-state
attractor lying within these small highly fractal basins is very
sensitive to any external noise excitation (Gwinn and Wester-
velt; 1986; Soliman and Thompson, 1990).
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Fig.8 Bifurcation diagram in the (F, w) control space at g = 0.1, showing
safe, indeterminate, and unsafe jumps from fold A. The marked F levels
correspond to the earlier figures. Point T, where the arc H of the hetro-
clinic tangency meets arc A of the saddle-node bifurcation, is the bound-
ary between safe and indeterminate jumps. Point Q, where the arc F of
the crisis line meets arc A, is the boundary between indeterminate jumps
and unsafe jumps.
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Fig. 9 Fixed points and invariant manifolds at § = 0.1, F = 0.0722,
= 0.843 close to the optimal escape point at point T. This occurs when
the saddie-node annihilation occurs simultaneously with the hetroclinic
event between Wg(D,) and W3(D,).

6 Conclusions

In summary, critical parameters may be determined that put
bounds on the type of jump to resonance that occurs for a
system with the ability to escape from a potential well. For
determinate jumps, the final steady-state response was insen-
sitive to how the bifurcation was realized. Here although the
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Fig. 10 Estimation of the probabililx of restabilization from foid A in
the region between ' ~ 0.843 and " ~ 0.805. Here 50 different incre-
ments, AF, were chosen from AF = 0.00001 to AF = 0.0005 and the
probability of restabilization was found. The dashed line represents the
safe basin area at the saddle-node bifurcation. As the basin becomes
eroded, the probability of restabilization decreases.

F=0091,w=0811,B=0.1,¢=180°

y
0.67 .r .- -
0.33
-0.00
v
L ]
-0.33
-0.67
X
-1.00 , . . .
-0.80 -0.47 -0.13 0.20 0.53 0.87 1.20
Fig. 11 Fixed points and basins of attraction at § = 0.1, F = 0.091,

= 0.811 close to the optimal point Q. Here the jump to resonance may
result in escape or restabilization to any attractor within the well, pos-
sibly a chaotic attractor. As can be seen, the recipient safe basin is
highly eroded leaving little chance of restabilization.

step in the bifurcation parameter determined the transient
length, the outcome was always quantitatively and qualitatively
the same (i.e., either the system always restabilized or always
escaped). However, for indeterminate jumps to resonance, the
outcome as well as the transient length was extremely sensitive
to how the bifurcation was realized. Asin all dynamical systems
there are inherent uncertainties in the specification of the initial
conditions and parameters this bifurcation was deemed to be
unpredictable. By estimating the probability of restabilization
after the bifurcation, we may assess the integrity of a physical
system that is suspect to this type of resonant behavior,
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Excited Random Systems

The variation of the largest Lyapunov exponent for two-dimensional parametrically
excited stochastic systems is studied by a method of linear transformation. The
sensitivity to random disturbance of systems undergoing bifurcation is investigated.
Two commonly occurring examples in structural dynamics are considered, where
the random fluctuation appears in the stiffness term or the damping term. The

boundaries of almost-sure stochastic stability are determined by the vanishing of
the largest Lyapunov exponent of the linearized system. The validity of the ap-
proximate results is checked by numerical simulation.

1 Introduction

Investigations of the dynamic stability of elastic systems,
such as slender columns and thin plates under axial loading,
or buildings, bridges, and aircraft structures under wind load-
ing frequently lead to the study of the dynamical behavior of
the solutions of a parameterized family of nonlinear differ-
ential equations of the form

X =f(x9 ’YO)’ X= (xl Xy e xn)TEan f(oa 70):05 (1)

where f is an n-vector of nonlinear functions of x, and v, is
a scalar parameter characterizing the loading condition.

In many practical situations, the loading may be subjected
to fluctuations of a stochastic nature. The loading parameter
becomes vy =1+ g£ (1), where £(¢) is a zero mean, ergodic
random process and ¢ a parameter characterizing the intensity
of random load fluctuation. The governing equation of motion
is then modified to the form

x=1(x, vo, 0£(8)), 10, v, 0£(2))=0. )
In order to study the almost-sure stability of the trivial so-

lution of the system (2), it is necessary to determine the largest
Lyapunov exponent of the linearized equation

X = Df(x, v, 0§ (2)) Ix=0x. 3)
The trivial solution x =0 is stable or unstable with probability
1 (w.p.1) according to whether the largest Lyapunov exponent

is negative or positive. Thus, the vanishing of the largest Lya-
punov exponent gives the boundary of stochastic stability w.p.1.
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It is also of interest to study the sensitivity to random dis-
turbances of systems undergoing bifurcations. In particular,
it is important to know to what extent such perturbations
influence the nature and ‘‘direction’’ of the bifurcation when
asystem s on the verge undergoing a bifurcation. The problems
examined in this paper deal with two commonly occurring
examples in structural dynamics, namely pitchfork bifurcation
and Hopf bifurcation. For both examples, the Lyapunov ex-
ponents are evaluated, both analytically and by simulation,
from which the almost-sure stability boundaries and the shift
in the bifurcation point can be determined.

2 Stochastic Perturbation in Stiffness Parameter

The typical system considered is described by a nondimen-
sionalized equation of motion of the form

G+2B84—Iy+ot(Hlg+ag’ =0, a, >0 @

where vg is the stiffness parameter and £(f) is a unit white
Gaussian noise process. In the absence of stochastic pertur-
bation, the system undergoes pitchfork bifurcation when v,
changes from a negative to a positive value.

Examples of system (4) are found in many applications in
mechanics, especially in problems of dynamical stability of
elastic systems. In particular, the transverse vibrations of col-
umns and flat plates under axial loading or end displacement
are governed by equations of the form (4). The question is:
In what direction is the bifurcation point shifted and by what
amount as a result of small random fluctuations to the applied
axial load or displacement?

In order to study the stochastic stability of the trivial solution
q =0, the variation of the largest Lyapunov exponent A, of
the linearized system

G+28q—Iyo+oE(H)]lg=0 (5)
has to be determined.

SEPTEMBER 1993, Vol. 60 / 677
ASME

copyright; see http://www.asme.org/terms/Terms_Use.cfm



2.1 Lyapunov Exponent by Linear Transformation. The
linearized system (5) can be replaced by a pair of 1td stochastic
differential equations:

dg,=qdt, ‘

dgy=— (2B g~ yoq:)dt + 0q,dW.
Now polar coordinates (@, ¢) are introduced via
g, =asing, (7)

so that if one defines a pth norm P=¢", a new pair of Itd
equations for P and ¢ can be found by applying It&’s lemma:

dP=pPf(¢)dt— pPosinpcosd dW,
dé=—F(¢)dt—oacos’ ¢ dW,

(6)

q,=4acos ¢,

@)
where

F() = (1 +7)sin ¢ cos ¢ — 2 Bsin® ¢
+%02[COS4¢+ (p— Dsin? ¢ cos* ¢],

F(¢)=1—(1+7p)cos’ ¢ + 2B sin ¢ cos ¢ + a”sin ¢ cos® ¢.
Following Wedig (1988), a linear stochastic transformation
is then applied through
S=T(¢)P, P=T "(§)S, ®

where the new norm process S and the scalar function T(¢)
are defined on the stationary phase process ¢ in the range
—w/2=<¢p<w/2. The 1td equation for S is given by

ds= g(fzcos“d; Ty + [p 0*sin ¢ cos® ¢—F(¢)]T¢+pf(¢)T}

X Pdt—ocosd[cos¢ T+ psingTIPdW. (10)

For bounded and nonsingular transformation 7(¢), both
processes P and S are expected to have the same stability
behavior. Therefore, T(¢) is chosen so that the drift term of
the It6 differential Eq. (10) is independent of the phase process
¢, so that

dS=ASdt+dSg(P)dW. an
Such a transformation 7'is governed by the following equation:

%azcos“ngM,ﬂ [1— (1 +7yo)cos® ¢ +2 Bsin ¢ cos ¢
+ (1 —p)sin¢cosa¢]T¢+%p[(p— 1e?sin® ¢ cos® ¢

+0%cos* ¢+ 2(1 +yo)sin ¢ cos ¢ — 4Bsin* ] T= AT, (12)

which defines an eigenvalue problem for a second-order dif-
ferential operator with 7 as the unknown eigenfunction and
A the associated eigenvalue. The eigenvalue A is seen, from
(11), to be the Lyapunov exponent of the pth moment. The
Lyapunov exponent \, of system (16) is related to A through
the relation (Kozin and Sugimoto, 1977; Molchanov, 1978;

Arnold, 1988)
A

A=lim—,

Ry (13)
It now remains to solve the eigenvalue problem (12). Since
the coefficients in Eq. (12) are periodic with period =, consider

A
Ng=lim—
p~0D

a series expansion of the linear transformation 7(¢) in the
form

T($) =ug+ D (Costts+ S0, (14)

k=1

where the notations C,;=cos2k ¢, Sy =sin2k¢ have been
used. Substituting from (13) in Eq. (12) results in

— n202(3 +4C,+Cy) [ Z (Copti+ Szkvk):l

k=1

+2n{(i—_57—°)+[5+02(1~p)182—(~1—2l’)

x [Z (C'Zkuk+82kvk>} + g[‘—’j <p+2>—2a]
k=1

Do
+§(1+70)Sz+p(02+B)Cz+72(2—p)c4}

[4)
C2+52(1—13)C4}

X [uo+ Z (CZkuk+S2kvk):|

k=1

:A}:MO+Z(C2kuk+52kvk)]’ n=0,1,2, ---, (15
k=1

where o, = ¢°/4.

Equating the coefficients of like trigonometric terms sin 2n ¢,
cos2n¢, n=0, 1, 2, --- leads to a system of infinitely many
homogeneous linear equations for the unknowns uy, #,, U,
neZ”. The existence of nontrivial solution requires that the
determinant of the coefficient matrix be equal to zero, from
which the eigenvalue A can be obtained in principle. In practice,
only a finite number of terms is considered to obtain an ap-
proximate value for the eigenvalue A.

First-Order Approximation. 1f only the terms uy, 4, v; are
considered in Eq. (14), the determinant of the coefficient ma-
trix obtained from (15) is of the form

1 1
a-A S P+DB-0) P+ +v0)

AD=| p(B+a) a— (A+30) — 147 =0,

1
Ep(l+'y(,) 11— a—(A+30y)

(16)
where a=p[(1/4)oy(p + 2) — B8]. Expanding A" in powers of ¢
and neglecting terms of order O{¢*) yields

1
AV= — A"+ 3(a=20)A° = [(1 = 70)" = g0 (D + (1 + 70 1A

1

+p {% (p+2(1—+d ~3 (P+2)(1+v0)(@—30y)

+(1 —70)2[% (p+2)—BB-

The largest Lyapunov exponent is then obtained as

1
0+ -9) 5 P+ +79(@~30) + 1 —70)2[% (p+2)—6}

=lim
p—0

=_“8+
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8+(1+ ’Yo)2 e
161 -y’

1
- vo)z—gp(p+ 2)(1+70)

(c—0). Qamn
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Wedig (1988) considered the case of finite values of v,<0.
By setting yo= — 1, one obtains A= — B+ ¢*/8, which is the
same as that obtained by Wedig (1988).

Second Order Approximation. If five terms uy, u,, v, iy,
v, are considered in Eq. (14), the determinant of the 5x5
coefficient matrix is found to be

a-A (P+2)(B~-02)/2 (p+2)(1+7p)/4
p(B+03) a—'(A+30,) =1+
A= p(l+)/2 1—vo a—(A+3ay)
—p{p—20/4 (p~2(B+302)/2 —(p—22(1+p)/4
0 (P-2(1+v0)/4 (p—-2)(B+30y)/2

where a=p[(1/4)a,(p +2) —(].
After some lengthy calculations, the largest Lyapunov ex-
ponent is obtained as

0* 32(93 — 44y + 1425 + 2098 — 3v5) + 12(659 + 12670 — 21v0)0* +270°

as the first-order approximation, and
1 10911 — 1044 +42925* — 6405° - 96%* ,,
— o
16 2409 + 24964 + 22009* + 960%° + 144%*
(20b)

as the second-order approximation, or, after expanding in
powers of ¥,

A= B+

—(p+2)Ww+4)sy/8 - 0
(P+HB—302)/2
— P+ (1 +70)/4 (p+4)(B—30y)/2|=0 (18)

(p+H1 +v0)/4

No= —B+

The method presented here for obtaining the largest Lyapunov
exponent A is straightforward. The accuracy of the result can
be increased by considering more terms in the series expansion
(14). However, the amount of calculation increases drastically
with increase in the number of terms considered. Equation
(19) is again valid only for finite value of +,.

2.2 Lyapunov Exponent for Small Values of vy. It may
be noted that when the stiffness and the damping coefficients
voand B3 are both zero, the largest Lyapunov exponent has been
obtained as \,=0.28931¢*” by Ariaratnam and Xie (1990),
which implies that for 7o in the vicinity of 0, A, varies as .
Therefore, Egs. (17) and (19) become increasingly invalid when
vo—0, since A, varies as the square of o rather than as ¢*”.
This case is of particular importance in studies of stochastic
perturbation of systems in the vicinity of a point of pitchfork
bifurcation.

The results of Eq. (19) cannot be used directly for small
values of vg. In order to use them, a preliminary scaling of
the governing equations has to be made. It will be shown that
the shift in the bifurcation point is of the order ¢** rather than
¢* as in the case when the stiffness is finite.

Applying the transformation q=xe~ﬁ' to Eq. (5), one has
Ng= —B+A\,, and

X1=X,
X2 = — X —oxi§ (1),
where y= —y— 8%. Introducing the scaling x; =y, x=0%'y,,
v=0"%, these equations become
yi=0%p,,
ya=—0%2" gy —a' Ty (1),
and A\,=)\,. For the right sides of both equations to have

comparable influence, o, c; must be chosen so that

l=g2 % =¢ o= Qec<],

which implies that «; =2/3, oy =4/3, and these equations may
now be written as

dy =ey,dt,

dy,= —efy dt— €’y dW,
where e=¢">.

Using the results obtained in (17) and (19), the Lyapunov
exponent for system (5) is then found to be

8+U—4)

- 20
16(1+%)* (200)

A= —B+
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16 16(9 — 60yo+ 118y3— 605+ 9v8) + 24(91 — 64yo+ 13y5)0* + 816°

a—(A+1205) —2(1 =)
2(1 =) a—(A+120y)
(c—0). (19

Ag= —B+0.28308 0**[1.0— 1.045644 + 0.563524% + O3],

where ¥ = — (yo+ 8%)/0*”>. In the case of the nilpotent system,
le., when 8=0 and y,=0, Eq. (20a) gives \,=0.28308 >3,
which is consistent with the exact result 0.28931 ¢** obtained
by Ariaratnam and Xie (1990).

‘ The validity of the approximate results (20) is checked by a
digital simulation. It is seen that the first-order approximation
(20a) does not give the correct result for small values of Yo»
while the second-order approximation (20b) agrees well with
that obtained from digital simulation (Fig. 1).

2.3. Lyapunov Exponent for Finite Values of Stiffness.
Consider the linearized system (5)

G+2Bg—Ivo+0t(1)]g=0,
whe.n the value of stiffness — v, is positive and finite. By time
scaling 7= (—vo)"/%, it can be simplified to

q” +28g" +[1+0n(7)]g =0, (21)
where 8= B(—v0)~""%, 5=0(—ye) %, n(r) is a unit Gaussian
white noise process, and a prime denotes differentiation with

respect to 7. The Lyapunov exponent A of system (21) is related
to that of (5), \,, by

_ 125
Ag=(=70)""Ag (22)
A
0.57
——————— Second approximation
- Taylor expansion to 0(72)
oad —— Taylor expansion to O(y%)

Digital simulation

0.3+

0.2

0.1 ‘ . T T ; T " . :
-0.4 -0.2 0.0 0.2 04

Fig. 1 Largest Lyapunov exponent for G- [yo+ o&(t)lg=0
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0.04 - Second approximation
l —— Taylor expansion to O(s?)
===~ Taylor expansion to O(c®%

------- Tgl)rlor expansion to O{o'%)
* Digital simulation !

0024
B=0.05

0.00 +———
~0.02-
—0.04 {

o/'/
—0.06 _
0.0 0.2 0.4 0.6 08 o

Fig. 2(a) Largest Lyapunov exponent for g+ 28q+[1 + o£(ig=0

0.00 - /

~—— Second approximation
1 —-— Taylor expansion to O{d?) / d

—==-Taylor expansion to O(o%) / o

—-0.024 Taylor expansion to O{c'%)

* Digital simulation /
B=0.1 '
—0.04 -

—0.06 -
—0.08
TR e —
0.0 0.2 0.4 0.6 08 o
Fig. 2(b) Largest Lyapunov exponent for q+28q+[1+0t(fig=0

Suppose the damping constant is small and 8 << (—y)"2, then

all the first approximation methods yield the same expression
for the largest Lyapunov exponent for system (21) (see, e.g.,
Pardoux and Wihstutz, 1988; Ariaratnam and Xie, 1989)
Ny = —B+-21§62. (23)
For system (21), the method of stochastic averaging (Strato-
novich, 1963; Khas’minskii, 1966) is applicable and can be
employed to evaluate the largest Lyapunov exponent, which
also gives Eq. (23). This result was first obtained in this manner
by Stratonovich and Romanovskii (1958).
The largest Lyapunov exponent of system (5) in the first
approximation is then obtained from (22) and (23) as

1 &
8 (=70
For a second-order approximation, Eq. (19) is employed,
by setting yo= — 1, to yield .
— 8192+ 61445 +275° 5

Ag=—B+ 4

N=-B+ g
7= B o6+ 4032 315 16 (25)
or, after expanding in powers of o,
- = 1 15 1755
A= — B4 _F—— 5 =10 =14
P TIn tas” TO@) @9

By using, the relation (22), the largest Lyapunov exponent of
system (5) is obtained as

680 / Vol. 60, SEPTEMBER 1993

o 15 o® 1755 o'°

! . .t -+ 0(a").
8 (=70 512(=v0)" 65536 (=70

A=~ B+

@7

Pardoux and Wihstutz (1988) also showed that the largest
Lyapunov exponent of system (5) was of the form

1 ¢
8 (—v0)

but did not calculate the coefficient of ¢® explicitly.

The correctness of the approximate results for A, is checked
by computer simulation, with typical plots shown in Figs. 2(«a)
and (b) for yo=—1, 8=0.05 and 8=0.1, respectively. It is
observed that the second-order approximation (25) agrees with
the result obtained by simulation extremely well, while the
Taylor series expansion (26) also gives good agreement. Equa-
tion (24) is seen to be a valid first-order asymptotic approxi-
mation.

By examining the results (20) obtained for the nearly nilpotent
system, one may conclude that when v, is in the vicinity of 0,
namely when the natural frequency of the system is vanishingl/y
small, the largest Lyapunov exponent grows in the form ¢*°
when the system is perturbed by stochastic disturbance. The
second approximation by linear transformation agrees well with
digital simulation, while the first approximation is found to be
invalid. On the other hand, when v, is negative and finite, it
can always be scaled to — 1 by suitable time scaling, and the
largest Lyapunov exponent grows according to ¢°. In this case,
all the first-order approximate methods yield the same result
for the largest Lyapunov exponent, which is seen to be a valid
first-order asymptotic approximation, while the second-order
approximation gives very good agreement with that obtained
by digital simulation even for larger values of o.

N=—B+ + O(d%),

3 Stochastic Perturbation in Damping Coefficient

A typical system perturbed parametrically in the damping
term by a stochastic process may be described by the differ-
ential equation

X+ 28+ 0t ()]x+x=f(x, x, 0£(1)), (28)

where £ (¢) is a Gaussian broad-band random process and f(x,
X, gk(t)) a nonlinear function. The equation of motion for
many problems of wind-induced vibration is of the form (28).
For example, the vibration of transmission cables, slender
bridges, and tall buildings under the action of turbulent wind
loads is governed by Eq. (28) (Blevins, 1977; Simiu and Scan-
lan, 1978) with

X, E(0)) =D TAur 1+ age 1ok (D1IXF, 0 (29)
k=1

where Ayt 1, 0oks1, k=1, 2, ---, n, are deterministic con-

stants.

3.1 Lyapunov Exponent by the Method of Linear Trans-
formation. In this section, the method of linear transfor-
mation introduced in Section 2.1 is employed to evaluate the
largest Lyapunov exponent of the linearized system

X+ 28+ k()X +x=0, 30)

where £ () is approximated by ‘‘physical’’ white noise. Equa-
tion (30) can be written in the form of the Stratonovich sto-
chastic differential equations

d*x =xdt,
d¥xy= — (x1+2Bx,)dt — ox,d W, (1)
where d* (- ) denotes the differential in the Stratonovich sense

(Stratonovich, 1966) and W (¢) is the unit Wiener process. The
equivalent It6 equations are
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dx, = xdt,

dx,= — [xl—— <%02—2,3>X2:ldt*“0X2dW.

As in Section 2.1, one introduces polar coordinates (a, ¢)

defined by (7). The It6 differential equations for the angle ¢

and the pth norm P=¢” are found to be
dP=pPf(¢)dt—pPasin® ¢ dW,

do=—F(¢)dt—osingpcosdpdW,

(32

(33)
where

f(9) :(—26+oz)sin2¢>+% (p—2)o*sin‘ 6,

F(o)=1+ <26—%o2>sinqbcos¢—olsin3d>cos¢>.

The linear transformation S=T(¢)P, —(1/2)r << (1/2)x,
is then applied to yield the 1t6 differential equation for S,

1
as= 1502 sin’ ¢ cos” ¢ Tyy + [p o sin’ § cos ¢ ~ F($)1T,

+pf(q5)T}Pdt—asin¢(cos¢> Ty+psing TYPdW. (34)

Function T(¢) is chosen so that the drift term of (34) is in-
dependent of ¢, namely,

dS=ASdt+aSg($)dW. 35)

From Eqgs. (34) and (35), it is found that 7'(¢) is the eigen-
function of the following second-order eigenvalue problem

%02 sin2¢cosz¢T¢¢— [ 1+ <26—%02> sin ¢ cos ¢
—(p+1)o*sin® ¢ cos 4 Ty

2N 02 1 2 .4
+p[(—26+a)sm ¢+§(p—2)o sin (i)}T:AT, (36)

where A is the associated eigenvalue.

Following the procedure as described in Section 2.1, one
seeks the eigenfunction 7T(¢) in the form of series expansion
(13). Since in system (30) the stiffness is finite and is normalized
to unity, the observation from the last section shows that the
first-order approximation gives a satisfactory approximation
result for the Lyapunov exponent. Therefore, one considers

only .
T(¢) =g+ uy cos2¢+ v, sin 2¢. 37

Substituting from (37) in Eq. (36) and equating the coefficient
of like terms 1, sin2¢, cos2¢ while neglecting higher order
terms yield

o

p(B—poz)

. -2+ 1o
+‘2‘p D zp 2
5 1
—p—-)o— -2
a+<8p 4>02 A
SPURAT
a gp i 02
where a=p( — B+ (1/2) 65(3/4) poy), 0,=(1/4) &*.

For Eq. (38) to have a nonzero solution, it is necessary that
the determinant of the coefficient matrix vanishes, which gives

~ A+ (Ba+20)A% + {p(B—poz) [ <1 +%’p> 8

- <2+p+%p2> 02:| —2a(a—02)—b}A
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Fig. 3(b) Largest Lyapunov exponent for X +[28 + o&({)]x + x=0

+a{b—p(6—p02) [ <

1
1+§p>6

—<2+p+%pz>02:|[a—(gp-i'%)Uz:B:O, (39
where
b=[a+ <gp—%>02:| [a— <§p+%>02}+4.
Uy
u ) =0, (38)
Uy

The cubic Eq. (39) can be solved to yield the largest Lyapunov
exponent for system (30). After neglecting higher order terms,
the result is
A=lim é
p—0pD

1 1
=—B+§az=—ﬁ+§02, (40)
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which is the same as that obtained by other approximate meth-
ods such as asymptotic expansion of integrals and stochastic
averaging (Ariaratnam and Xie, 1989). The almost-sure sta-
bility region is found to be ¢* < 88.

The validity of the approximate result (40) is checked by a
digital simulation with typical plots shown in Figs. 3(«) and
3(b). It can be seen that the first-order approximation (40)
agrees well with numerical simulation, especially for small
values of the damping coefficient 8. This is to be expected,
since for system (30), the natural frequency of the system or
the coefficient of x is finite'and can be normalized to unity.
This observation is consistent with that seen in Section 2.
Hence, it is not necessary to obtain the second-order approx-
imation.

4 Conclusion

The Lyapunov exponents of two-dimensional parametrically
excited stochastic systems have been investigated. The sensi-
tivity to random disturbance of systems undergoing bifurca-
tions has been studied. Two commonly occurring examples in
structural dynamics, namely pitchfork bifurcation and Hopf
bifurcation, were considered. The almost-sure stability con-
ditions were obtained by setting the largest Lyapunov exponent
of the system to zero. The validity of the asymptotic results
has been checked by digital computer simulation.

Acknowledgment

This research was supported by the Natural Sciences and
Engineering Research Council of Canada through grant A-
1815,

682 / Vol. 60, SEPTEMBER 1993

References

Ariaratnam, S. T., and Xie, Wei-Chau, 1989, “Lyapunov Exponents and
Stochastic Bifurcations,”” Proceedings of IUTAM Symposium on Nonlinear
Dynamic Engineering Systems, Stuttgart, W. Germany, Aug. 21-25, W. Schieh-
len, ed., Springer-Verlag, Berlin, pp. 1-8.

Ariaratnam, S. T., and Xie, Wei-Chau, 1990, ‘‘Lyapunov Exponent and
Rotation Number of a Two-Dimensional Nilpotent Stochastic System,’” Dy-
namics and Stability of Systems, Vol. §, No. 1, pp. 1-9.

Arnold, L., 1984, ““A Formula Connecting Sample and Moment Stability of
Linear Stochastic Systems,”’ SIAM Journal of Applied Mathematics, Vo). 44,
pp. 793-802. .

Blevins, R. D., 1977, Flow-Induced Vibration, Van Nostrand Reinhold Co.,
New York.

Khas’minskii, R. Z., 1966, ‘‘A Limit Theorem for the Solutions of Differential
Equations with Random Right-Hand Sides,”” Theory of Probability and Its
Applications, Vol. 11, pp. 390-406 (English translation).

Kozin, F., and Sugimoto, S., 1977, ‘‘Relations Between Sample and Moment
Stability for Linear Stochastic Differential Equations,’” Proceedings of the Con-
Jference on Stochastic Differential Equations and Applications, Park City, UT,
J. David Mason, ed., Academic Press, New York.

Molchanov, S. A., 1978, *“The Structure of Eigenfunctions of One-Dimen-
sional Unordered Structures,”” Math USSR Izvestija, Vol. 12, pp. 69-101 (in
Russian).

Pardoux, E., and Wihstutz, V., 1988, ““Lyapunov Exponent and Rotation
Number of Two-Dimensional Linear Stochastic Systems with Small Diffusion,”
SIAM Journal of Applied Mathematics, Vol. 48, No. 2, pp. 442-457.

Simiu, E., and Scanlan, R. H., 1978, Wind Effects on Structures: An Intro-
duction to Wind Engineering, John Wiley and Sons, New York.

Stratonovich, R. L., and Romanovskii, Yu. M., 1958, “Parametric Effect of
a Random Force on Linear and Non-Linear Oscillatory Systems,’” Nauchnye
doklady vysshei shkoly fiziko-mat. nauk., Vol. 3, reprinted in Non-Linear Trans-
Sformations of Stochastic Processes, P. 1. Kuznetsov, R. L. Stratonovich, and
V. L. Tikhonov, eds., Pergamon Press, pp. 322-326 (English translation).

Stratonovich, R. L., 1963, Topics in the Theory of Random Noise, Vol. 1,
Gordon and Breach, New York (English translation).

Stratonovich, R, L., 1966, ‘A New Representation for Stochastic [ntegrals
and Equations,”” SIAM Journal on Control, Vol. 4, pp. 362-371.

Wedig, W., 1988, ‘‘Lyapunov Exponents of Stochastic Systems and Related
Bifurcation Problems,” Stochastic Structural Dynamics—Progress in Theory
and Applications, S. T. Ariaratnam, G. 1. Schuéller, and 1. Elishakoff, eds.,
Elsevier, New York, pp. 315-327.

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Convex Models of Uncertainty in
Radial Pulse Buckling of Shells

The buckling of shells subject to radial impulse loading has been studied by many
investigators, and it is well known that the severity of the buckling response is greatly
amplified by initial geometrical imperfections in the shell shape. Traditionally, these
imperfections have been modeled stochastically. In this study convex models provide
a convenient alternative to probabilistic representation of uncertainty. Convex models
are well suited to the limitations of the available information on the nature of the
geometrical uncertainties. An ellipsoidal convex model is employed and the maximum
pulse response is evaluated. The ellipsoidal convex model is based on three types of
information concerning the initial geometrical uncertainty of the shell: (1) which
mode shapes contribute to the imperfections, (2) bounds on the relative amplitudes
of these modes, and (3) the magnitude of the maximum initial deviation of the
shell from its nominal shape. The convex model analysis yields reasonable results
in comparison with a probabilistic analysis due to Lindberg (1992a,b). We also
consider localized imperfections of the shell. Results with a localized envelope-bound
convex model indicate that very small regions of localized geometrical imperfections
result in buckling damage which is a substantial fraction of the damage resulting

Y. Ben-Haim

Faculty of Mechanical Engineering,
Technion—Israel Institute of Technology,
Haifa 32000, Israel

Assoc. Mem. ASME

from full circumferential initial imperfection.

1 Introduction

In a series of two papers Lindberg (1992a,b) applies convex
models to the representation of geometrical uncertainty in ra-
dial pulse buckling of shells. He skilifully demonstrates both
the usefulness and the limitations of this method of handling
uncertainty. In the present paper some extensions of the convex
models employed by Lindberg are proposed and their appli-
cation to radial pulse buckling is examined.

The uniform bound convex model constrains the initial geo-
metrical imperfection of the shell shape between an upper
bound, +38, and a lower bound, —4. This convex model of
uncertainty was used by Lindberg (1992a) in analysis of radial
pulse buckling, in the analysis of static axial buckling of shells
by Ben-Haim and Elishakoff, (1989) and in other applications
(Ben-Haim and Elishakoff, 1990). The imperfection parameter
o0 promises to be a useful quality control parameter during or
after manufacture of the shell. However, as Lindberg (1992a)
very convincingly demonstrates, the uniform bound convex
model is rather conservative in comparison with probabilistic
models.

The conservatism of the uniform bound model is explained
as arising from the contribution of extraneous modes and
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excessive amplitudes to the imperfection shape. To overcome
this limitation Lindberg (1992b) employs an ellipsoidal convex
model defined in the space of Fourier coefficients. In this
convex model the Fourier coefficients of a selected range of
mode numbers are constrained to fall in an ellipsoid (see Ben-
Haim and Elishakoff, 1990, for further discussion of this con-
vex model). The shape of this ellipsoid can be based on meas-
ured Fourier spectra of imperfections (see measurements by
Kirkpatrick and Holmes, 1989). Determination of the size of
the ellipsoid remains an open question, which is discussed in
this paper. Our approach is to relate the size parameter of the
ellipsoid to the maximum initial deflection of the shell. By
fixing the size of the ellipsoid in terms of the initial shell
deflection, we are able to relate the maximum response after
impulse loading to this convenient and practical quality control
parameter.

The formalism of multimode buckling is summarized in
Section 2 and the convex models employed are briefly discussed
in Section 3. In Section 4, the size of ellipsoid is related to the
maximum deflection parameter § of the uniform bound model.
In this way the attractive quality control features of the uniform
bound model are transferred to the more realistic ellipsoidal
model. Then, in Section 5, the ellipsoidal model is extended
to include the possibility that the nominal imperfection of the
shell shape deviates from zero. In Section 6 a different convex
model is discussed, which allows one to study spatial locali-
zation of the imperfections.

2 Multimode Buckling

We will follow the notation of Lindberg (1992b) in describing
the buckling response of a thin shell to a radial pressure im-
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pulse. This method of solution of pulsed buckling phenomena
was derived by Abrahamson and Goodier (1962) and is exten-
sively discussed in Lindberg and Florence (1987). Linear de-
flection equations are obtained by treating the material as
perfectly plastic, by relating the initial geometrical imperfec-
tions to the initial radial velocity of the shell, and by considering
only short times after application of the load.

The initial deviation of the shell from its nominal shape, as
a function of azimuthal position 8, is described by a truncated
Fourier series as

N :
8(0)= Y (@, cos nf+b, sin nf)=D"e(0) M
n=2

where D is the vector of Fourier coefficients

D'=\(ay, a3, . . ., an, by, b3, . . ., by) )
and
0(6)"= (cos 26, cos 30,
, - ..,cos NO,sin 20, sin 36, . . ., sinNg). (3)

The flexural deformation of the shell at normalized time r after
the impulse loading and at azimuthal position 9 is

N
u(0, 7)= Y [@,Gy(1)c0s nf+b,G, (7)sin nfl=D"$ (9, 7)

n=2

4)
where
8, N7 =(Gy(r)cos 20, Gy(r)cos 30, . . ., Gp(r)cos N8,
Ga(7)sin 28, Gi(r)sin 360, . . ., Ga{(7)sin NO). (5)
The amplification function is
cosh n<1
= 1- n 6
Gil?) 7 -1 [ cos pr} 7>1 ©)
where
2
s o
n=n/s, pp=N "=/ -711, 7= ap t (7N
and
h Oy Eh
= s = , Cp= . (8)
“ aN 12 E‘hO‘2 ’ o

where 4 is the wall thickness, a is the shell radius, o, is the
yield stress, Ej is the strain-hardening modulus, and p is the
density. The amplification function for n=1is G,(7)=17%/2.

3 Convex Models

A convex model is a set of functions. Each function rep-
resents a possible realization of an uncertain, spatially varying
quantity. Convex models are used here to represent the spatial
uncertainty of the initial imperfection profile, 6(6). Following
are six different convex models for describing uncertainty in
the initial radial deflection 6(6) of the shell.

The uniform bound convex model:

Ryus={8(0):16(6)1 <5}. )
This is the simplest model, easy to apply and attractive because
very little information is needed for its implementation and
because the single parameter 6 is useful as a quality control
variable.

The envelope bound convex model is a variation on the
uniform bound model. In its most general form the initial
imperfection is constrained to vary within a specified envelope:

Reg={5(6): 8:(0)=8(0)=<5,(6)} (10
where 6,(0) and 6,(f) are specified functions.
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A common application of this type of convex model is for
representation of localized imperfections. (See Ben-Haim (1990)
for a typical application.) For example, if the imperfection is
uniformly bounded in the angular range from 6, to 6, and zero
outside of this region, then the envelope functions §,(f) and
§,(0) are chosen as

~ 0, 0¢[0,, 05]
611(0)— i(_ 1)”8, fe [01, 02]’

The resulting special case of the envelope bound convex model
is called a localized uniform bound convex model, and is de-
noted R; yg. This model would be useful for representing initial
imperfections in the localized loading experiments reported by
Kirkpatrick and Holmes (1989) or the localized imperfections
in the constrained shells studied by Li and Kyriakides (1991).
Localized imperfections will be discussed further in Section 6.

The band limited uniform bound convex model is a different
modification of the uniform bound model. The imperfection
function is uniformly bounded but limited to a specific range
of mode shapes,

n=1,2. (11)

N
6(8)= Z [a, cos no

n=~Ng

Ry yp= {5(9)1

+ b, sin nf], la(e)lss}. (12)

The motivation for this modification of the uniform bound
model is that the band limitation eliminates the unrealistic high-
mode numbers from the initial imperfections. The pertinent
mode numbers Ny and N, can be obtained from studies such
as Kirkpatrick and Holmes (1989). However, this model is
difficult to handle both numerically and analytically. The el-
lipsoidal models are much more convenient.

The ellipsoidal convex model:
Reip=(D: D'W D=«}, (13)

where D is the vector of Fourier coefficients of the initial
deflection, defined in Eq. (2).

Lindberg (1992b) uses two different choices of the matrix
W, which is square and of dimension 2(N —1) and determines
the shape of the bounding ellipsoid. In the absence of specific
knowledge of the variation of the Fourier coefficients, Wequals
the identity matrix

W=1I. (14)

Alternatively, one may choose W to be diagonal, where the
inverse of each diagonal element approximates the square of
the variation of the corresponding Fourier coefficient.

Again, following the notation of Lindberg (1992b), the var-
iation of the Fourier amplitudes measured by Kirkpatrick and
Holmes (1989) can be approximated by the function

1 for n<n,
Tolm) = {(nc/n)” for n=n,

The constant p is typically between 1 and 2. Then W is chosen
as

w=diag{f; %2), /;%3), . . .

(15)

o TN, D), S, 70),
LAY (16)
An important problem raised by Lindberg (1992b) is deter-
mination of the size parameter «. In Section 4 we will determine
&, after having chosen W, so that the maximum initial deflec-
tion equals the quantity 6 as it is defined in the uniform bound
model. The parameter 6 is of considerable practical value, as
Lindberg (1992a) emphasizes and as discussed in Section 1.
The shifted ellipsoidal convex model:
Rspip={D: (D-MW(D—-h)=<«*}. a7
The motivation for this convex model is that the Fourier
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coefficients D of the initial deflection may have a nominal
value, #, different from zero. In fact, one could interpret the
imperfection data discussed by Kirkpatrick and Holmes (1989)
as representing nominal or typical values of the Fourier coef-
ficients, rather than the typical spread of these coefficients.
Kirkpatrick and Holmes in fact may have this in mind when
they write: ““The imperfection data banks show that imper-
fections have characteristic distributions that include decreas-
ing modal amplitudes with increasing mode number.”” (1989,
p. 1076).
One could thus choose the vector 4 in Eq. (17) as

= (fp(z), fp(3)’ B ,fp(N): fp(2)> fp(3)’ ... ,fp(N))
(18)
Again, « can be related to §, as for the regular ellipsoidal
model. Results with this model will be presented in Section 5.

4 Ratio of Peaks Based on the Ellipsoidal Model

Let us consider the ellipsoidal model defined in Eq. (13).
We will choose W as either the identity matrix or the diagonal
matrix obtained from the function f,(n). Then our tasks will
be

1 choose « so that the greatest initial deflection of any profile
in Rgppequals 0.

2 evaluate the ratio of the maximum pulse response (Eq. (4))
o0 6. This dimensionless ratio expresses the degree to which
the initial imperfections are amplified in response to the pulse
loading. This ‘‘ratio of peaks’ will be compared with the
probabilistic ratio of peaks from Lmdberg (1992a).

The initial deflection is 8(6) = D"e(8) as in Eq. (1). We wish
to choose «, the size of the initial imperfection ellipsoid, so
that the greatest initial deflection of any profile equals 8. Thus,
we choose « 50 as to satisfy

Sd=max max D7e(8).
9 DeRgp

(19)

We begin by seeking maxpegy; , D7p(f). We are looking for

the maximum of a linear function, D7¢(§), on the convex set
Ryrp. The maximum occurs on the boundary, so this is an
elementary optimization, Using the method of Lagrange
multipliers' one finds

max D7o(0) = «\ o(0) W '0(0). (20)
DeRprp
Now choose « to satisfy Eq. (19):
K= d 1)

max\ 00T o(6)

Having now derived an expression for the size of the ellipsoid
of initial imperfection profiles, we can proceed to evaluate the
ratio of peaks. The shell deformation at position # and time
Tis u(@, =D To(8, 1), as in Eq (4). The greatest deflection
in response to a radial impulse is the maximum of u(f, 7) on
the set Rgp of allowed initial imperfection profiles

Umax(#, 7) =Dr6111?ax DT(I"(@’ 7).
ELP

(22)

This is the maximum of a linear function, D7¢@, 7), on a
convex set, Rgrp, and thus occurs on the boundary of the set.
The method of Lagrange multipliers again provides an im-
mediate solution:

'Such optimizations occur frequently in applying convex models. Examples
can be found on pp. 139-140 and elsewhere in Ben-Haim and Elishakoff (1990).
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a0, 7= kN 60, W06, 7) (23)

which is precisely what Lindberg (1992a, Eq. (22)) obtained.
Let us assume that W is diagonal and that the first N—1
:and last N—1 elements along the diagonal are the same. That
is
erlIZWN—l+rl,N‘I+rza n=1, , N—1. (24)
This condition holds for both Eq. (14) and Eq. (16). Then,
using Eq. (21) in Eq. (23), the dependence on # vanishes and
one finds the maximum response related to the maximum initial
deflection as

Z GirY/ Wi n=
L g (25)

Z l/l/Vn—l,n—l '
n=2

This relation indicates that the maximum pulse deflection
is a weighted average of the amplification functions, G(r).
The average is weighted by the terms 1/ W,,,. The specific choice
of W determines the relative contribution of the various modes
to the predicted maximum response. Furthermore, the varia-
tion of uy,.,with N, the greatest mode number, depends strongly
on the choice of W, as we will see.

The ratio of peaks is defined as the ratio of the maximum
pulse response to the maximum initial deflection. The convex
model ratio of peaks for the two choices of W, Egs. (14) and
(16) are, respectively,

umax(T) = S

o L Z G 6)
and
N
> GiDf 5(n)
umax: n=2 (27)

[=2)]

N
IWHO!
n=2

A prominent difference between these two predictions of
Umax/d is that Bq. (26) weights the amplification function uni-
formly throughout the range of mode numbers from 2 to N,
while Eq. (27) weights the first #n.+ 1 modes equally and the
remaining modes are apportioned a weight which decreases as
(n./n)®. If N is not too large, we should thus expect Eq. (26)
to predict larger values of u,,/6 than Eq. (27) because the
latter model will depress the modes for which G?2is large. On
the other hand, as the number of modes becomes very large,
the right-hand side of Eq. (26) converges to zero, while the
right-hand side of Eq. (27) will converge to a fixed positive
value (if p>1/2).

Table 1 shows results of numerical evaluation of Eqs. (26)
and (27), for various values of the greatest mode number, N,
and for p=1 an p=2 in the function f,(n). The third and
fourth columns show the value of /8, which is the convex
model version of the ratio of peaks. The probabilistic ratio of
peaks at three standard deviations from the mean is 12.027
(for p=1) or 6.631 (for p=2), as presented in Table 2 of
Lindberg (1992a). These probabilistic results by Lindberg are
based on Monte Carlo generation of shell populations with
random imperfections. The Fourier coefficients of the initial
imperfections in Lindberg’s work are assumed to be normally
distributed with zero mean and standard deviations which vary
with the mode number. Columns five and six of Table 1 here
show the ratio of the convex to the probabilistic ratio of peaks.
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Table 1 Comparison of convex and probabilistic ratio of peaks based
on the ellipsoidal convex model; s =20, r=6, n,=5

N p| Umax/é Umax/6 | Conv/Prb Conv/Prb
W=1) W={f)| W=I) W={HK}

10 1 3.6771 2.5658 0.306 0.213
2 3.6771 1.7679 0.555 0.267

12 1 5.7791 3.6345 0.481 0.302
2 5.7791 2.1816 0.872 0.329

15 1 9.6465 5.4234 0.802 0.451
2 9.6465 2.7550 1.455 0.415

17 1 12.002 6.4500 0.998 0.536
2 12.002 3.0329 1.810 0.457

20 1 13.721 7.2606 1.141 0.604
2 13.721 3.2253 2.069 0.486

22 1 13.561 7.3525 1.128 0.611
2 13.561 3.2492 2.045 0.490

25 1 12.739 7.3026 1.059 0.607
2 12.739 3.2495 1.921 0.490

30 1 11.600 7.2282 0.964 0.601
2 11.600 3.2481 1.749 0.480

40 1 10.006 7.1387 0.832 0.593
2 10.006 3.2468 1.509 0.490

50 1 8.9285 7.0814 0.742 0.589
2 8.9285 3.2463 1.346 0.490

75 1 7.2659 7.0103 0.604 0.583
2 7.2659 3.2460 1.096 0.490
100 1 6.2819 6.9754 0.522 0.580
2 6.2819 3.2459 0.947 0.490.
150 1 5.1206 6.9408 0.426 0.5677
2 5.1206 3.2459 0.772 0.490
200 1 4.4309 6.9237 0.368 0.576
2 4.4309 3.2458 0.668 0.489

Table 2 Comparison of convex and probabilistic ratio of peaks based
on the ellipsoidal convex model; s =20, r=6, N=200

ne p Umax/6 Conv/Prb
W ={fp}) | (W={f})

2 1 5.0236 0.418
2 1.0584 0.160

5 1 6.9237 0.576
2 3.2458 0.490

8§ 1 8.4852 0.706
2 6.0186 0.908

The most striking aspect of the results in Table 1 is that the
convex model ratio of peaks is generally less than the prob-
abilistic value. This means that the convex model is generally
less conservative than the probabilistic model. This is in strong
contrast to the uniform bound model studied by Lindberg
(1992a). The explanation is that the ellipsoidal model strongly
constrains the initial deflections, even though the size of the
ellipsoid is such that the magnitude of the largest initial de-
flection equals §, as in the uniform bound model.

The second point of interest in Table 1 is the dependence
of the comparison on the number of modes included in the
convex model. As expected, the convex model for W=1 pre-
dicts greater ratio of peaks than the model in which Wis based
on f,(n). Furthermore, the former model varies much more
strongly with N. The range of N values of réal interest is
probably for N no less than about 50, since these modes are
all excited in the buckling process. On the other hand, N>200
is an unrealistic model since these very high modes are not
involved.

The results for the ellipsoidal model with W based on f,(n)
are fairly sensitive to the choice of the cutoff mode number,
n,, above which f,(n)<1. This is illustrated in Table 2. The
convex model ratio of peaks increases with 7.. This is because
the large values of the amplification function are less strongly
damped when 7, is large.
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5 Ratio of Peaks Based on the Shifted Ellipsoidal Model

Now we consider the shifted ellipsoidal convex model, Eq.
(17). First we choose the size parameter « to cause the greatest
initial deflection to equal §. Then we present the maximum
deflection in response to radial impulse loading and evaluate
the ratio-of-peaks.

The maximum initial deflection at angle 6 is

Gni(0)= max  Dp(0)
DeRgpLp

(28)

This maximum is found with the usual Lagrange technique.
Since we are optimizing a linear function on a convex set, one
maximizes D7¢(6) subject to the equality constraint (D — k)"
W(D—-h)=x>. If W is diagonal and satisfies the symmetry
condition of Eq. (24), then one obtains

N-1
20 VW

n=1

Binic(6) = ' 0(8) + & 29

Now the size parameter, «, is chosen so that § equals the
greatest value which #;,;,(6) obtains for any value of 6. That
is, we choose  to satisfy

6 =max i (9) (30)
3
which results in

& —maxyhTp(6)

N
2 1/VVn—l,n—l

n=2

K=

@31

The maximum pulse response is found by means of the usual
Lagrange optimization technique. One maximizes D'¢(8, 7)
subject to the constraint (D—h) W(D—h)=«*. If W is di-
agonal and satisfies the symmetry condition of Eq. (24), then
one obtains

N
a0, D=HT90, Dk | D) GADN Wi r. (3D

n=2

Employing the value of x from Eq. (31), and maximizing
on 4, the greatest pulse response at time 7 becomes

Umax(T) = Max hT¢(6) 7)
g

N
> G/ Wl

n=2

N
Z 1/Wn—l,n—l

n=2

+ <3—m8ax hT<p(0)> (33)

Before discussing this relation, let us recall that 4 is the
vector of Fourier coefficients of the nominal initial imperfec-
tion profile. Thus, 47¢(6) is the deflection at angle 6 of the
nominal initial imperfection, and maxghrgo(&) is the greatest
deflection of the nominal initial imperfection profile. Simi-
larly, h7¢(8, 7) is the pulse response of the nominal imperfec-
tion, and maxgh’®(8, 7) is the greatest response at time 7 of
the nominal initial imperfection. The maximum of AT¢(0, 7)
and h%p(f) do not necessarily occur at the same angle.

Comparing the ellipsoidal and shifted ellipsoidal expressions
for the maximum pulse response, Egs. (25) and (33), we see
that Eq. (33) reduces to Eq. (25) if 2 = 0. This is expected
since Rsgp preduces to Rpp pif #=0. Also, both relations involve
a weighted average of the amplification functions, where the
diagonal elements of W~ 'are the weighting terms, Thus, both
expressions involve similar sensitivity to the choice of N and
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Table 3 Comparison of convex and probabilistic ratio of peaks based
on the shifted ellipsoidal convex model

p N 6 Umax/6, Umax/6, | Conv/Prb Conv/Prb
W=I) W={| W=1) (W={f}

1 20 142.1242 3.7748 3.7748 '0.314 0.314
299.8731 9.0073 5.6086 0.749 0.466
536.4965 [ 11.0865 6.3372 0.922 0.527

2 20 132.1510 1.8263 1.8263 0.275 0.275
175.8291 4.7812 2,1738 0.721 0.328
241.3462 7.2081 2.4593 1.087 0.371

1 50 145.3221 3.8417 3.8417 0.319 0.319
310.5071 6.5478 5.5652 0.544 0.463
558.2845 7.6044 6.2381 0.632 0.519

2 50 132.8226 1.8340 1.8340 0.277 0.277
177.1302 3.6086 2.1873 0.544 0.330
243.5916 5.0601 2.4762 0.763 0.373

1 100 1454310 3.8400 3.8400 0.319 0.319
310.6381 5.1387 5.5075 0.427 0.458
558.4488 5.6460 6.1589 0.469 0.512

2 100 132.8160 1.8341 1.8341 0.277 0.277
177.1281 2.9468 2.1873 0.444 0.330
243.5961 3.8568 2.4761 0.582 0.373

1 200 143.7866 3.8836 3.8836 0.323 0.323
309.6362 4.1767 5.5120 0.347 0.458
558.4106 4.2899 6.1409 0.357 0.511

2 200 132.7646 1.8348 1.8348 0.277 0.277
177.0967 2.4847 2.1880 0.375 0.330
243.5949 3.0159 2.4768 0.455 0.374

W. However, numerical evaluation will show that the shifted
ellipsoidal model is less conservative than the regular (4 =0)
ellipsoidal model. This is related to the fact that the term
mvolvmg the amplification functions is multiplied by
5 —maxyh’e(0) in Eq. (33) and by § in Eqg. (25). Furthermore,
the shifted ellipsoid relation is not homogeneous in § and
therefore does not allow evaluation of up,,/8 without first
explicitly choosing a value for $.

Table 3 presents results of the numerical evaluation of the
Eq. (33). The vector A of Fourier coefficients of the nominal
initial deflection is given in Eq. (18). The first column shows
the value of p used in the function f,(n), the second column
is the value of the greatest mode number, N. The third column
is the value of 8. Three different values of § are used. The first
equals maxgph’¢(8), which is the greatest deflection of the nom-
inal 1n1tlal 1mperfect10n profile. The third value of § equals
maxgh’¢(f), which is the greatest pulse response deflection of
the nominal initial profile. The second value of & is intermediate
between the first and the third. The fourth and fifth columns
show the convex model ratio of peaks u,,,/8, for W given by
Eqgs. (14) and (16), respectively. The sixth and seventh columns
show the ratio of the fourth and fifth columns to the corre-
sponding probabilistic ratio of peaks value from Lindberg
(1992a). The probabilistic ratio of peaks values used are 12.027
for p=1 and 6.631 p=2, respectively. The other parameter
values are s=20, 7=6 and n.=5. Comparing Tables 1 and 3
one sees that the shifted ellipsoid model is even less conservative
than the regular ellipsoid model.

6 Ratio of Peaks Based on the Localized Uniform
Bound Model

Let us consider uncertain initial imperfections which are
limited to a certain angular range of the shell. The envelope
bound convex model Rgp is suitable for representing this sort
of uncertainty in the initial deformation profile. We will con-
sider also the special case of the localized uniform bound
model, RLUB-

We will evaluate the maximum pulse response as the initial
imperfection varies on the convex model. The pulse response
at angle 4 is, from Lindberg (1992a, Eq. (14)),

27
u(®, = S

. 8(5)S(E, 0, ydt G4
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Table 4 Ratio of peaks based on the localized uniform bound convex
model

62 (deg) 9 (deg) umax(6,7)/8
1.00000  0.50000 1.37809
3.00000  1.50000 4.00272
500000  2.50000 6.25326
7.00000  3.50000 7.94303

10.00000  5.00000 9.20630

15.00000  7.50000 10.56260

20:00000  10.00000 14.58738

30.00000  15.00000 21.90472

50.00000  25.00000 27.38136

120.00000  60.00000 31.15329
360.00000 180.00000 31.77872

where

N
S, 6, T)% > Gulr)cos n(f—£). (35)
n=2

The maximum response for 8(£)€Rgpis obtained when 8(¢)
switches back and forth between the envelope functions §;(£)
and 8,(£) as S(¢, 4, 7) changes sign. To represent this maximum,
define the following sets of points: =, (6) is the set of points
in the interval [0, 27] for which the sensitivity function S(¢,
#, 7) is non-negative. Similarly, = _(#) is the set of points for
which S(¢, 6, 7) is negative.

54 (0)= {£€l0, 27]: S(¢, 6, 1)=0]}
E_(0)= {£€[0, 27]: S(&, 9, 7)<0}
The maximum response at angle # becomes

(36)
(37

8€RER

6, )= max u@, D= | 505, 0, ek
2,0

+ S 01(£)S(¢, 0, ndt.  (38)
E_(®

In particular, for the localized uniform bound model, Ry yg,
where §,(£) is rectangular as in Eq. (11), the maximum response
is
02
(39

Unax(8, T) =8 S IS, 6, 7)ldE.

0

It is evident that u,,,.(8, 7) reaches a maximum for 8= (6, + 6,)/
2, and diminishes rapidly as # moves out of the interval [§,,
6,].

Equation (39) has been evaluated for 6= (0, +6,)/2, with
0, =0 and for various values of #,. Results appear in Table 4,
for s=20, 7=6 and N=50. When 6, =360 deg, one gets the
value of the uniform bound ratio of peaks found in Lindberg
(1992a, Table 1). This value is very nearly attained for 6, =120
deg, due to the fact that S(¢, 0, 7) becomes quite small for
lE—61>120 deg.

Furthermore, Table 4 indicates to what extent localization
of the imperfection reduces the severity of the response. It is
noteworthy, for instance, that when the imperfection is re-
stricted to a 15-deg sector (6, = 15) the ratio of peaks is 10.6,
which is about 1/3 of the value of 31.8 when 8, = 360. Similarly,
an imperfection subtending only five degrees produces a ratio
of peaks of 6.3 which is fully 20 percent of the value for the
360-deg imperfection. Very localized imperfections can pro-
duce such substantial damage because the sensitivity function
S(§, 0, 1) is strongly peaked at £=40.

7 Conclusions

The following conclusions can be drawn from this discus-
sion.

(1) We have demonstrated the use of a variety of convex
models for representing uncertainty in the initial shell shape.
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Each convex model is suited to a different type and extent of
prior knowledge about the shell imperfections. Convex models
provide a useful alternative to probabilistic description of un-
certainty when sufficient information is unavailable for reliably
realizing a probability density function.

(2) The ellipsoidal convex models of imperfection uncer-
tainty, Rgrp and Rggrp, when comparéed with a probabilistic
analysis, seem more realistic than the uniform bound convex
model. The radial tolerance of the shell, 5, which is a potentially
useful parameter for quality control in the manufacture of thin
shells, has been incorporated into the ellipsoidal models.

(3) For W=1I and N=50 the ellipsoidal convex model,
Rg1p, (Table 1) and the probabilistic model at three standard
deviations predict approximately the same values of the ratio
of peaks damage parameter.

(4) For W based on f,(n) and N =150 the ellipsoidal mod-
el RgLp is more conservative than the probabilistic model by
about a factor of 2.

(5) The shifted ellipsoidal model, Rggyp, (Table 3) is less
conservative than the regular ellipsoidal model, Rg;p, (Table
1) by about a factor of 2. That is, the predicted ratio of peaks
is less with RSELP than with RELp.

(6) Localized imperfections are very effective in producing
damage after pulsed radial loading (Table 4). For example, an
imperfection subtending only five degrees of the shell circum-
ference produces a maximum ratio of peaks which is 20 percent

of the value obtained from imperfections subtending the full
circumference.
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Representation of Strongly
Stationary Stochastic Processes

A generalization of the orthogonality conditions for a stochastic process to represent
strongly stationary processes up to a fixed order is presented. The particular case
of non-normal delta correlated processes, and the probabilistic characterization of
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linear systems subjected to strongly stationary stochastic processes are also discussed.

1 Introduction

Engineering systems, such as civil or mechanical structures,
can be subjected to excitations adequately modeled as sto-
chastic processes. In these circumstances the response of such
systems is a stochastic process too, and has to be characterized
in a probabilistic sense. The probabilistic description of a sto-
chastic process is provided by the finite m-dimensional distri-
butions (m = 1,2, . . ., o) or equivalently by the correlations
of order m (see, e.g., Lin, 1977; Stratanovich, 1963).

If the finite m-dimensional distributions are invariant under
time shifts, then the process is said to be strongly stationary
of order m. If this property is satisfied only for m = 2 then
the process is a weakly stationary one and the mean is constant
while the second-order correlation depends only on the dif-
ference between the two instants. For normal (i.e., Gaussian)
processes, the weak stationarity guarantees the strong station-
arity because all the correlations of order greater than two are
exactly zero.

The spectral representation of a zero mean weakly stationary
stochastic process is the Fourier transform of an increment of
a generating stochastic process having orthogonal increments
(Priestley, 1965).

For normal processes this representation is sufficient for the
complete characterization of stationary processes. In some
problems, however, the input is affected by significant non-
normality, such is the case, for example, of nonlinear drag
forces which are exerted on structures subjected to wind or
ocean waves (Morison et al., 1950; Soize, 1978). The response
of systems subjected to such inputs is non-normal too, and
the probabilistic description of both input and output processes
can be obtained by means of higher order correlations. In these
circumstances the representation of the stationary stochastic
processes is not sufficient for the complete characterization of
these processes, because the classical orthogonality condition
only guarantees the weak stationarity. Usually (Lutes, 1986;
Lutes and Hu, 1986; Grigoriu, 1986) the definition of strongly
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stationary processes is made through the properties of the
correlation of higher order without first defining the generating
process and this complicates the subsequent analysis. Here the
explicit representation of the strongly stationary stochastic
process is presented and consists of introducing generalized
orthogonality conditions on the generating process of the spec-
tral representation in order to account for the features of the
higher order correlations of the process.

The particular case of a strongly stationary, delta correlated
process and the probabilistic description of a linear system
subjected to a strongly stationary (non-normal) process are
also discussed.

Throughout the paper the Kronecker algebra is repeatedly
employed because of its simplicity in extending the probabilistic
analysis to vectors of stochastic processes. Readers unfamiliar
with this algebra are referred to Graham (1981) and Ma (1987).

2 Preliminary Concepts

In this section some preliminary concepts are briefly re-
viewed for clarity and for introducing appropriate notation.

Let X (¢) be an n-vector of real stochastic processes. At a
fixed time ¢, the vector X (/) constitutes a vector of random
variables and its probabilistic description can be made by means
of the joint probability density function px (x; %) or equiva-
lently by means of its Fourier transform, that is,

Mx(9; 1)) = Sm .. .S: exp(— i9'x)

— —

Cdx, (1)

where i = +/ — 1 is the imaginary unit, 4 is an #-vector of real
parameters, the apex T denotes transpose, x; is the jth com-
ponent of the vector x, and Mx(¥; #) is the so-called char-
acteristic function. The latter can be expressed as

-] T
Mx(3; )= > g 1% 1
r=0 rl

px(x; to)dxdx, . .

_ o (=0 g, .
—exp;f T Tk 6l @)

where the exponent in the square brackets denotes tensor or
Kronecker power. Specifically,
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IRIR ... XY

=
r-fold

3

In this equation the symbol & denotes tensor or Kronecker
product (Graham, 1981; Ma, 1987), see also the Appendix, so
that 9" is a vector of order #’. In Eq. 2) m,[X; ¢)] and k,[X
to] are the moments and the cumulants of otder r, respectxvely
They are given by the equations

IX; 5] = E[X1? :5 _"_X My (x:
m,[X; fo] = E[X"(#)] L Told ) ¥ Px(x o)

1
(=9

xXdxy. . . an=

rl: §Mx(3; to)] “
bl

=0

KX; t0] = { $n My(9; l‘o)} %

1
(=9’ 9=0
where EJ]+] represents stochastic average and V4 is the differ-
ential vector defined by

9 3
T | .= —_
Vo= [301 8%, " ao,,]‘ ©

Comparing Egs. (1) and (2) one can conclude that the prob-
abilistic description of the stochastic vector process X (¢) at a
fixed time #, can be obtained by the knowledge of the prob-
ability density function, or by the characteristic function, or
equivalently by the moments or the cumulants of all orders of
the vector process X (#).

Choose arbitrarily s + 1timeinstants, namely %, ¢, . . . , &,
the related vectors X (%), X (#1), . . . , X (&) constitute a fam-
ily of vectors of random variables. Therefore its probabilistic
description can be made by means or the joint probability
density functions

pis(is; ts) ZPXO» Xyy ooy Xg
(Xo50s X135 £y -+« 5, X B)(5=1,2,..) (7)
where
XI=IX"(6)XT(1y) .. XT()]=[XGXT. .. ... X7
tT={tot. ... 1] (8

the corresponding characteristic function is given in the form
Mz (3 t))

= S . S exp(_i;,TsTis)pis(is; ) dxpdxgy. . . dxy, ®

where x;; is the jth component of the vector x; and 3, is the
n(s + 1) vector of real parameters given as

EST:[:? 0 0{].

The characteristic function Mg (3,; t,) can be expressed in terms
of moments and cumulants in the form

(10)

— kel (——i)r_.rT —
MR, (955 t) = 3 == 3¢ mIX; t]
r=0 : :

r!

:epo(_')rﬂ"‘ kX ] (11)
r=1

where the moments m,[X,; t;] and cumulants k,[X,; tJ], both
of order [n(s + 1)}, are given as

[ v UMz (3 ts)} = E[X!"]

9,=0

mr[_X_s; t]= (12)

1
(=)
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_ 1 . _
k(X t]= v In Mx,(3; t) (13)
(=)’ ° Bg=0
and the differential vector V3, is given in the form
T
v5s=[v§0 Vi v,?s] (14)

In some circumstances it is of interest to address the issue
of incomplete representation of the moments, that is with
vector ESTU(t,) given in the form

ESt) = EX,®X,® .. ... ®X,] (15)

the vector ES* D (1) (order n°*') will be called ‘‘average at
multiple times’’ and can be obtained by the characteristic func-
tion in the form

E$(ty)

[ Vs,®Ve® ... .. ® V,,S®M§S(55; ts)]
9,=0

(16)

It will be stressed that the various components of this vector

are contained in the vector my,[X;; t;]. The counterpart of

ES* )ty in terms of cumulants is, following the nomenclature

introduced by Stratanovich (1963), the “correlatlon at multiple
times’’ or simply ‘‘correlation’’ vector RSV (1), that is

RETV(t)

B 1
(D)

[ V9,®V5,® . .. ®Vy® In Mz, (3s; ts)]

Jg=0
a7

The various components of R&+ (1) are contained in the
vector kg, [X,; t]. A suitable choice of the time instants #,
t, . . ., tin Eqgs. (15) and (17) allows the complete construc-
tion of the moments and cumulants vectors my, [Xg; t;] and
k., [X; t], respectively. Putting 4, = ¢, =. . . =¢;in Egs. (16)
and (17) we obtain m,, | [X; #o] and k., [X; #,]. As a conclusion
the averages at multiple times and correlations of any order
completely characterize the stochastic vector process X (¢). For
zero mean processes the correlations and the averages at mul-
tiple times coincide up to the third order.

A process is strongly stationary up to (s + 1)th order of the
correlations at multiple times depend not on #y, £, . .., &
taken separately but on the differences 7; = #; — 4, i.e., on
the vector 77 = [, 75. . . 7] (having s components), that is

R)((s+ l)(ts) = R§(s+ l)('T.s') vi;. (18)

In this case both the average at multiple times and the prob-
ability density function depend on the vector 7, instead of the
vector t,. If this property is satisfied for a fixed value of s +
1 it is also satisfied for all orders less than s + 1. Moreover,
if § = oo, then the process X(¢) is called strictly stationary;
if the property is satisfied for s = 1, then the process is called
weakly stationary. If the process is normal, then distinction
between weak and strongly stationarity is not necessary because
all correlations of order greater than two are exactly zero, so
that a weakly stationary normal process is strictly stationary
too. In all other cases a strongly stationary process is also
weakly stationary but not vice versa.

3 Representation of Stationary Process

An explicit spectral representation of a weakly stationary
zero-mean real n-vector process X (7), (see, e.g, Priestley, 1965)
is given as
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X(8) = S exp (— iwt)dZ(w) 19

where dZ{w) is a zero mean complex stochastic vector process
belonging to the family of orthogonal increments stochastic
processes, that is

E [ dZ *(wo)dZ(wx)T] = Aoy~ w)d®R(wo,01)  (20)

where the star means complex conjugate, A(+) is the Kronecker
delta (A(w, ~ wo) = 1if wy = wy, A(w; — wy) = 0 otherwise),
®P (wo, wl) is an n X n deterministic matrix. If wy = w;, then
Eq (20) gives the covariance matrix of the process dZ(w) and

@ (wo, wo) is a Hermitian matrix. Equation (20) can be
rewrltten in the other form

E[dZ* (w0) @ dZ(w)] = Alw) — w)d¥ P(wr,00)  (21)

where the n? vector d¥P(wp, o) is the vectorized form of the
matrix d®$ (wg,wp) namely

Vec [d(bg?(wo,wl)] = d¥ P (wp,w;) (22)
where Vec[+] is a vector column formed by all the columns of
the matrix in parenthesis written one below another.

The definition given in Eq. (21) is not well framed in the
context outlined in the above section in which the probabilistic
description of stochastic processes is made by the correlation.
Therefore, the orthogonality condition expressed in this form
is not easily extendible in order to represent a strongly sta-
tionary process, for this reason it is preferable to write Eq.
(21) int terms of second correlation R$. Because the stochastic
vector process X (¢) is real, then the process Z(w) has an even
real part and an odd imaginary part, and it can be easily seen
that Eq. (21) can be rewritten in the form involving the second
correlation of dZ{w) as follows:

R (1) = E[dZ () ®dZ(w))]
= A(wo + w)d¥P(— wp,001)  (23)
in which @ = [wp w; . . . 0.

It is interesting to note that putting wy = w; in Eq. (23), the
second correlation of dZ(w) does not coincide with the vec-
torized form of the covariance matrix. For example for a
complex scalar process dZ(w) the covariance E[dZ * (wo)dZ(eso)}
is a real positive function, representing the measure of the
process dZ(w), while the second correlation R(wq, w) remains
a complex function.

Starting from the characterization of the vector process dZ(w)
one can proceed to characterize the process X (#) given in Eq.
(19). The second correlation of the vector process X () is given
as

RY (1) = E[X (1) ®X (1))]

=S S exp (— iwolo— icnt)RD(w).  (24)

Putting Eq. (23) in (24) we obtain

Rg)(l‘l)=5 S exp(—iwoto—iwltl)A

X (wo + w)d¥ R (— wp,w)  (25)

and using the main property of the Kronecker delta function,
Eq. (25) can be rewritten in the form

RP()=RP()= | exp(=iom)d¥ P, (26)

This equation shows that the second-order correlation depends
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on the time difference 7, and not on £, and ¢, taken separately,
so that the orthogonality condition (23) guarantees the weak
stationarity of the vector process X (¢).

If ¥@(w, w) is differentiable then we can write

A¥P(w,0) =SP(w)dw 2N

where S$(w) is the vectorized form of the Hermitian Power
Spectral Density function (PSD) matrix G (w) of the process
X(t),i.e.,

SP(w) = Vec(GR(w)). (28)
By inserting Eq. (27) in Eq. (24), we obtain
RP(r) = Sm exp(— iwr) SP(w)dw (29)
or the inverse relationship
sg?(w)=$ Sw exp(ior) R@(1dr (30)

— oo

that shows that the correlation vector is the Fourier transform
of the PSD vector and vice versa.

If the vector process is normal then all the correlations of
order greater than two are exactly zeros and the second cor-
relation vector or the PSD vector fully characterizes the sto-
ochastic vector process X (¢). If the vector X (¢) is non-normal,
then the probabilistic characterization of the vector X (¢) has
to be made by correlations of order higher than two. Using
the representation given in Eq. (19), the probabilistic char-
acterization of the process X (¢) requires the probabilistic char-
acterization of the generating process dZ(w) by means of
correlations of higher order.

If X(¢) is strongly stationary up to (s + 1)th order, then
other orthogonality conditions in the generating process Z(w)
have to be attached; we refer to these as ‘‘generalized orthog-
onality conditions.”’ For a strong stationary process vector up
to (s + 1)th order, the extension of equation (23) leads to

RE (@) =A(wpt+ @) +. . . +wy)

X d¥E N~ wo,w1, « v - 31

s We)e

In this way the (s + 1)th correlation vector of X (¢) is obtained

in the form
o §
S exp(—i Z wjtj>

“ s+l
Rew-| T

X Alwg+ @y + . . +w)d ¥ (- w0 , . (32)

s W)y

and using the main property of the Kronecker delta, we obtain
s (7 e
R{* l)(ts) (”‘)(Ts) S fold S exp<—l Z COjTj>

j=1
(s+1)
XAV " Ny +wa+. .+ wswi,ws, . . 33)

) W)

That shows that the (s + 1)th correlation vector depends on
the vector 7, containing the time differences 7, = ¢; — fp, and
noton &y, 4, . . . . , s taken separately, so that the generalized
orthogonality conditions (31) guarantee the strong stationarity
of the process X (¢) up to (s + 1)th order.

If d¥E Ny + wy +. . o+ wowiwg, - .. o) is differ-
entiable then we can write
d¥$w +wr+. . Wy W1,W2y . . 4Wg)

SENQ)dwydu,. . dws  (34)

in which @7 = [w}, v, . . , ] and SV () is the generalized
PSD vector (order #°* ). By inserting Eq. (34) in (33) we obtain
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=] $
(s+1)
R S+ (7-3)__ S fo]d ( IIZ; (:)jTj)
SET Q) dwidw, . . . dws  (35)
and the inverse relationship
1 °° 5 S
{s+1) _
SXT ) = S fold < Z“”T’>
XREY N(zy)drdr, . . . drg (36)

that shows that the correlation vector of an (s + Dth order
strongly stationary vector process is the sth Fourier transform
of the generalized PSD and vice versa. Equations (35) and (36)
are the generalization of Egs. (29) and (30) to the case of
strongly stationary processes.

As a conclusion a stochastic vector process X (¢) given in
the form (19) in which the process dZ{(w) has an (s + 1)th
order correlation vector expressed by Eq. (31) is an (s + 1)th
order strongly stationary process, the correlation or equiva-
lently its Fourier transform, i.e., the corresponding generalized
PSD vectors describing the statistical properties of X (¢) up to
(s + Dth order. If all the correlations of order greater than s
+ 1 are negligible then the complete characterization of X (),
from a probabilistic point of view, is ensured by the correla-
tions or the generalized PSD up of to order s + 1, and the
vector process X (¢) is strictly stationary.

4 Strongly Stationary Delta Correlated Processes

It has been recognized (Grigoriu, 1986; Horsthemke and
Lefever, 1984), that a white noise stationary vector process
W(t) can be obtained by the equation

d
w(t):E‘ L(?) (37

in which L(#) is a process with stationary orthogonal incre-
ments and W (¢) is a Lévy white noise. Strictly speaking, this
definition is invalid in the ordinary differential calculus because
L(¢) is not differentiable everywhere. However, it can be con-
sidered rigorous in the framework of the generalized theory
of stochastic differential calculus (Itd 1969). Usually the method
for representing.non-normal white noise is based on assump-
tions regarding the form of the higher-order correlation func-
tion of the white noise (Stratanovich, 1963; Lutes and Hu,
1986). Here the generalized orthogonality conditions ensuring
the stationarity of the process is used in order to define (s +
Dth order strongly stationary white noise vector process. Let
W (t) given in the form

W)= S exp(— iwt) dZ(w)

— oo

(38)

where Z(w) is a vector process having generalized orthogonal
increments up to (s + 1)th order

REY Nw) =Alwg+ @y + . . +w)dF &+

X(—wpwiy « « vy w) (39
in which
AFET N+ wat . o F@sH0,w, .« - s W)
=85 wide, . . . dog  (40)

S&+D being the constant PSD vector, that is a measure of the
strength of the white noise process. In this way the (s + I)th
correlation vector of W (¢) is simply given in the form
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RE* () = (s+1)S s S
(1)=8g . fold J_,

xexp<—~i Z wjrj>a’w1dw2 ... dwg

=1

=2rSEVS(r)8(r). . . 8(r), (41)

e., the correlatian of order s + 1 of the vector W(¢) given
in the form (38), having the generalized orthogonality con-
ditions (39) and constant PSD, is given as the product of Dirac’s
delta functions. Random processes having correlation given in
Eq. (41) following Stratanovich {1963), are the so-called delta
correlated processes. Recently, Lutes and Hu (1986) called
them white and Grigoriu (1987) showed that such delta cor-
related processes coincide up to fourth order with the Poisson
white noise.

The corresponding correlation of an increment of L(¢) ad-
mits the (s + 1)th correlation in the form

RS = QuySET8(r)6(r) . . . 8(r)dlodty . . . dly  (42)

that is the vector process dL has stationary orthogonal incre-
ments.
Putting {, = t;, = ... =t = tin Eq. (41) we obtain

RE (e, , 1) =k ldL; 1= Qn)’SE Vdr. (43)

This equation shows that all the cumulant vectors up to s +
1 order of the process dL are of order dt. If W(¢) is a Gaussian
white noise process, then L (¢) coincides with a Wiener process
and all the cumulants of order greater than two are exactly
zero, i.e., the Wiener process is of order d¢'/2. If W(z) is a
non-normal process, the order of an increment dL cannot a
priori be established depending of the strength S§™V. As a
conclusion, a delta correlated non-normal stochastic process
is strongly stationary if the generating process Z{w) satisfies
Eq. (39) in which the generalized PSD vector is constant, i.e.,
Z(w) belongs to the class of processes with generalized or-
thogonal increments, the strong stationarity requiring infor-
mation regarding the strengths S$*" of the white noise vector
process.

5 Input-Output Relationships

In this section the probabilistic characterization of the re-
sponse of a linear dynamic system subjected to a strong sta-
tionary process is discussed.

Let X (#) be a vector solution of an n-dimensional linear
dynamical system subjected to the strongly stationary up to (s
+ 1th order vector process F (¢) then the steady-state response
can be adequately represented in the Duhamel integral form

¢

X(”:S H(t—T)F(7)dT, (44)
H (¢) being the impulse response function matrix. Because F (¢)
is stationary and the system operates from ¢ = — oo then X (#)
is also a stationary process. In particular, if F(¢) is normal,
then X (7) is also normal and the second correlation vector
completely defines the response process from a probabilistic
point of view. On the other hand, because F (¢) as a stationary
process admits a representation given in the form

F(r)= S exp(— iwt)dZp(w), 45)
where Zg(w) is an orthogonal increments vector process given
in the form (21), then the corresponding vector response is
given as

xo={" |

exp(— it YH (t—7 )d?] dZp(w). (46)
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After some easy manipulation, X (#) is written in the form

X(H)= S exp(—iQt)H* (w)dZp(w) “n
where H(w) is the Fourier transform of H(#), i.e.,
H(w)= S exp(— iwt)H (£)dt. (48)

0

Equation (47) is the representation of X (¢) in which the gen-
erating process is now H”* (w)dZg(w), such a process is or-
thogonal since

E[ (H" (w0) dZx(wo) @ (H” (wl)dZF("-’l)):|

= [H" () @ H" (1) 1E[dZ(w20) ® dZp(cn)]

= A(wo+ w) [H" (wo) @H” (0)1d¥ (- wp,00).  (49)
Comparing Eq. (49) and Eq. (23), one can state that the new
generating process H* (w)dZy(w) is a weakly stationary proc-
ess.

The correlation vector of the output X (¢) is given as

R{(1) = EX (£) @X (4]
[ e i mE)@ " (@)1 w0, 60

That shows that the correlation vector of the response process
X (t) is weakly stationary, depending only on the difference
t — 1t = 7. If ¥@ is differentiable then equation (50) leads
to

ROe)= | exp(— ionr) M) @H @)ISP()dor  (51)
that is the vectorized form of the well-known expression for
the correlation matrix.

If F(¢) is a non-normal strongly stationary process up to (s
+ 1)th order then the response vector process X(#) is non-
normal too and the probabilistic description of this vector
process has to be made by correlations of higher order. In
particular, the correlation of orders s + 1 of the vector X (¢)
is given in the form

s+l % <
R)‘f“’(ts)=g 51‘55 eXD(-’Z‘%‘O)

=0
X H* (@) @H (@) ® . . @H*(W)IRE:(wy). (52)
Inserting Eq. (31) in Eq. (52) we obtain

=] S oo . S
R)(ig+l)(ts):R)((hq+l)(ts)= S ﬁ S eXp<—l Z ijj)

i=1

HEQ)AYF DV wi+wat. . +wgw,@z , + « 5 @) (53)

where

ﬁms):H(Z w,) QH (o) QH (@)® . . . ®H" (). (54)
j=1

Equation (53) shows that if the input vector process is sta-

tionary up to (s + 1)th order then the response vector process

is also stationary of the same order. If ¥+ is differentiable

then we can write

o0 S oo
’ee=|

5 .
xexp<~—i >, w,r,) A(Q)SE Q) dwdw, . . . dos.  (55)

Jj=1
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Letting 7, = ... = 7, = 0, Eq. (55) gives the cumulants of
the response vector process, that is

R D0) =k, [X; 1]
_ S T s
-~ J_, fold

If F(7) is delta correlated up to (s + 1)th order, then Eq.
(55) becomes

; o s oo i s
R{D(r) = [S Told S exp(——l Z wﬁ,)

Jj=1

S H@Q)SE Q) dw dw, . . . dw,  (56)

HQ,)dw,dw, . . . dw:} SEL (57

An analogous expression to that given by Eq. (57) has been
obtained by Lutes (1986) for a single oscillator excited by a
strongly delta-correlated stationary process.

6 Conclusions

The spectral representation of a weakly stationary process
by using the Fourier transform of a complex stochastic gen-
erating process having orthogonal increments is often used in
stochastic analysis. In order to ensure the strong stationarity
other orthogonality conditions on the generating process have
to be attached, here these conditions have been referred to as
the ‘“‘generalized orthogonality conditions’’, which accounts
for the higher correlations of the given process.

The extension of the generalized orthogonality conditions
has been done by using the Kronecker algebra and interpreting
the classical orthogonality condition by means of the covari-
ance matrix of the stochastic vector of generating process, in
the form involving the second correlation vector of the gen-
erating process.

It is shown that the second correlation evaluated at zero and
the variance are quite different concepts for complex processes.
The former being the second term of the Taylor expansion of
the characteristic function while the latter represents the meas-
ure of the process. A consistent definition of the orthogonality
condition has been found by transferring the usual orthogo-
nality condition of the complex generating process in terms of
correlation. Then the generalization of the orthogonality con-
ditions in order to represent strongly stationary processes is
quite straightforward.

The particular case of non-normal strongly stationary delta
correlated processes has been also examined showing that in
this case all the cumulants up to a fixed order of an increment
of the vector process L (#) whose formal derivative is the Lévy
white noise process are infinitesimal of first order.

The probabilistic characterization of the response of a linear
system subjected to a strongly stationary process has also been
discussed, extending results available in the literature for a
single-degree-of-freedom linear system to multi-degree-of-
freedom systems.
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APPENDIX

In this Appendix some elements of the Kronecker algebra
are reported.
Let A and B two matrices of order m X nand p X g,

respectively, then the Kronecker product of the two matrices
denoted as A ® B is a matrix C of order (m p) X (n q)
given as

ayB a,B  a,B
C=A®B= (A1)

amlB asz amnB

The following properties hold

AQBRC)=ARBRC (A2)
ARB+C)=ARB+ARC (A3)
(A®B)=AT®B" (Ad)
(A®B) '=AT'@B™! (A5)
(AQ@B)CR®D)=(A O)® B D), (A6)

provided the various quantities exist.
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neglect the off-diagonal elements of the associated modal damping matrix. For a
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large-scale system, substantial reduction in computational effort is achieved by this
method of decoupling the system. In the present paper, the error introduced by
disregarding the off-diagonal elements is evaluated, and a quadrature formula for

the approximation error is derived. A tight error bound is then obtained. In addition,
an effective scheme to improve the accuracy of the approximate solution is outlined.

1 Introduction

The method of modal superposition is a very powerful tech-
nique for evaluating the response of a linear dynamic system.
A linear system is said to have classical normal modes if the
system possesses a complete set of real orthonormal eigenvec-
tors. In general, an undamped dynamic system always pos-
sesses classical normal modes. When dissipative forces are
present, the system may or may not possess classical normal
modes. If it does, the system is said to be classically damped.
Caughey and O’Kelly (1965) established a necessary and suf-
ficient condition for the existence of classical normal modes
in a damped linear system. If classical normal modes exist, the
differential equations of motion become decoupled when ex-
pressed in modal coordinates which are real. Otherwise, the
system is said to be nonclassically damped. In reality, non-
classical damping comes from drastic variations of energy ab-
sorption rates of the materials in different parts of the structure.
Typical examples of nonclassically damped systems are a nu-
clear reactor containment vessel founded on soft soil subjected
to earthquake motion (Clough and Mojtahedi, 1976), and a
base-isolated structure in the same environment (Tsai and Kelly,
1988).

When dissipative forces are nonclassical, it is generally dif-
ficult to analyze the system dynamics, owing to the complex
nature of the eigensolutions. Foss (1958) and Vigneron (1986)
proposed a state-space approach which takes into account the
orthogonality relations between the complex eigenvectors of a
nonclassically damped system. The key to the utility of the
eigensolutions is of course orthogonality, which allows de-
coupling of the governing equations. One disadvantage of such
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exact methods is that they require significant numerical effort
to determine the eigensolutions. The effort required is evidently
intensified by the fact that the eigensolutions of a nonclassically
damped system are complex. From the analysts’ viewpoint,
another disadvantage is the lack of physical insight afforded
by methods which are intrinsically numerical in nature. Several
authors have studied nonclassically damped linear systems by
approximate techniques. For instance, Cronin (1976) obtained
an approximate solution for a nonclassically damped system
under harmonic excitation by perturbation techniques. Using
the frequency domain approach, Hasselman (1976) proposed
a criterion for determining whether the equations of motion
might be considered practically decoupled if nonclassical
damping exists. A similar criterion was also suggested by War-
burton and Soni (1977). Chung and Lee (1986) applied per-
turbation techniques to obtain the eigensolutions of damped
systems with weakly nonclassical damping. Prater and Singh
(1986), and Nair and Singh (1986) developed several indices
to determine quantitatively the extent of nonclassical damping
in discrete vibratory systems. Nicholson (1987) gave upper
bounds for the response of nonclassically damped systems
under impulsive loads and step loads. Bellos and Inman (1990)
studied the frequency response of nonproportionally damped
linear systems.

In analyzing a nonclassically damped system, one common
approximation is to neglect those damping terms which are
nonclassical and retain the classical ones. This approach is
termed the method of decoupling approximation. For large-
scale systems, the computational effort at adopting decoupling
approximation is at least an order of magnitude smaller than
the method of complex modes. The solution of the decoupled
equations would be close to the exact solution of the coupled
equations if the nonclassical damping terms are sufficiently
small. A discussion on this topic was given, for example, by
Meirovitch (1967), Thomson et al. (1974), and Cronin (1976).
Solution of a damped linear system by decoupling approxi-
mation is often convenient and practical. An attempt to eval-
uate the error of approximation, introduced by neglecting the
nonclassical damping terms, was recently reported by Shahruz
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and Ma (1988). It is claimed that the error bounds obtained
in their paper are the tightest in a certain functional form for
arbitrary external excitation. Ma and Hwang (1989) have at-
tempted to generalize these error bounds in other functional
forms.

The purpose of this paper is to derive a quadrature formula
for the error due to decoupling approximation. While still
assuming that the excitation is arbitrary, a new error bound,
which is generally tighter than the previous ones given by
Shahruz and Ma (1988), is obtained. An iterative scheme to
improve the accuracy of the-approximate solution is also pro-
posed. The organization of the paper is as follows: In Section
2, a formulation of the problem is given. It is shown in Section
3 that the approximation error can be decomposed into an
infinite series, with each term being the solution of the de-
coupled system. The series is then summed exactly in the La-
place domain, from which an error bound is obtained. An
approach to improve the accuracy of the approximate solution
is outlined in Section 4. This approach, inspired by the sum-
mation of the error series due to decoupling approximation,
was discussed earlier by Ma and Hwang (1989). An example
in Section 5 illustrates the theoretical developments pursued
in this paper. In Section 6 a summary of findings is provided.

2 The Neglect of Off-Diagonal Elements

Consider the equation of motion of a discrete linear system
under external excitation

Mx+Cx+Kx=f(1), t=0, (1)

where the mass matrix M, the damping matrix C, and the
stiffness matrix K are of order n X n. The displacement vector
x(f) and external excitation f(¢) are n-dimensional vectors. For
passive systems, the matrices M, C, and K are symmetric and
positive definite. These assumptions are not arbitrary, but in
fact have solid footing in the theory of Lagrangian dynamics.
Symmetry of M results naturally from the transformation from
Cartesian to generalized coordinates for a scleronomic system,
and the positive definiteness requirement is a property of ki-
netic energy. Symmetry of K results from linearization of the
potential energy function about an equilibrium point, and the
form of the Rayleigh dissipation function ensures symmetry
of C.

Let U denote the n X n modal matrix corresponding to the
system (1). The modal matrix is a nonsingular matrix whose
columns are the eigenvectors of the generalized symmetric ei-
genvalue problem

x(0) =Xo, X(0)= ko,

K u? =w!M u?, 2

where w? > 0Oand #'?, i = 1, . . ., n, are the eigenvalues and
the corresponding eigenvectors, respectively. The modal matrix
is usually orthonormalized according to U'MU=1,, where U
denotes the transpose of U, and I, is the identity matrix of
order a. In addition, U'KU = diag (%, .. ., w?) = Q. By
the linear transformation x(¢) = Ugq(?), Eq. (1) can be written
in the normalized form

G+D g+Qq=g(t), qO)=UMx, 40)=UMx, t=0,

3

where g(f) = U'f(?), and g(/) is the n-dimensional vector of
normal coordinates. The symmetric matrix D = UTCU s called
the modal damping matrix. If D is diagonal, the system (1) is
said to be classically damped. In the event that the damping
matrix C is a linear combination of the mass and the stiffness
matrices, then D is diagonal. This is a sufficient condition for
D to be diagonal, and was originally given by Lord Rayleigh
(1945). The necessary and sufficient condition under which
system (1) is classically damped has been given by Caughey
and O’Kelly (1965). When D is diagonal, system (3) is a set of
n decoupled second-order differential equations, which can be
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solved for g(f) conveniently. Then, the solution of (1) is ob-
tained from x(¢) = Ug(?), for all t = 0.
Write the modal damping matrix in the form

D=A+R {4)
where A = diag Qfiw, . . . , 25,w,) is @ matrix composed of
the diagonal elements of D, and R = [d,] is a symmetric # X
n matrix with zero diagonal elements, and whose off-diagonal
elements coincide with those of D. Note that by the positive
definiteness of C, {; > Ofori = 1, . . . , n. Neglect the matrix
R in Eq. (3), and denote the solution of the decoupling ap-
proximation by g,(#). Thus,

D Gat A gt q,=g(1), (=0, )
where g,(0) = q(0), and g(0) = g(0). Define the n-dimensional
vector of error due to decoupling approximation by

e=q—q, (©)

Subtracting Eq. (5) and (3), we obtain
é+Aé+Qe+Rqg=0, t=0, )
with e(0) = e(0) = 0. The above expression implies that the

error e(f) can be regarded as the image of g(¢) under a certain
linear operator H, so that

e(t)=H(q(1)). 8)

In the following, we shall use the L, norm of a vector,
defined by lh(p)Il = max |A;(p)| for any vector A(p) = [h(p), -
1

<isn
., hy(D)}7. The parameter p can be real or complex. If p
is real and non-negative, we put p = ¢, and define lA(H)I =
max sup |A()|. It will always be clear from the context which

I=isn =0
of these norms is used. As shown by Shahruz and Ma (1988),
Eq. (7) can be manipulated to give an error bound of the form

llel = mligl. ©)

The smallest value of m that satisfies the above inequality is
given by

20; _ exp(V())

={Hl = , 10
Gl e () (10

where {; is the damping ratio defined earlier, and
V(5) = S G 0" (11)

Toa=gh” o

w§i
W)= ——577- (12)
©)= -

The quantity o; is the row sum of the absolute values of the
off-diagonal elements of the modal damping matrix D,

n
O'i=z |d,/|
Jj=1

J#Ei

(13)

Several variants of the error bound have also been given by
Shahruz and Ma (1988). Although the above error bound is
the tightest of the form (9), the error bound is still relatively
large for many applications. This is perhaps due to the fact
that a functional form of the type (9) does not take into account
the excitation f(¢). In the next section, we shall incorporate the
driving force f(#) into the analysis to derive a tighter error
bound.

3 Analysis of Error

It will be shown that the error due to decoupling approxi-
mation can be decomposed into an infinite series, which may
then be summed exactly in the Laplace domain. Based upon
this exact sum, the error bound of the last section will be
sharpened. In order to do that, it is necessary to take into
consideration the external excitation, and to cast the new error
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bound in a functional form that is different from (9). Recall
thate = g — q,. If g, 1s used in place of g in Eq. (7), we have

é+(A+R)e+Qe=—Rq,, =0, 14
where e(0) = e(0) = 0. This equation has.the same form as
(3), with e and —Rg, replacing g and g(f), respectively. At
this stage, invoke the decoupling approximation on (14), and
denote the solution of the resulting equation by #,. Then
120, (15)

with the same initial conditions as Eq. (14). Subtracting Eq.
(15) from (14), and denoting the corresponding error vector
by

ﬁ0+A d0+Q Up= *‘Rqa,

e =e—ug, (16)
we have
é+A e +Qe+Re=0, e0)=¢e(0)=0, t=0. (17)
Substituting e from (16),
&+ (A+R)e +Q e;= —Ruy, € 0)=¢,(0)=0, ¢=0.
(18)

If the decoupling approximation is invoked again on the above
equation, with the resulting solution denoted by u;, then

ﬁ]'!‘A l.ll+9 u = —Rl:lo, u1(0)=i41(0)=0, t=0, 19

which has the same form as (15). Define the error of this
approximation by

ey=e—u,. (20)
It can be easily shown that
é+ (A+RYe,+Q e;= —Ruy, e0)=ey(0)=0, =0,
21
and
e,=e—Ug—U,. (22)

Thus, the error vector e, and the error vector e are related
through terms u,, u;, obtained by successive application of
decoupling approximation. By induction, the following scheme
can be defined: for every integer kK = 1,

ex=€_|— U1, €=¢€ (23)

ﬁk+A izk+9uk=—Ri¢k_1, uk(O)Zl‘lk(O)=0, t=0, (24
et (A+RYe, +Qer=~Ruy_y, e0)=e0), (=0,

(25)

where 1, is given by Eq. (15). From (23), it is easy to see that

[

o]
e—I}im ek=z (ek~1_ek):Z Up_1.
k=1

- k=1

(26)

For each k, u; is the solution of a decoupled system that can
be solved very readily. In the Appendix it is shown that the
vector ¢ tends to zero as k increases without bound. The total
error e due to the decoupling approximation of system (3) can
therefore be expressed as

e=q—q.= ), U @7
k=0

It is possible to sum the above series exactly in the Laplace
domain. Applying the Laplace transform to Egs. (5), (15), and
(24), and taking into account the initial conditions, we obtain

Go(s) = (InS2+AS+Q)—lgA(S)

+ (It + As+Q) (s, + A) g0+ g(0)], (28)

do(s) = — (1,8 + As+Q) " 'sRG,(s)
+ (LS +As+ Q) 'Rq(0), (29)
dp(s) = — ISP+ As+Q) " 'sRuy_ 1 (s), k=1, (30)

Journal of Applied Mechanics

where §,(5), 8(s), to(s), and 4,(s) are, respectively, the Laplace
transforms of g,(#), g(¥), uo(r), and u,(¥), and 7, is the identity
matrix. Define two linear operators H(s) and F(s) by

H(s)= —s(I,*+As+Q) 'R, 31
F(s)= (I, +As+Q) L. (32)
Note that these n X n matrix functions depend only upon the

parameters of system (3). In addition, A(s) = —sF(s)R. The
ith row of H(s) is
—s
m [dil’ s ove di,i—lv 09 di,i+b v e ey din]i (33)
! 1
and the ith row of F(s), on the other hand, is
1
-——[0,...,1,...,0], 4
Sz+2§',-a>,-s+(.o,2 L ] G4

where dj; is the ijth element of R. In terms of A{(s) and F{(s),
we have

Ga(8) =F(5)8(5) + F($)[(sI,+ A)q(0)+ g(O)],  (35)
fg(s) = H(5)4a(s) + F(s)Rq(0), (36)
2 (s) =H (S up_(s), k=1. 37
Combining the last two equations
G (s) = [H (S Ga(s) +[H(5)) F(s)Rq(0), k=0, (38)
it follows that
é(s)= de(s)=H(s) L= H(s)]"du(s)
k=0
+[I,—H(s)]"'F(s)Rq(0). (39
From Eq. (35) we obtain
é(s)=H(s)l,— H(s)] 'F(s)8(s)
+H (), — H(s)]7'F(s)[ (s, +A)q(0) + (0)]
+[I,—H(s)]"'F(s)Rq(0). (40)

Thus, the error due to decoupling approximation has been
summed exactly in the Laplace domain. This may also be
regarded as a quadrature solution of the error function e(?),
which can be obtained by taking the inverse Laplace transform.
The right-hand side of Eq. (40) depends only on the parameters
of system (3), the external excitation, and initial conditions.
The convergence of this expression is always satisfied if the
modal damping matrix D is diagonally dominant. Expression
(40) can also be derived by other methods. The method adopted
here lends itself to an iterative approach, which will be ex-
pounded in the next section.

In many applications, the maximum error is attained in the
steady state. In order to derive a new error bound, it is necessary
to compute the norm of ll&(s)ll in the steady state. Since the
steady-state response does not depend on initial conditions, it
can be assumed that g(0) = g(0) = 0. Taking norms on both
sides of Eq. (40) we have

LA (s) 1

lés)h=< (41)

where the L., induced norm of the matrices H(s) and F{(s) is
the maximum row sum of absolute values, defined by

" S0;

I= 1, 42
IH(s) 12?3,. Sz-{~2§‘,-w,~s+o.>,2 (42)
1£(s) Il = max S (43)

_lsjsn S2+2§‘jsz+wf ’

with o; given by expression (13). Suppose the maximum row
sum is attained when i =/ in Eq. (42), and when j = m in
(43). Then inequality (41) can be manipulated into the form
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. +a a5+ (wn/ “’1)0‘2
le(s)l < |—22 - Ig(s)l, (44
é(s) 5’2+2n1w,s+w, S 4 260 W S+ W, £(s) “4)
where ,
2t ‘
_ 25w 01, @5)
20y ,
and oy and o, are constants given by
2 2
. wl)
oy = , (46)
' (‘*’12 - ‘»’~’%n)2 + 4“12033'1(7112 + g‘r2n) - 47’1 Wy (m"-’m((«"l2 + wlzn)
= = 2000701~ {mm) @
(@] — wn)’ + 4fwh(n] + £ ) — AniiSmeom(@] + )
1t follows from Eq. (44) that
oS+ an
lé(s)l < max |5————— &x(s
) Isksn SZ+2T)[0)IS+w2 &x(s)
oS+ (wm/wl)az ”
R eT— 48
Sz+2§'mwms+ W &cls) |, ( )
where an inequality of the type | lal — Ibl | <la — bl has

been used, and g(s) = [£1(s), . . . , &:(5)]7. Note that the coef-
ficients of g,(s) are only ratios of simple polynomials. Clearly,
the above error bound can be recast in the form

fe()U<hb(e)l, (49)

by inverse Laplace transform, with () determined by the two
terms on the right-hand side of inequality (48). The procedure
to compute the error bound (49) is much simpler than it ap-
pears. Given an excitation vector g(¢), Laplace transform is
first applied to obtain g(s). Ratios of simple polynomials are
then multiplied to £(s), as shown in inequality (48). Taking the
inverse Laplace transform of the products leads to the new
error bound (49). The new error bound (49) is generally much
sharper than that given by (9) and (10), as will be illustrated
in Section 5. The new error bound is not of the functional
form (9), and it involves the external excitation. If the ap-
proximate solution g, is first computed, then the error bound
defines a neighborhood about g, in which the actual solution
q lies.

As an example, in the computation of the new error bound,
consider a system sub]ected to harmonic excitation, with g(f)
= A sinof[1, . , 117, In this case,

Ig(s) 1 =;2_f;7 (50)
Expression (44) becomes
le(s)l < 5 oS+ oy 2_als+ (wf,,/w%)ozzz A w2
F 2w+ W S A 2 mwmS+ 0 | |+ w
61))
Therefore, the error bound (49) is
fe(H sstlilg 1 C cos(w?) + D sin(w)!, (52)

where
2

—Awlay (wz—w%) +2a5m 0] + Aw I:al(wz—wf,,) + 200

+ o oS+ (wz-/ wg)az 1
lé(s)ll < aStoy oSt/ ~ .
é)l= S+ 2w s+wr S+ 20mwmS+ ok | (s (53)
11y $om
The error bound (49), valid for ¢,, > 0 and n; > 0, is
1
[04 _ . o
||e(t)||$stlzllo) m—ze Ly l:sm(a)/(l—m)zt
. 1
oy 2 231 — ot
+— sin(w,; (1 —n,)*t — —————z e O,
oy (w; (1 =9 ¢1):| wm(l—i'm)l/z
1 1
. 2 oy 2
X [Sm(wm(l—s“m) t)+alw Sln(wm(l—fm)l‘—%)] , (56)
m
for which
1 — 22
¢r= —tan~t L2 :/I) , (57)
B (l )1/2
fm=—tan"" ;f'" (58)
m

Other types of excitation may be considered with the same
readiness. In fact, a table of error bounds corresponding to
excitation of various forms has been compiled.

Similar results apply in the analysis of frequency response.
For example, the ratio of lle(jw)ll to I§(jw)ll is bounded in such

way that
Jonw+ay _Jow+ (w2/ D

lé(jw)ll
= 2. 7 3.
-0 +j 2w why— e+ 200w

g (ju)ll ™
wherej = +/ —1, and w is the frequency of external excitation.

» (59

4 TImproving the Accuracy of Approximate Solution
In this section, we shall present an iterative approach to the

approximate solution of nonclassically damped systems. We
collect Egs. (5), (15), and (24) together in the following system:

Gat A @+ ge=g(1), q0)=q(0), ¢(0)=4¢(0), ¢=0,
(60)

ug(0) = ue(0) =0, 61

ui0) = u(0) =0,
120, k=1. (62)

The above system can be solved iteratively. Solution of (60)
yields ¢q,, which defines the inhomogeneous part of (61). So-
lution of (61) yields up, which serves as input to (62). The
solution of (62) generates u; for k = 1. Moreover, each of the
above equations represents a decoupled system, the solution
of which can be found very readily. From Eq. (27),

ao+A l.l()‘*‘Q Up= —R i]a, t=0,

ﬁk+A uk+9 uy=—R l.lk_l,

g=qa+ ), we(1). (63)
k=0

Wy
) § mwm]
Wy

C=
(wf—w ) +47712w2w2

S X))

Wk
Aoy w; o+ ozz(w% — wz)] —A [Zalg‘mwmw +oy —5 " (w,,, —w )}
7

D=
(0? — 0B + dnfoin?

As another example, let g(s) = u(9) [1,. . ., 117, where u(?)
is the unit step function. Hence, Ig(s)l = 11/sl. Inequality
(44) can now be written as
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(54

Hence, the exact solution ¢ of system (3) can also be obtained
by the above iterative procedure. The starting point of the
iteration is g, the solution obtained by neglecting the off-
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diagonal elements of the modal damping matrix. Once g, is
determined, 1y, and subsequently u,, k£ = 1, can be computed
iteratively. Each iteration simply involves the solution of a
decoupled equation. )

It is proposed that the first few terms of the infinite series
in (63) can be used as an approximate solution of the non-
classically damped linear system (3). This is'indeed an effective
procedure, as the accuracy of the approximate solution is gen-
erally very high. For a specified degree of tolerance, we can
always estimate the smallest number N of terms needed to
achieve that degree of accuracy. To see this, assume again that
q(0) = g(0) = 0. Applying the Laplace transform to Eqgs. (61)
and (62), we have

(64)
(65)

fo(s) = H(5)4a(s),
di(s) =H(s)—1(s), k=1,
where H(s) has been defined in Eq. (31). It follows that

uo(t):g H(1—71) q.(7) dr,

0

(66)

t

u(t) = S H(t—7) ug_ (1) dr, k=1, ©7
0

where H(f) is the inverse Laplace transform of H(s). Define a
linear operator H by
{
H(h(1))= (H*h)(f)=g H(t—7) h(r) dr,
0

(68)

so that H represents the convolution of the functions H(z) and
h(?). In this case, Eqgs. (66) and (67) can be rewritten as

uo(t) = H(qu(1)), 120, (69)
ue(t)y =H(ug_1(1)), t=0. (70)
Hence,
Nl < WA Nig,h, 7n
Nt < WHW Ny ), k=1, (72)
Combining the last two equations,
lul < NHT*+ g, ). 73)

As it turns out, the linear operator H has been used by Shahruz
and Ma (1988), and | HI is given exactly by expression (10).
The operator norm IHI is induced by the vector norm Al

= max sup lka(¢)], and is different from the operator norm
I<si<n t=0

used in Section 3. If we solve (60), (61), and the first m equa-
tions of (62), then an approximate solution ¢* is furnished by

g =q, g+ ... i, (74)

The error e of the above approximate solution is

e=qg—q" = Z U

k=m+1

(75)

Using the triangle inequality and (73), we have

Sl I&Zym+2
lell < Z Ilukli Si—_‘m

k=m+1

g, (76)

If an error tolerance is specified by lel e lg,ll, we obtain

In(e(1 — IH1))

N= 2= —
m¥ Il Hl

, 77

where N is the number of equations to be solved to meet the
specified error tolerance. For example, when IH] = 0.2, and
¢ = 0.05 or five percent, then m = 0, That means N = 2, In
other words, the true solution ¢ lies within a band centered at
q" = q, + uy, with 0.05 lg,ll as the half-width. In general,
we need only solve a small number of decoupled equations to
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achieve a high degree of accuracy. For a large-scale system,
substantial reduction in computational effort results in utilizing
this iterative scheme of solution. The above iterative scheme
was first proposed by Ma and Hwang (1989); however,
Udwadia and Esfandiari (1990) have also recently discussed
an iterative method of similar kind.

5 Example

In this section, an example is given to illustrate possible
applications of the results obtained so far. A low-order system
is employed for convenience. Consider a system whose nor-
malized equation is

1o [a@], [1s9 —o02] [a
0 1|4 -02 1.6 | |4
38 0 [a] _[1
S I R HEC

It is easy to see that w; = 1.9493, w, = 2,and | = & = 0.4
An approximate solution of system (78) is obtained by solving
the following decoupled equation:

1 0] [ dam L[1sse o G
0 1 | gn 0 16| | gn
3.8 0] [ da 1
L L= o o

Case (i). g() = sin(2f). The steady-state solution of (79)
is
—(0.320)sin(2¢ + 1.506)
= . 8
%) [—(O.313)sin(2t—1.571) (80)
For the system (79), lg,l = gl = 0.32. For illustration we

shall focus on the first normal coordinate g,(f). The exact
solution g,(?), the solution ¢,,(f) by decoupling approximation,
and the approximate solution ¢; (#) obtained by iteration are
all plotted in Fig. 1. To compute g; (¢) it is specified that ¢ =
0.05, so that the error tolerance becomes llel = ¢ lg,ll =
0.016. Using Eq. (10), we find that | H}} = 0.166. From formula
(77), N = 2. Therefore, g{ () = ga(f) + uo(?) is sufficient
to meet the given error tolerance. It should be noted that
g1 (9 is remarkably close to the exact solution q,(#).
According to Shahruz and Ma (1988), the tightest error
bound of the functional form (9) is given by llell = (0.166)

0.4

g
Q
g
O
3
&
A
00 25 50 75 10.0
Time
Fig. 1 Exact and approximate solutions for sinusoidal excitation
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Fig. 3 Exact and approximate solutions for unit step excitation

gl = 0.061. This error bound is plotted as solid lines in Fig.
2. The new error bound (52) leads to llel =< 0.046, which is
clearly sharper than the tightest error bound of the form (9).
The new error bound is plotted as dashed lines in Fig. 2, where
the exact solution g,(f) is also shown. Since the exact solution
almost meets the new error bound, the new error bound is
indeed quite close to the maximum exact error in the steady
state.

Case (ii). g(f) = u(f). When the excitation is the unit step
function, the steady-state solution of (79) is

= 0.263

(=1 250’
and llg,ll = llgll = 0.263. The exact solution ,(#), the solution
gai(f) by decoupling approximation, and the approximate so-
lution g;(®) = qu(?) + ug(f), are all plotted in Fig. 3. The
tightest possible error bound of the form (9) is given by lell
< (0.166) llgll = 0.0436, where ligli is the exact solution. The
new error bound (56) vields lell < 0.020, which is sharper
than the previous bound. The error bound of Shahruz and Ma
(1988) and the new error bound are plotted in Fig. 4. Extensive
numerical calculations have been performed by the authors,

(81)
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Fig. 4 Comparison of error bands for unit step excitation

and all calculations have yielded the same qualitative conclu-
sion that the new error bound is generally much sharper than
that previously given by Shahruz and Ma (1988).

6 Conclusions

The normal coordinates of a nonclassically damped system
are coupled by the nonzero off-diagonal elements of the as-
sociated modal damping matrix. One common procedure in
the solution of such a system is to neglect the off-diagonal
elements of the modal damping matrix. For a large-scale sys-
tem, substantial reduction in computational effort is achieved
by this method of decoupling the system. In the present paper,
the extent of approximation introduced by disregarding the
off-diagonal elements is evaluated, and a tight error bound
has been derived. The exact approximation error has been
decomposed into an infinite series, and an iterative scheme to
improve the accuracy of the approximate solution has been
outlined. The major results, summarized in the following, are
applicable to any linear system with nonclassical damping ele-
ments.

(1) It has been shown that the error due to decoupling
approximation can be decomposed into an infinite series, which
can then be summed exactly in the Laplace domain. The exact
sum is given by expression (40), which may be regarded as a
quadrature solution of the error function.

(2) When the external excitation is taken into account, a
new error bound (48) has been derived. This new error bound
is generally sharper than that provided by expression (9). The
error bound defines a neighborhood about the approximate
solution g, in which the exact solution g of the original system
lies.

(3) An effective procedure to improve the accuracy of so-
lution by decoupling approximation has been proposed. This
involves the solution of systems (60), (61), and the first few
equations of (62). By solving a small number of additional
decoupled equations in an iterative fashion, the accuracy of
the approximate solution of a nonclassically damped system
can be greatly enhanced.

The above statements are valid for any type of external
excitation. An example has been employed to illustrate the
theoretical developments pursued in this paper.
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APPENDIX
It will be shown that both vectors e, and uy tend to zero as
k increases without bound. Taking norms in Eq. (38), we have
e ()l < 1A (s)1¥H g, (s) I + LA () IKIE(s)Rq(O). (A1)
It has been assumed that 1A(s)l < 1. This assumption is

certainly valid if the modal damping matrix D is diagonally
dominant. From the above equation, it is clear that lim 12l

k—o
= 0. It follows that lim #, = 0, implying
k—oo
lim up=te =0. (A2)
k—oo
Let k¥ — o in Eq. (25). Then
ot (A+R)e0+Q ew=—R 11,=0. (A3)

Since €,(0) = e.,(0) = 0, it follows from the uniqueness of
the solution of the differential Eq. (A3) that

lim ey=e,=0.

k—o

(A4)

This completes the demonstration.
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It is proposed that the classical Maxwell criterion for instability of gradient systems
has significance as a lower bound on the appearance of localized as opposed to
repeated periodic buckling. The hypothesis is tested against experiments, for the
classic nonlinear problem of diamond-pattern buckling in the long thin axially loaded

E. L. Neto'

Instituto Technologico de Aeronautica,
12225 San Jose dos Campos-SP,

Sao Paulo, Brazil

1 Introduction

The response of an elastic structure in the post-buckling
range is often directly represented by one or more fourth-order
nonlinear differential equations. With time rather than a spa-
tial dimension as the independent variable, these would relate
to the special class of nonlinear dynamical system, known as
Hamiltonian or energy preserving, most often associated with
celestial mechanics: the spatial differential equation is of course
independent of the choice of positive direction, while the gen-
eral non-Hamiltonian dynamical system has a time domain
that is irreversible, to take account of energy loss via damping.

For long structures, where the response may localize over a
portion of the length, a time-like interpretation of the spatial
dimension has great appeal. In particular, the conservative
nature of the Hamiltonian suggests an energy interchange, over
the spatial dimension, of ‘‘local’’ potential energy V, with a
spatial form of ‘‘kinetic’’ energy 7. Statical equilibrium, for
which T = 0, corresponds to the periodic (constant amplitude)
response, while ‘‘dynamical’’ equilibrium, with T # 0, allows
for fluctuation in amplitude along the length, opening the way
for modulation and localization of the buckle pattern in an
exchange of energy between V and 7. The response is then
analogous to movement on a potential surface, which is the
same as the periodic potential and contains all the inherent
nonlinearities.

With the focus exclusively on localized responses, it is then
possible to predict maximum amplitudes directly from energy
considerations. For problems like the axially loaded cylindrical
shell, which first destabilize and then restabilize in the post-
buckling range, such amplitudes are apparently only attainable
for loads greater than the classical Maxwell critical load, where
the energy levels on the unbuckled fundamental path and re-
stabilized post-buckled path are equal. The Maxwell load should
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cylindrical shell. Excellent correlation is achieved.

thus represent a lower bound on the appearance of localized
responses.

To check the validity of this conjecture requires solution
well into the post-buckling range. The underlying theory is
presently developed only in an asymptotic context (Hunt and
Wadee, 1991), and we might expect some drift from the exact
result as deflexions increase. We have therefore chosen, as a
first check on this new theory, to compare with the careful
experiments of Yamaki (1984) on the axially loaded cylindrical
shell. Agreement with the minimum experimental load, and
the corresponding wavelengths, is found to be excellent.

2 Lagrangian Formulation

Let us consider the well-known form of an unstable sym-
metric point of bifurcation, shown at the left of Fig. 1. This
might represent the equilibrium response of a single-degree-
of-freedom system, or perhaps a continuous system buckling
periodically into a discrete post-buckling mode of amplitude
A;, such as a strut on an elastic foundation (Thompson and
Hunt, 1973). In each case, evolution of the potential energy
V(A;, P) under variation of the single control (loading) pa-
rameter P is as shown; equilibrium corresponds to stationary
states of ¥V, giving the single equation dV/0A4; = 0.

For a single-degree-of-freedom system the stationary state
(@) is the only post-buckling solution available. Periodic buck-
ling, however, can give way to a modulated (&) or a fully-
localized (c) form, such that amplitude A; varies along the
length of the structure as seen at the top right of Fig. 1. It
might then be postulated that the system is behaving as a point
mass sliding frictionlessly in a potential well, as shown at the
bottom right, with the varying amplitude expressed as 4;(X),
where X is a distance measure replacing time ¢ in a Lagrangian
formulation. Potential energy remains the same as for periodic
responses but there is a new kinetic energy contribution 7,
which can be written

.1 )
T(A;) =5 T;A? 1)

the dot denoting differentiation with respect to X. Motion is
then described by the Lagrange equation

d (3£\ agL
dX(aA,.> a0 @
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Fig. 1 The rolling ball analogy, as applied to:
lated, and (c) localized responses

(a) periodic, (b) modu-

where the Lagrangian £(A;, A, P) = T(4) — V(A, P). We
note that, as motion is described in an inverted potential well
in Fig. 1, we would expect the coefficient T; to be negative.

The hypothesis has some attractive features, notably that
the potential energy carries all the nonlinearities of the prob-
lem, and is obtainable from a periodic formulation. It can be
developed analytically, and readily extends to more than one
degree-of-freedom, the new kinetic energy function 7 being
obtained either from the underlying differential equation (Hunt
et al., 1989) or from an initial potential energy functional via
the calculus of variations (Hunt and Wadee, 1991). There is,
however, often an asymptotic flavor to such analysis; the
adopted spatial measure X is related to the true spatial di-
mension x by

X=sx, 3)

for instance, where s is a perturbation parameter measuring
progress outwards from the critical point C. This has led X
to be referred to as slow space, and the analysis to be termed
double scale (Lange and Newell, 1971; Potier-Ferry, 1983;
Hunt et al., 1989; Hunt and Lucena Neto, 1991).

The Maxwell criterion discussed below takes s some way
into the post-buckling regime, and extra validation of any
asymptotically based approach is thus desirable. For a strut
on a nonlinear foundation, numerical runs of the full under-
lying fourth-order nonlinear differential equation provide use-
ful checks (Hunt and Wadee, 1991), but for the diamond-
buckling of cylindrical shells, such an approach is impossibly
complex. The careful experiments of Yamaki (1984), however,
provide a most useful basis for comparison.

3 Localized Buckling and Zero Energy

To trace the correct amplitude variation for a localized re-
sponse, specific conditions need to be met. The response must
take infinite ‘‘time’’ X to reach, or move away from, the
maximum of — V that corresponds to the flat fundamental
state A; = 0. This is achieved by ‘‘release,”” with zero kinetic
energy, from the point on the V-surface with the same V-level
as the maximum, as shown in the left-hand well of the bottom
right diagram of Fig. 1; the full variation of the upper right
is of course traced by starting and finishing at the maximum.

Thus, for localized buckling, alternative states of zero po-
tential energy (the same V-level as the flat fundamental state)
take on a new significance (Toland, 1986). This contrasts with
the more familiar variational view, really only useful for pe-
riodic responses, where equilibrium depends only on the first
variation, dV/0A,, of potential energy, never on its absolute
value,

4 Maxwell Criterion
It is often the case that a buckling problem has a post-
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Fig. 2 No localization below Maxwell critical load, P¥ where funda-
mental and (periodic) post-buckied states have equal energy

buckling path which is initially unstable and falling with respect
to load P, as seen in Fig. 1, but then restabilizes and rises again
from some lower load. Such a situation is shown in Fig. 2,
where we suppose that a periodic form of buckling is initiated
at a critical delay bifurcation load P”, giving an unstable path
which restabilizes at the lower post-buckling load P%. The
potential energy surface then evolves under changing P as
shown; we see that, for P* < P < PP, there is a total of five
equilibrium states, three stable and two unstable, all being
depicted by closed circles. An assumed load P to end-short-
ening & form is shown at the right.

Zero energy states corresponding to maximum amplitude at
the center of localization are shown as open circles in Fig. 2.
We see that, somewhere in the range P < P < PP, there
must be a specific load PY below which no zero energy post-
buckling state exists. Interestingly, this coincides with the clas-
sical Maxwell critical load for periodic responses, which marks,
under increasing P, the point of interchange of the global
minimum of V from the fundamental, to the stable post-buck-
ling, state (Zeeman, 1977). The Maxwell critical load for a
periodic response thus represents a lower bound on the possible
appearance of a localized form of the same buckle pattern.

5 Periodic Analysis of Cylindrical Shells

It is clear from experiments on long, thin, axially loaded
cylindrical shells (Sendelbeck et al., 1967; Yamaki, 1984), that
the well-known diamond-pattern buckling appears in a local-
ized, rather than a periodic, form along the length. In a recent
paper (Hunt and Lucena Neto, 1991), double-scale analysis is
used to generate a theoretical amplitude variation that seems
to compare well with experiment. The analysis has a strong
asymptotic flavor, however, and the thoroughly unstable na-
ture of the response means that comparisons are conducted a
considerable way into the post-buckling range. The concept
of Maxwell critical load as a lower bound for localized re-
sponses provides a useful independent check against experi-
ments; it has the advantage of being defined with respect to
periodic behavior, and is thus amenable to standard modeling
techniques such as the Rayleigh-Ritz method.

Such techniques have been used before (Madsen and Hoff,
1965; Hunt et al., 1986), but with interest focussed on the
minimum post-buckling load P* not the Maxwell load P™. In
the modern context, because of the large deflexions and con-
sequent large number of contributing modes, analysis is most
conveniently conducted using algebraic manipulation soft-
ware, such as the standard package Mathematica (Wolfram,
1988), which has the advantage of avoiding roundoff error.

Moderately large deflexions of a thin axially compressed
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Fig. 3 The first modes of Eq. (6), for 8 =
circle

1, in relation to the Koiter

cylindrical shell are assumed to be governed by the von Kar-
man-Donnell equations

Fw P Fwdp FPwde _ Pw 3
2w d
A —— = St g9
VWt e P o o 5y oy a2 axiy vy
4
Pox? 6x Bxay ax? ay*’

where x and y are axial and circumferential coordinates; v*
denotes the two- dlmensmnal blharmomc operator; w is in-
wards displacement; k* = ¢*/12(1 — v¥); A = P/Et; p and ¢
are the shell curvature and thickness; P is axial load per unit
length; E is Young’s modulus and » is Poisson’s ratio; and ¢
is a stress function related to the in-plane stress resultant de-
viations from the uniform membrane state (Hunt and Lucena
Neto, 1991). The first is an equilibrium, and the second a
compatibility equation.

For a Rayleigh-Ritz formulation employing a kinematically
admissible displacement field, the second equation must be
satisfied completely. Noting the linearity in ¢, we can start
with an assumed w,

w=>7 > gy cos iyx cos jByy, i+j=even (6)
i=0 j=0
and write down the corresponding ¢ in standard manner (Cow-
ell, 1986). The first equation is not solved completely; rather
the assumed form for w, with its corresponding ¢, is substituted
into an energy formulation (Hunt et al., 1986). All of the above
processes can be performed exactly within Mathematica.

The assumed form for w comprises a uniform post-buckling
dilation ggg, which is determined from consideration of con-
tinuity of circumferential displacement together with a set of
mutually orthogonal buckling modes. Here, 8 is the mode-
aspect ratio (axial/circumferential wavelength); vy = pn/Bis
a scaling factor; and # is the number of whole circumferential
waves for the “‘seed” mode of amplitude g,,.

The nonlinearity in w in the compatibility equation and
consequent extended form for ¢ introduces a cascade of rel-
evant buckling modes via the phenomenon of mode interaction
(Hunt et al., 1986). A typical set of modes for 8 = 1 (n =
1/2/ ok k), in the wavelength related space due to Koiter (1945),
is shown in Fig. 3; the first eight periodic modes, together with
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Table 1 Comparisons of minimum load level, corresponding 8, and
corresponding maximum inward (positive) and outward (negative) dis-
placements

n | Present Yamaki’s results
analysis | Experimental | Theoretical
12 0.27 - 0.29
11 0.24 0.24 0.26
PM/PD 110 0.21 0.21 0.22
9 .0.18 0.17 0.17
8 0.16 0.14 0.12
12 1.48 - -
11 1.49 1.43 1.54
g 10 1.51 - -
9 1.56 - -
8 1.60 1.37* 1.42*
12 | 8.3,-3.7 - 6.0,-2.8
11 §{ 10.0,-4.4 7.7,-3.3 7.7,-3.6
w/t 10 | 12.2,-5.5 10.6, -4.6 10.2, -5.0
9 ]15.1,-6.8 13.0,-5.9 13.0,-6.3
8 {193, -8.7 16.5, -7.7 16.3, -7.7

* not at minimum load.

oo, are given, with the next significant row of seven lying on
a straight line between g and gg.

Nonlinear equilibrium equations are solved using a Newton-
Raphson scheme. Minimization is also carried out with respect
to the mode aspect ratio 8. Thus, with the sole input of the
circumferential wave number », the minimum-energy axial
wavelength and combination of assumed modes is found for
any post-buckled state.

6 Comparison With Experiments

To compare with the experiments of Yamaki (1984), cal-
culations are carried out for a shell with the following prop-
erties:

p=0.01 mm™', ¢=0.247 mm, »=0.3,

and for circumferential wave numbers n = 8, 9, 10, 11, and
12. Results with 16 terms retained in Eq. (6), i.e., terms sat-
isfying/ + j=0,i+j=2,i+j=4andi +j= 6, are
summarized in Table 1.

Yamaki’s experiments were carefully carried out for clamped
cylindrical shells with different lengths; only results from the
longest one (L = 160.9 mm) will be considered. Figures 4(a)
and 4(b) show, respectively, recorded relations between load
and end-shortening displacement and load and maximum in-
wards (positive) and outwards (negative) deflexions. The post-
buckling configuration observed spontaneously is of asym-
metric type with two tiers of staggered buckles, as seen in
contour line representations in Figs. 4(c) and 4(d) for n = 11
and n = 8, respectively; here solid and dotted lines correspond
to inwards and outwards deflexions. In the same reference, a
theoretical post-buckling analysis is performed by applying the
Galerkin procedure to Eq. (4), after Eq. (5) has been satisfied
completely, with w assumed as a trigonometric series which
satisfies the clamped end conditions; this gives an excellent
reproduction of the observed diamond pattern.

In the present analysis the periodic post-buckling curve,
shown schematically at right in Fig. 2, is calculated for each
assumed value of n; the Maxwell critical load is then picked
up by checking the energy level in this state against that of the
fundamental path. Table 1 shows our results together with
those taken directly from the plots of Yamaki (1984) (see Figs.
4(a) and 4(b)).

It became clear during the analysis that, as might be expected
from the relative deflexions involved, the lower the wave num-
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Fig. 4 Experimental resulis for a long cylinder (after Yamaki, 1984)

Fig.5 Periodic buckied surface corresponding to Maxwell critical load
for n = 10, where 8o, = 1.51

ber n, the more terms are required in Eq. (6) for satisfactory
convergence. With the chosen 16 terms, modal interactions at
cubic and quartic energy levels are extensive, and the micro-
computer used for the study was working close to its limit. In
Table 1 we find that the Maxwell critical load creeps slightly
above the experimental minimum load for » < 9 and we
attribute this to a lack of complete convergence. Otherwise,
agreement between the theoretical Maxwell load and the ex-
perimental minimum load is apparently very good.

But perhaps the clearest evidence for the importance of the

Journal of Applied Mechanics

periodic Maxwell load comes from a wavelength comparison,
as evidenced by the mode aspect ratio 8 of Table 1. Yamaki’s
account of the experiments unfortunately gives no indication
of axial wavelength at the minimum load level, apart from for
n = 11, which is contour-mapped close to this state (see Fig.
4(c); note that Fig. 4(d) for n = 8 is clearly not at a minimum
state). It is noticeable from our periodic runs that in the re-
stabilizing region, while the load may only change fractionally,
there is a simultaneous quite rapid change in the optimum
(minimum-energy) value of 3. For n» = 11, for instance,
PL/PP = 0.22 and By, = 2.05, but at the slightly higher
Maxwell load of PM/P” = 0.24, Bo, = 1.49. The latter, but
not the former, compares well with the experimental value of
B = 1.43, taken directly from Fig. 4(c).

Finally, Fig. S shows a computer-drawn image of the periodic
deflected shape, built from the 16 harmonic functions of Eq.
(6) at the Maxwell load for » = 10. Displacement comparisons
are also carried out in Table 1, but it must be remembered
that localized values would be less than their periodic coun-
terparts, since the deflexion pattern must damp down along
the length. There is also a further trend in this comparison,
in that if convergence is incomplete, peak values should be yet
further reduced; the corners of the diamond pattern, where
the peaks occur, would appear more rounded than they should
be. Combine these two effects, and the deflexion comparisons
of Table 1 are much as expected.

7 Concluding Remarks

The paper introduces a new criterion for localized buckling,
based on the potential energy of an associated periodic form;
it is suggested that the minimum localized post-buckling load
coincides with the classical Maxwell critical load for periodic
responses. Since periodic solutions of von Kdrmdn-Donnell
equations based on energy methods are well known, results
are obtained simply by adding V' = 0 to the condition dV/dg;
= 0 in the restabilized post-buckling state.
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In essence, the new approach is quite different in concept
from other mode-fitting procedures; it remains independent
of end conditions, for instance, on the assumption that if the
shell is long enough, boundaries have little or no effect on a
localized form. This contrasts with the Galerkin procedure of
Yamaki (1984) in which, to compare with experiments, clamped
end conditions are fed into a model of finite length. It is noted
by Yamaki that convergence erodes as length increases; apart
from problems associated with too short a cylinder there are
no such length limitations in the new approach.

The comparisons show:excellent agreement between the
Maxwell critical load and the minimum load from experiments;
in spite of the limited available results for the mode aspect
ratio 3, agreement is again most encouraging. For small values
of circumferential wave number n, it is noted that more terms
must be retained in Eq. (6) for satisfactory convergence.

We are at present unable to compare with experiments other
than at the Maxwell critical load since the ‘‘kinetic’’ energy
component, T, remains undefined; its description is certainly
possible (Hunt and Wadee, 1991) but is left for future work.
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A similarity solution is obtained for a flow between two rotating parallel disks which,
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at timet” are spaced a distance H.(1 — ot™)'"? apart and a magnetic field proportional
to Bo(1 — at®)y71? s applied perpendicular to the disks. Approximate analytic
solutions are given and a numerical solution to the resulting nonlinear ordinary
differential equations is presented. The effects of magnetic forces on the velocity

profiles, the normal forces and the torques which the fluid exerts on the disks are
studied. It is observed that by increasing the magnetic force a considerable increase
in the load can be achieved. Also, the torques are more sensitive to changes in the
squeeze Reynolds number than to changes in the rotation Reynolds number.

I Introduction

A similarity solution has been obtained for a flow between
two parallel disks which, at time ¢*, are spaced a distance
H(l — ar)"? apart, and a magnetic field proportional to
Bo(1 — ot*)~*is applied perpendicular to the disks by Hamza
(1989), where H denotes a representative length and B, denotes
a representative magnetic field. The effects of the magnetic
forces on the velocity profiles, and on the normal forces which
the fluid exerts on the disks, are considered, and it has been
found that by increasing the magnetic force, a considerable
increase in the load could be achieved. Hamza and MacDonald
(1984) have obtained a similarity solution to the motion of a
viscous incompressible fluid contained between two parallel
disks, which at time ¢* are spaced a distance H(1 — at™)"/?
apart, and are rotating with angular velocities proportional to
(1 — ar”)~! by reducing the governing Navier-Stokes’ equa-
tions to a set of ordinary differential equations. Here ™!
denotes representative time and Q; denotes a representative
angular velocity. They have examined the way in which the
normal forces are modified by the rotation of the disks and
the torque is modified by the normal motion of the disks by
presenting approximate solutions for a range of values of the
three linearly independent parameters that influence the fluid
motion.

The effect of magnetic field on such flows have received
considerable attention due to the important role they play in
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many industrial applications. Many studies of the problem
have been motivated by the increased use of liquid metal lu-
bricants in high-temperature bearings. The theoretical and ex-
perimental investigations into the magnetohydrodynamic
effects in lubrication that have been reported include Hughes
and Elco (1962), Kuzma, Maki, and Donnelley (1964), Krieger,
Day, and Hughes (1967), Kamiyama (1969), and Hamza (1988).
In this paper we examine the motion of a viscous, incom-
pressible fluid contained between two parallel disks, which at
time ¢* are spaced a distance H(1 — «t*)"/? apart and are
rotating with angular velocities proportional to ,(1 — ™)™,
Also a magnetic field proportional to By(1 — at™)™2is applied
perpendicular to the disks and thus the paper considered here
is a unified presentation of the effects of rotation, squeezing,
and magnetic field on fluid between two parallel disks. Ap-
proximate analytic solutions are given and a numerical solution
to the resulting nonlinear ordinary differential equations is
presented for a range of values of the squeeze Reynolds number
RS = oH%/2v, the rotation Reynolds number RR = QH?/y,
and the Hartmann Number M? = ¢B3/p (o denotes electrical
conductivity and p denotes viscosity) which influence the mo-
tion. The effect of the magnetic forces on the velocity profiles,
on the normal force which the fluid exerts on the disks, and
on the torque which the fluid exerts on the disks are considered.

2 Mathematical Formulation

We consider an axisymmetric, incompressible flow between
two parallel infinite disks which rotate in their own planes and
are spaced a distance 4 (+*) apart where t* denotes time. A
magnetic field B(¢*) is applied perpendicular to the two disks
kept at z¥ = 0 and z° = h(f"), h(0) = H, and the upper
disk is moving with velocity 4’ (¢*) towards the lower disk.
The disks rotate in their own planes with angular velocities
proportional to €;(1 — o)™ and (1 — ar’)™'. We select
cylindrical polar coordinates (%, %, z*) and denote by u*, v*,
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wz the velocity comgonents in the radial (+*), the tangential
(67), and the axial (z") directions. The equations of continuity
and momentum governing the motion are

1 a(u*r*)+6w*

rooart
* % x % U"<2 i
U+ u Wt —— = — = p*
r P

=0 M

* | R * H*
+r| U U Ut
r r

b
2

258, @
o

* ok
uv

* . * % *
VAU W U+ e

vl o1 v
2| =T JrBa (3)
0

~

*® 1 * *

=p| U+ ot -

r
* *® *#
wr Ut wr wiw =
1 * * 1 * *
—=prHv| wrrt s wErwerr | (4)

0 r

where B,, p, (E,, Ey, E,), (J,, J,, J;) are the applied magnetic
field, the pressure at a point, the electric field, and the current
density with

J.=(E,+v"B,)

J0= — O'H*Ba.

On the assumption that

ot AU
u _2(1—ozt*)f O, v —(l_m*)g(y)

* ald B()
= , B=——"—
v \/l—ozt*f(y) 1 at’
z* B
TN r:r*’ t=t ’
HJ(1—at®)
the equation of continuity (1) is satisfied and the equations of
motion reduce to

y

s 1 " 1 892 ’ "
S =R A - e 1AM (6)
8" =Rilyg' +2g+28f' ~24g'|-ME"+M’%s  (T)

where @/a = RE¥/2R and E* = {} g(y)dy and f(), g(»)
are unknown functions to be determined. The boundary con-
ditions are

f0)=0, f(0)=0, g(0)=1

4 Q
f=1/2, f1)=0, g(l)=§—?=s. ®)

In the limiting case when M?/R; — 0 and R¥ = 0, Egs. (6)
and (7) and the boundary conditions (8) reduce to the equations
which govern the unsteady flow between two disks at a distance

h(t*) = H\/1 — at” apart and moving towards or away from
each other with relative velocity 4’ (¢*). This case was studied
by Wang (1976) and Ishizawa (1966). In the case when M =
0, they reduce to equations which govern the motion of a
viscous incompressible fluid contained between two parallel

disks spaced a distance N/ 1 — at™ apart and are rotating
with angular velocities proportional to (1 — «t*) ™! that were
examined by Hamza and MacDonald (1984). In the limiting
case RR = 0, the equations yield a similarity solution obtained
by Hamza (1989) for a flow between two parallel disks which

at time ¢ are spaced a distance HA/1 — af" apart and a
magnetic field proportional to Bo(1 — «t™)/? is applied per-
pendicular to the disk.
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The Normal Force. On integrating the equations of mo-

tion, the fluid pressure is obtained as
b [fy 4] ettt
8(1 —at™y

®
where p(#) is an arbitrary function of time. If the disks are
assumed to be of finite radius ‘‘a’’ and of negligible thickness,
the normal force or load W* which the fluid exerts on the disk
is

* ] )t = t or1 _ F2 S
pryt) p()+8(1_at*)2 RS T2

a

W*=27r S r[p*(r, 1, t) _p:(a’ 17 t)]dr
0

4 2
e} n Ql
= el {f(o>+4R§ ;}

T 8HA(1—at)?
or
W= ﬁ—% [f(”,',)+4R§ -Q—q (10)
6R, o
where
Wzsug*a —20?)2_
T a

The Torques Exerted on the Disks. When \/E << a, the
torque 77, which the fluid exerts on the upper disk, is given
by

a 3
Ty = S 2t dr
0 az 2=HV1-at
4,
wua Ql ,
=mg (1) (11)
or
, 2H(1 — at)*?
Ty=g'(1) where Ty= 2200 7+ (12)

W}.La491
For the lower disk, the corresponding result is 7, = g’ (0).

3 Approximate Analytic Solution
We describe approximate analytical results which can be
obtained for RS = 0(1), R® = 0(1) and M = 0(1), when M
= O(RY) and RF = O(RS) and also when M = O(RS) and
RE = O(RS)"2. The functions f and g for RS = 0(1) may be

expanded in the form
f=lo+ Refi+0(RD)?

g=80+Rig +O0(R2)>.

(13)
(14)

Case (). For RS = o(1), RE = O(RS) and M = O(RS),
Jfo» g0, /1 and g, satisfy the equations

So =0

RE M?

" (s " Vs e s "

Ji =yh +3f0 ~2fufo —Z’R_sgogo +‘1§§f0
e e

g =0

" , , . M? . M?
&1 =y8o +2gu/o — 2/08 — 5 Eo + 5 &o-
R; R.

We obtain
fo()=y"3/2-y)
&o)=1-(1-s)y
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2 1— 2 R\ 2 RS
fl(y)=}i-(-280—y) [19 40y + 6y* — 4y° +—(1 s) <R ) Ty —-1+s+— {195-&—114———

R? 315
14 (RN 1M ( ) (275°—115* - 24s+8)
-5 (=5 55) C+y)+—5 (1-2)
’ Ke Re 10M2 M .
' ’ 2 0 =g E, { +O(RS)?
y(l Y i (2s+1)— R§ o} ( e)]

a)= Oy) [——(1ls+19)+(1~115)y+(11—s)y2

2 RS 1 (R®)?
T, = —1+s+2—8 {—115;—19--3—1—5 (—ﬁsl (85 — 245"
10 M?
—4(1—5))/ +— < {(l-s)y— (S+2)+3E0 ]:l 10 M? 10 M?
3 R ~ s +27) = s (S+D+5 7s E L+ O(RS)?|.

where the parameter s(=,/Q,) may, by symmetry, be taken
to lie in the interval —1 < s < 1. 4 Numerical Solution

The Load W1s given by I~ To test the accuracy of the perturbation solution and to
W= 1 1 17 (Re 3 (1-5)%—s obtain reliable information on the nature of the flow for values
R 6 70 RS 10 of RS, R, and M which are not small, a numerical solution

of the governing equations is necessary. For wide ranges of

2 the three parameters, the two-point boundary value problem,

- ——S} +O(RY) } expressed by Eqs. (6), (7), and (8), has been integrated by using

5 Re the Runga-Kutta Gill method where the initial estimates for

the unknown boundary conditions at y = 0 were determined

The torques exerted by the fluid at the disks are by shooting methods. The calculations were performed for

RS 10 M? values of R7, R¥ and M in the ranges 0.01 < RS < 1.0, 0.02
TU=-1+s+2—5[{19s+11} ?Eg—(25+1) stss.BardesMszt. ¢
_ MI)?S/I E0 +O(RS) } 5 Results and Discussion
We present and discuss the case where a thin film of fluid
RS 10 M? is squeezed between two parallel rotating disks in the presence
T,=-1 +s—~2—5 [ {11s+ 19} +? ~R—S (5+2) of an axial magnetic field. In the following we shall be con-
cerned with the combined effects of magnetic forces, rotation
_1oM?
3R Ey + O(RS)>? }

052

Case (ii). For RS = o(1), RX = O(R$)"?and M = O(R}),

the equations satisfied by f;, g, /1 and g; are 0-48
(RR) )
Jo =- RS &o&o

Ry2
1 "

RE) ’ / M2 "
S =3fe +3fo =200 —2 (RS (80& +g081)+Ffo
e e

”
g =0 0-36
2 2

” ’ ! ’ M *
&1 =280+ Y8 +28d/o — 2080 — 15 Ey +55 go-

0-30
We obtain
f=y2 é_y _1_( e) (1_5)21 25 9 -
0 2 60 RS y( _y)[ ﬁ( +)’)(1"S)] 0.24
o=1-(1~s)y.

The expressions for f; and g;, which are more lengthy than
in Case (i), will not be quoted here. The results for W, Ty,

and 7T, are
R RS * 012
wel |- L (Rs)
RS 60 R 420
1 (RR)2 (RR)Z 2 0-06
117 ¢
i 5 R (521s2+983s+521)+10 500\ &5
M5 °
X (579" — 165° — 109665 — 165 + 579) + 42 ?} + O(Ri)z]
¢ Fig. 1(a)
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Fig. 1(c)
Fig. 1 Variation of dimensionless functions f, f', and g with R? when
s§= -1.0

and squeezing on the velocity profiles, the normal force (load)
which the fluid exerts on the upper disk, and the torques which
the fluid exerts on each disk.

The Velocity Field. The dimensionless functions f, f” and
g which give components of velocity, are approx1mately given
by the zeroth order perturbation results since RS = o(1) when
M = O(R%) and RY = O(RY), i.e., by

f)=y*(3/2—y)
S ) =3y(1~y)
g(y)=1-(1-s)y.
Thus, we have the usual parabolic distribution in the radial

direction. The azimuthal velocity component adjusts linearly
from the value unity at y = 0 to the value sat y = 1.
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Fig. 2 Variation of dimensioniess function f' with M whens = —1.0

Figure 1 displays the dimensionless functions f, ', and g
which describe the velocity components u, v, and w when M
= 4.0withs = — 1.0 for arange of values of R¥, The numerical
results indicate that the radial velocity is directed inwards to-
wards the axis in the vicinity of the midplane y = 1/2. This
1nwardly directed flow is evident in the radial flow when R¥

= 1.0 and R = 2.0. The corresponding graphs for the non-
magnetic case when M = 0 with s = —1.0 for a range of
values of R¥ have been displayed by Hamza and MacDonald
(1984). 1t is observed that despite remarkable changes in both
f andf as R® varies, g, to a good order of approx1mat10n
remains linear in the nonmagnetic case. However, this is not
so when the magnetic field is present and it is evident from
the graph of g in Fig. 1. Also, appreciable change in the value
off’, due to the presence of the magnetic field, is more evident
for RE = 2.0 from Fig. 1.

W1th an increase in M, with R and RS fixed, there is a slight
increase in the radial velocity profile near the disks and a slight
decrease in the region of the mid-plane y = 1/2. This increase
(decrease) becomes more pronounced with increase in M, and
the radial velocity profiles in the interior region become more
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flat—features which are common to values RS = 0.01 and R¥
= (.02 when s = —1.0 with M ranging from 0 to 6, is seen
in Fig. 2. Regions of inward radial flow are evident near y =
1/2 when R¥ = 1.0 and 2.0 for RS = 0.0l ands = —1.0 as
seen from Figs. 2-3 for M = 0.0 to 4.0.

The Load. Of particular interest is the response of the load
to changes in the squeeze Reynolds number, the rotation Reyn-
olds number, and the Hartmann number. When a magnetic
field is absent, the load exerted on the upper disk is large and
positive and decreases with increase of squeeze Reynolds num-
ber when R¥ = 0.02 and s = — 1.0 and 0.5 as is evident from
Fig. 4. By applying a perpendicular magnetic field, the results
of this indicate that a remarkable increase in the load can be
obtained. Figure 5 shows for values of RS = 0.01, 0.1, and
1.0, the way in which W varies with M when RR = 1.0. The
results indicate that the load increases with increase of magnetic
field. Figure 6 shows the way in which W varies with M for
values of s = —1.0 and 0.5 when R® = 2.0. It is observed
that at this value of Rf ,whens = 0.5, Wincreases with increase
in RS for a fixed value of M. -

Figures 7 and 8 show for values of M = 4.0, the variation
of W with RR when s =0.0. and 1.0. It is clear that for fixed
RS, W decreases with increase of R¥ and this decrease is more
rapid when s = 1.0 than when s = 0.0, —1.0 or 0.5. From
Figs. 7 and 8 and from the corresponding graphs of the re-
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Fig. 3 Variation of dimensionless function f* with Mwhens = ~1.0
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M Fig. 4 Response of load to changes in M when RY = 0.02and s = 0.5
Fig. 4(a) and - 1.0
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Fig. 5(a)

-12 |-

- 42

Fig. 5(b)

Fig. 5 Response of load to changes in M when RZ = 1.0and s = 1.0
and 0.0

sponse of normal force to changes in the rotation Reynolds
number R¥ for the nonmagnetic case with fixed RS when s =
0.0, +1.0, — 1.0, given by Hamza and MacDonald (1984), we
observe that the load increases with increase of the magnetic
field M for a fixed value of R;.

The increase of the load-carrying capacity with increase of
the magnetic field is of significant interest in situations like
high-temperature bearings, where use of liquid metal lubricants
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Fig.6 Response of load to changes in Mwhen R = 2.0ands = - 1.0
and 0.5

is unavoidable. This helps in achieving an improvement in the
lubrication characteristic of the liquid-metal lubricants.

The Torques. When the disks rotate with same angular
velocities (i.e., s = 1.0), the magnitude of the torque which
the fluid exerts on each disk is given by
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_ 3nd'Qu
T4H(1 —at)¥?

Hence, as RS — 0, the torques which act on the disks tend
to zero. But when RS # 0 and s = 1.0, the angular velocities
of the disks, and hence the rate of diffusion of angular mo-
mentum, are time dependent. Therefore solid-body rotation
is not possible.

When (R¥/R5) >> 1, the torques which the fluid exerts on
the rotating disks aré of greater interest than the normal forces.
Figure 9 shows for values of s = — 1.0 the way in which — T},
varies with RS, when R® = 0.0, 3.0, and 5.0 for M = 4.0 and
2.0. It is apparent from the figures that the torques are more
sensitive to changes in RS than to changes in RY.

Ty=-~T; RS+ O(RSH2
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Free-Edge Stress Intensity Factor
for a Bonded Ductile Layer
Subjected to Shear

E. D. Reedy, Jr. The stress state found in a thin, power-law hardening ductile layer bonded between
Sandia National Laboratories a pair of rigid adherends and subjected to a shear loading is investigated. Wzthm
Albuquergue, NM 87185; the context of a work-hardening plasticity theory, a stress singularity of type Kr?
Mem. ASME (6 < 0) exists at the point where the interface between one of the rigid adherends
and the ductile layer intersects the stress-free edge. The intensity of this singularity
(i.e., K) has been calculated for a plane strain condition using a technique that
combines results of an asymptotic analysis of the stress singularity with those of a
detailed finite element analysis. A dead-soft aluminum layer is considered first with
emphasis placed on an assessment of the region dominated by the plastic stress
singularity. Results for a fully plastic layer with negligible elastic strains are presented
next. The relation defining the fully plastic, free-edge stress intensity factor for a
shear loading depends only on a characteristic shear stress, layer thickness, and the
layer’s hardening exponent,

Introduction

Within the context of both elasticity and work-hardening
plasticity theory, a stress singularity of type Kr° (§ < 0) can
exist at an interface corner (i.e:, the point where an interface ,
between bonded materials intersects a stress-free edge, Fig. AN INTERFACE CORNER DUCTILE LAYER
1(@)). For example, see Williams (1952) and Bogy (1968) for : z :
linear elasticity solutions and Lau et al. (1987, 1988) and Duva
(1989) for work-hardening plasticity solutions. Most previous
work has been aimed at determining the strength of this stress
singularity (i.e., 8). In recent work, the relation defining the
elastic, free-edge stress intensity factor Ky for a thin linear
elastic layer bonded to rigid adherends and subjected to either
a tensile or shear loading has been fully determined for a plane
strain condition (Reedy, 1990, 1991). Specifically, for a shear
loading

Fig. 1(a) The plastic, free-edge stress intensity factor K? is determined
for a ductile layer bonded to rigid adherends

Kr=a"h'"A,(») () Uy =U,=0

where o is the nominal shear stress found at the center of the /

layer, 24 is layer thickness, A — 1 is the order of the stress

singularity, and A,(») is a function defined for a shear loading. /
Ay v) and N — 1 are functions of Poisson’s ratio only, and g

their values are plotted in Fig. 2. Note that K is defined so /

that gp(r, 0) = Kfr ! where g,(r, 0) is the stress normal to
the interface (see Fig. 1(b)).
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MECHANICS. Fig. 1{b) Boundary conditions used in the interface corner singularity
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subjected to shear.

Since the intensity of the stress singularity (i.e., K) char-
acterizes the magnitude of the stress state in the region where
the interface and stress-free edge intersect, this parameter may,
under suitable conditions, characterize flaw nucleation, the
initial growth of small preexisting flaws, or other aspects of
the failure process. Several experimental studies have inves-
tigated the use of a linear elastic, interface corner stress in-
tensity factor to predict the failure of relatively brittle bonded
materials, and these studies lend some support to its use (Gra-
din, 1982; Groth, 1988; Hattori et al., 1988). The failure of
bonded elastic-to-plastically deformable materials is also of
technological interest with application to glass or ceramic-to-
metal seals, soldered microelectronic components, and metal
matrix composites. For example, the failure of a thin ductile
adhesive layer used to bond to ceramic adherends together has
been the subject of recent studies (Evans et al., 1986; Cao et
al., 1988, and Dalgleish et al., 1988).

Reported as follows are the results of an analysis of the
interface corner stress state found in a thin, power-law hard-
ening ductile layer bonded between a pair of rigid adherends
and subjected to a shear loading. In particular, the intensity
of the interface corner singularity, referred to here as the plas-
tic, free-edge stress intensity factor K%, has been calculated for
a plane strain condition using a technique that combines results
of an asymptotic analysis of the stress singularity with those
of a detailed finite element analysis. This study examines the
effect of material, geometric, and load parameters on the value
of K%.

Asymptotic Solution for Region Near Interface Corner

The present analysis determines the order of the dominant,
interface corner stress singularity of type r* (6 < 0) for bonded
ductile and rigid quarter planes, and also the spatial variation
of stresses and displacements in the region dominated by the
stress singularity. Both Lau et al. (1987, 1988) and Duva (1989)
have analyzed related problems. The method of analysis used
here is similar to that carried out by Hutchinson (1968) in his
asymptotic analysis of crack-tip stress fields in a strain-hard-
ening material (i.e., the HRR singularity field); only boundary
conditions and angular domain differ.

Figure 1(b) shows the problem analyzed. As indicated, a
single elastic-plastic quarter-plane is considered, and a polar
coordinate system is centered at the interface corner. The pres-
ence of the bonded, rigid quarter-plane is specified by interface
boundary conditions. The four homogeneous boundary con-
ditions applied to the edges that form the interface corner are

U.(r, 0)=Uy(r, O)=0y(r, —m/2)=0,5(r, —1/2)=0. (2)
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The layer’s tensile elastic-plastic behavior is represented by the
Ramberg-Osgood relation

e=(0y/E)(0/0,+a(0/0,)"} 3)

where E is Young’s modulus, « is a material constant, o, is
yield strength, and # is the hardening exponent. The layer’s
response to multi-axial stress states is based upon a J,-defor-
mation theory of plasticity generalization of Eq. (3). A de-
formation theory of plasticity is physically reasonable only
under conditions of monotonic, proportional loading. It is
assumed, as it is in the HRR crack-tip singularity analysis, that
this condition is approximately satisfied. In the singularity
analysis, consideration is limited to the region in the immediate
neighborhood of the interface corner. In this region, the elastic
strains are negligible compared to plastic strains, so only the
nonlinear, power-law term of Eq. (3) enters into the analysis.
The differential equation governing the stress state at the
interface corner can be formulated in a straightforward manner
using the nonlinear, plane strain J,-deformation theory con-
stitutive relations, linear strain-displacement relations, and a
stress function of the form
6=r'¢(0), -n/2<0<0, r>0. )
Note, this stress function is used to investigate a stress sin-
gularity of type #~' (s < 1). Solutions with (1 — 1/#) < s
< 1 are of interest since they produce unbounded stresses and
vanishing displacements as the interface corner is approached.
The governing homogeneous, forth-order, nonlinear differ-
ential equation for ¢(6) will not be listed here since it is similar
to that used in the well-known HRR crack-tip singularity anal-
ysis (Hutchinson, 1968). The boundary conditions for the in-
terface corner singularity problem (Eq. (2)) take the following
form when expressed in terms of .

$(0) = (&~ 1)$(0) (50)
3(0)=(s(4n(l—s) +5~4)— () (5)
d(—1/2)=0 (5¢)
S(—1/2)=0 (5d)

Note that in the above (*) = 3/46.

The governing homogeneous differential equation and ho-
mogeneous boundary conditions define an eigenvalue problem
in s. This type of problem can be solved for a specified hard-
ening exponent n using a shooting method. In essence, this
method adjusts the values of s and ¢(0) until the boundary
conditions at § = —=/2 are satisfied (note that the condition
¢(0) = 1 can be arbitrarily applied in this eigenvalue analysis).
A fourth-order Runge-Kutta method was used to integrate the
differential equation, and a Newton’s method was used to
update the values of s and 65(0). MACSYMA (1989), a symbolic
algebra program, was used to develop the governing differ-
ential equation, and also to implement the shooting method
for solving the governing equation.

The solution for n = 1 corresponds to an incompressible,
linear elastic material. A solution for this case can be deter-
mined using an alternate approach (Reedy, 1991), and it has
been verified that the present method reproduces that solution.
A parameter tracking scheme was used to determine the initial
guess for s and ¢ for the » of interest using calculated values
for smaller values of n. Using this approach, results for hard-
ening exponents ranging from 1 to 13 have been attained with
no difficulty (calculations for higher values of n were not
attempted).

The calculated order of the interface corner stress singularity
(s — D) is plotted in Fig. 3 as a function of hardening exponent.
This plot indicates that the strength of the singularity decreases
rapidly with increasing hardening exponent; the value at n =
1is —0.41, while at n = 5 the value is —0.15. For a specified
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Fig. 3 Order of the interface corner stress singularity —(1 — s)as a
function of hardening exponent for a power-law hardening quarter plane
bonded to a rigid layer

value of » and the corresponding value of s, the solution for

stresses and displacements near the interface corner can be

determined to within a single constant, the intensity of the

singularity, using the calculated values of ¢ and its derivatives.
The stress intensity factor is defined here so that

ag(r, 0)=Kp~" (6)
gg(r, 0) is the stress component normal to the interface, and
K?% is called the plastic, free-edge stress intensity factor. If it
proved convenient, a strain intensity factor could also be de-

fined. In the region dominated by the stress singularity, dis-
placement, and stress quantities are then given by

U,= (ag,/E) (K3/a,)'r"*~V*10,(6) (7a)
Uy = (ao,/E) (K%/3,)" "~ D41 0,(6) (7b)
o, =K 'a,(6) (8a)
ap =Ko "' G4(0) (8b)
0,0 =Kr'~'6,4(8) 80
0.=Kor'~'6,(0) (8d)
om=K0r'"'6,,(0) (8e)

where o, is effective stress and o,, is mean stress. The functions
U.0), Up(6), 6,.(6), 56(0), 8,4(6), 5.(6), and 5,(0) are fully de-
termined by the asymptotic analysis. Although a complete
tabular listing of function values is not presented here, Table
1 does list values of s — 1, U(—#/2), Uy(—7/2), 54(0), and
0,6(0) as a function of the hardening exponent n. Note that
U(— =/2)and Uy(— =/2) are used to define displacements along
the stress-free edge, while 64(0), and 6,4(0) are used to define
interfacial stresses.

Finite Element Solution for the Intensity of the Stress
Singularity

Plane strain finite element calculations were carried out for
an idealized configuration that models a thin layer bonded
between rigid adherends. The layer has thickness 24, and length
2L. All calculations were carried out for an applied shear
loading. As shown in Fig. 4, the applied shear loading was
enforced by displacing the layer’s lower edge relative to the
fixed upper edge. One quarter of the layer was modeled with
boundary conditions consistent with a skew symmetric loading,
and L = 2.5 mm. Most calculations were performed for 4 =
0.125 mm (L/h = 20). Preliminary calculations showed that
the stress state at the center of the layer is uniform for this L/
h ratio, and consequently the results are appropriate for all
L/h values of 20 or greater. Figure 4 shows a typical finite
element mesh. The object of a calculation is to determine the
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Table 1 Quantities used to define displacements along the
stress-free edge and stresses along the interface of a plastically
deforming quarter-plane bonded to a rigid layer in the region
of the interface corner

n s— 1 U(-=/2) Oy~ 1/2) 5(0) 5,5(0)
1 —0.4054 1.2720 2.5222 1.000  0.5042
2 —0.2759 0.9646 1.8943 1.000  0.4871
3 -0.2126 0.6872 1.3622 1.000  0.4739
5 —0.1475 0.3318 0.6767 1.000  0.4563
7 —0.1135 0.1568 0.3288 1.000  0.4452
9 —0.0924 0.0735 0.1579 1.000  0.4375
1 —0.0779 0.0343 0.0753 1.000  0.4318
13 -0.0674 0.0160 0.0357 1.000  0.4274

Boundary Conditions

U;=Uy=0 along A
O1=Uy=0 along B

Entire mesh, Go=0,UyzU* alongC

Datail of mesh near free edge.

Detail of mesh near interface corner. There are 24 element rings.

Fig. 4 Typical finite element mesh used in analysis

value of the free-edge stress intensity factor K%, and for this
reason the mesh is highly refined in the region of the interface
corner. There are 24 rings of elements surrounding the interface
corner with radial nodal positions at r = 0, 0.033, 0.067, 0.100,
(10°'*/10 pm, where i = 1, 2, ..., 21. The finite element
calculations were performed with the ABAQUS code (1989)
using 4-node bilinear elements. The mesh shown in Fig. 4
contains 876 elements and has 1930 degrees-of-freedom.

As discussed in the previous section, the tangential displace-
ment along the stress-free edge in the region dominated by the
stress singularity is given by Eq. 7(a), and a plot of log(U,)
versus log(r) will be a straight line with slope n(s — 1) + 1.
The logarithm of the free-edge tangential displacements cal-
culated by the finite element method does indeed vary in an
essentially linear manner with the logarithm of distance from
the interface corner for 0.1 = r < 1.0 um for hardening
exponents of 3 to 13 (Fig. 5, each curve is defined by dis-
placement values computed at 9 nodal points). The values of
§ determined from the slopes of the lines in Fig. 5 are within
1.0 percent of the value determined by the singularity analysis.
The value of K% was determined from computed free-edge
displacements by a linear least square fit of

U/ (/B YO (= /" DI =0+ Cor - (9)
where C) and C, are constants (C; = K?), the value of s and
U/(— w/2) are known for a given value of the hardening ex-

ponent (see Table 1), and 0.1 < r = 1.0 pm.
The deformation generated by a shear loading is sketched
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Fig. 5 Displacement U, along the stress-free edge for v* = 0.10. From
the lower to upper curve n = 3, 5,7, 9, 11, and 13.

/ Deformed Center Line

C D

Fig.6 Deformed shape of a ductiie layer subjected to a positive a shear
loading

in Fig. 6. The calculated magnitude of K7 is the same at points
A, B, C, and D; however, K7 is positive at points B and C,
and negative at points A and D.

Results for a Soft Aluminum Adhesive Layer

Results for a thin, soft aluminum layer are presented first
(h =0.125mm, E = 69 GPa,» = 0.33, n = 5,0 = 0.5, 7,
= 11.5 MPa). This particular analysis can be considered to
model stiff adherends (e.g., alumina) bonded together with a
dead soft aluminum adhesive layer.

Calculated values of K% are listed in Table 2 and plotted in
Fig. 7 as a function of v, the shear strain in the center of the
layer. Note that v* = U*/h, where U" is the applied edge
displacement defined in Fig. 4. Values of K% are presented for
v = 0.001 to 0.100. These results are for a layer that is fully
yielded (y*/v, = 2 to 225, where y, = 7,/G). As anticipated,
Fig. 7 shows that K% increases in a power-law-like manner.
According to Ilyushin’s theorem (see Hutchinson, 1979, p. 59),
the solution to a boundary value problem with a single, mon-
otonically increasing displacement parameter A\, will have
strains that increase linearly with \, and stresses that increase
as A" when the material obeys a power-law hardening, J2-
deformation theory of plasticity (i.e., the linear term in Eq.
(3) is neglected). In the problem considered here, the applied
edge displacement is a monotonically increasing displacement
parameter. As the layer approaches a fully plastic condition
(elastic strains are negligible), the ratio of K%, a stress-like
quantity, to ¢", the shear stress in the center of the layer,
should approach a constant value. Table 2 shows this to be
the case.

The ability of K7 to characterize interface corner failure
processes is currently unknown. Clearly, to be of any potential
use the stress state characterized by K% must dominate a suf-
ficiently large region around the interface corner. One ap-
proach for characterizing the region dominated by the stress
singularity is to compare the angular dependence of stress
quantities as determined by the finite element analysis to that
determined from analytic considerations. Figures 8(a) and 8()
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Table 2 Calculated values of the plastic, free-edge stress in-
tensity factor K7 as a function of applied load (n = 5, h =
0.125 mm)

n » K71

g |Kf| ————r

v (MPa) (MPa-mm® 475 ¥ 01975
0.001 13.20 18.16 1.870
0.002 16.22 21.66 1.815
0.003 17.99 23.82 1.799
0.004 19.28 25.42 1.792
0.005 20.30 26,71 1.788
0.010 23.67 31.00 1.780
0.019 27.05 35.34 1.775
0.033 30.38 39.65 1.774
0.041 31.84 41.54 1.773
0.050 33.08 43,15 1.773
0.100 38.13 49.71 1.772
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Fig.7 Calculated plastic, free-edge stress intensity factor K7 as a func-
tion of nominal applied shear strain (n = 5, h = 0.125 mm)

plot such results for effective and mean stress, respectively.
Close to the interface corner, at a radial distance of 1.2 ym
(0.01 h) or less, the calculated angular dependence is in excellent
agreement with that determined analytically for an interface
corner singularity. This verifies the accuracy of the finite ele-
ment calculation, and also indicates that the asymptotic anal-
ysis did actually identify the dominate singularity. At a radial
distance of 37 um (0.3 &), the calculated effective and mean
stress begin to show a substantial deviation from that expected
when the singularity dominates. Figures 9(a) and 9(b) compare
the interfacial stresses o,5 and o, calculated by the finite element
method with the one-term, singular asymptotic expressions
over a distance /# (125 um). These results suggest that interfacial
normal stress is closely approximated by the one-term singular
expression to a distance of roughly 0.25 4 (30 um), while
agreement between asymptotic and calculated interfacial shear
stress is only fair at comparable distances. Finally note, when
+* = 0.01, the calculated effective plastic strain is less than
0.10 when distance from the interface corner exceeds 0.01 A

(1 um).

Fully. Plastic Solutions

. The relation for the plastic, free-edge stress intensity factor
for a semi-infinite layer (i.e., L/kh > 20) subjected to shear
and at load levels such that elastic strains are negligible is taken
to be of the form

KP=o"h' "By(n) (10)

where Kfp is the fully plastic, free-edge stress intensity factor,

¢* is the nominal shear stress in the interior of the layer, 2A
is layer thickness, s — 1 is the order of the stress singularity,
and B, (n) is a function defined for shear loading. Note, B;(#)
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Table 3 Calculated values of the fully plastic, free-edge stress intensity factor Kf” for various material

and geometric parameters

2h E 7, o kP
CASE (mm) o (GPa) (MPa) n (MPa) (Mpa- mm )
1 0.250 0.5 69.0 1.5 3 84.0 82.1
2 0.250 0.5 69.0 11.5 5 38.1 497
3 0.250 0.5 69.0 11.5 7 27.1 41.2
4 0.250 0.5 69.0 11.5 9 22.4 37.5
5 0.250 0.5 69.0 11.5 11 19.9 35.5
6 0.250 0.5 69.0 11.5 13 18.3 343
7 0.250 0.1 100.0 5.0 5 29.0 37.9
8 +0.125 0.5 69.0 11.5 5 38.1 45.0
Note: v* = 0.10 in all cases; v, = ((37,)/E); and ¢ = 7,(v"/(ay,))"”" when fully plastic
1.25 T T T 80 T T T
Finite Element Solution pa o1
1.00 |- | ———— Asymptotic Solution (¢ rg = Ky Org [() ]}
60 |- _
e i 5
L e S 1 £
e 7 s
S 1<)
‘ 0.50 - é&
——— Asymptotic Analysis
Finite Etement Solution
——— t/h=0.01
0.25 - t/h = 0.09 7]
v/h =017
—— rh=030
0.00 L ' ' 0 : . .
0.0 0.4 0.8 1.2 16 0.00 0.25 0.50 0.75 1.00
|01 (radians) r/n

Fig. 8(a) Variation of effective stress with angular position for y* =
0.01. Note: 5.(0) = oJ(KFr~1).

1.25 T T T

()

Sm

Asymptotic Analysis
Finite Element Solution

t/h = 0.01
0.25 - . r/h = 0.09 B
r/h = 0.17
— — rh=030
0.00 L L L
0.0 0.4 0.8 1.2 1.6
| 0| (radians)
Fig. 8(b) Variation of mean stress with angular position for y* = 0.01.

Note: 5,(8) = o l(KiP ™).

and s ~ 1 depend only on hardening exponent 7. As discussed
above, Ilyushin’s theorem indicates that K% yaries as o" when
the layer is fully plastic, consequently, B, will not depend on
a load-like parameter. Furthermore, B, is independent of the
material parameters « and 7, since the stress solution for a
spec1f1ed o" does not depend on these parameters when the
layer is fully plastic.

Table 3 lists calculated values of Kf ? for eight different plane
strain calculations. Cases 1 thru 6 examine the effect of varying
the layer’s hardening exponent. Case 7 changes yield strength,
Young’s modulus, and Ramberg-Osgood parameter «. Case 8
reduces layer thickness by 50 percent. Tabulated results are

Journal of Applied Mechanics

Fig.9(a) Comparison of finite element and asymptotic interfacial shear
stress for yv* = 0.01

150 T T T

Finite Element Solution

125 [ Asymptatic Solution (6 =K% r =)

[Gg(0)| (MPa)

o
=]

25

0 ! L
0.00 0.25 0.50

r’h

Fig. 9(b) Comparison of finite element and asymptotic interfacial nor-
mal stress for y* = 0.01

0.75 1.00

for a shear loading where the nominal shear strain y* at the
center of the layer is 0.10.

Finally, note that the value of K;” for different values of
hardening exponent are not directly comparable since the order
of the singularity is also a function of hardening exponent.
Also note that the dimensions of Kf” in Table 3 are MPa-
mm! S,

The calculated values of Kf" listed in Table 3 confirm Eq.
(10). First consider the calculated results for layers with the
identical hardening exponent, but with different Young’s mod-
ulus and yield strength (Cases 2 and 7). As expected, the ratio

of the calculated KJ’;" ’s equals the ratio of their characteristic
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Table 4 Quantities used to define the fully plastic, free-edge
stress intensity factor Kf”

n 1 -3 B,(n)
3 0.2126 1.52
5 0.1475 1.77
7 0.1135 1.92
9 0.0924 2.02
11 0.0779 2.10
13 0.0674 2.16

shear stresses. This confirms that the function B, does not
depend on layer yield strength. As indicated by Eq. (10),
K;p is expected to vary with layer thickness as h' 7S when the
hardening exponent and ¢* are held fixed. For example, when
the hardening exponent equals 5, a 50 percent reduction in
layer thickness should cause a 0.5%14% = 0.903 reduction in
Kfp . This is confirmed by comparing Cases 2 and 8. Cases 1
thru 6 define the dependence of Kfp on the hardening exponent.

These values have been used to define the function B,(n) in
Eq. (10) (see Table 4).

Finally note that with proper interpretation, the fully plastic
results presented here can be applied to steady, power-law creep
by identifying strain with strain rate.
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Fluid Flow and Heat Transfer in
the Crescent-Shaped Lumen
Catheter

M. A. Ebadian’

Fellow ASME. This paper presents a numerical investigation of fluid flow, frequency response in

the fully developed region, and convective heat transfer in the entrance region of

2 the crescent-shaped lumen catheter. The catheter is commonly used in the biomedical

H. Y. Zhang field to clinically diagnose heart disease and also to treat vessel blockage in surgery.

The catheter is subjected to a constant wall temperature. The solution to discreti-
zation of the momentum and energy equations is obtained by using the numerically
generated boundary fitted coordinate system. According to this method, the complex
domain in the physical plane is transformed into a regular square domain in the
computational plane. The control volume-based finite difference method is then
used to discretize the transformed governing equations. Results for the thermal entry
region flow, frequency response, and heat transfer are presented in graphical form.
The representative curves illustrating variations of the flow rate, frequency response,
damping coefficient, bulk temperature, and the Nusselt numbers with pertinent
parameters in the entire thermal entry region are plotted. The optimized catheter
design for diagnostic use in the medical industry is also presented graphically.

Department of Mechanical Engineering,
Florida International University,
Miami, FL 33199

Introduction

The Dual Lumen Pressure Monitoring (DLPM) catheter is
commonly used to diagnose heart disease in the clinic and also
to treat vessel blockage in surgery (cf. Pepine et al., 1989;
Intaglictta, 1987). A pressure measurement system used in
clinical catheterization for a left heart study is shown in Fig,.
1. A catheter is attached via Luer connectors to a manifold
that in turn is connected to a contrast medium (ionic diatri-
zoate) and pressure transducer. The transducer may be at-
tached directly to the manifold or via extension pressure tubing,
as illustrated. The active element of the pressure transducer is
a resistive bridge deposited on, or attached to, the diaphragm
and connected, via isolation amplifiers, to the recording sys-
tem. This system is usually treated as a second-order instrument
in biomedical engineering. For this instrument, designers as-
sume laminar flow in a circular tube, having the parabolic
velocity profile characteristic of steady flow (cf. Doebelin,
1990). Traditionally, the catheter is built with circular lumens.
Both lumens are commonly used to measure pressure within
the bloodstream. In measuring valvular gradients, the catheter
is positioned across the aortic valve in such a way that the
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distal end of the catheter exposes the larger lumen to the blood
within the ventricles, thus allowing measurement of ventricular
pressure. The smaller lumen is exposed to the blood contained
within the aorta allowing it to measure aortic pressure. In
addition, since the temperature of the fluid to be injected is
different than the blood temperature, thermodilution tech-
niques have been extensively studied for almost 40 years. In
this case, the indicator is ‘‘cold’ and its ‘‘concentration’’ is
on temperature. Distinct fluctuations in pulmonary arterial
temperature related to cardiac and respiratory cycling result
in a fluctuating thermal baseline. In some critically ill patients,

V+

V-

potient isolat

To Preamplifier and Recorder

Catheter

Transducer
dome
diaphragm

to contrast medium

Manifold

syringe for contrast injection

Fig. 1 Typical pressure measurement system used in clinical cathe-
terization
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Fig. 2 Lumen cross-section and characteristic length

these fluctuations approach the magnitude of the temperature
change that follows a ‘‘cold” injection (cf. Brathwaite and
Bradley, 1968; Weisel et al., 1975). Although electronic av-
eraging provides a more stable baseline, iced rather than room
temperature injection must be used in patients to provide a
sufficient signal-to-noise ratio. Thus, knowledge of tempera-
ture distribution in thermodilution cardiac output is very im-
portant. It is therefore important to numerically investigate
the thermal properties of the catheter,

The problem with this design is that when one tries to meas-
ure pressure through the smaller lumen, damping of the signal
occurs. Obviously, this creates a problem since an ideal catheter
design would have both lumens providing adequate flow char-
acteristics in independent, but equivalent, frequency response
systems. In order to solve this problem and still be able to keep
other characteristics of the catheter unchanged, it is proposed
that the cross-sectional geometry of the smaller lumen be re-
placed with a crescent-shaped geometry, thus increasing the
cross-sectional area of this lumen. Although this crescent-
shaped lumen geometry has provided excellent frequency re-
sponse and thermal properties, the medical industry strongly
believes that the cross-sectional area of the lumen can be op-
timized to have the same flow as well as the frequency response
characteristics of the larger lumen. Being able to approximate
numerically the optimum lumen cross-sectional area is the
problem. Most of the available mathematical models do not
take into consideration anything other than circular geome-

tries. Therefore, these models are not able to calculate the flow
rate and the frequency response of the crescent-shaped design.
In fact, inspection of a literature survey by Shah and London
(1978), Kakac et al. (1987), Eckert et al. (1989), Martynenko
(1988), Eckert et al. (1990), and Pepine et al. (1989) indicates
that no work has been cited in this area of study. At present,
one must be able to predict the flow rate and frequency re-
sponse of catheters that have irregular lumen geometries. This
must be accomplished through computer simulation since bench
testing of these irregular designs is not practical due to the
high cost involved in extrusion tooling. Therefore, the problem
examined here is concerned with convective heat transfer in
the entrance region of the catheter, Fig. 2. A uniform wall
temperature boundary condition is considered. Additionally,
the fully developed flow is considered to be laminar and the
physical properties are also assumed to be constant (cf. Doe-
belin, 1990). The developing temperature in these ducts is de-
termined by solving the three-dimensional energy equation by
applying the control volume-based finite difference method.
The boundary fitted coordinate system (BFCS) by Thompson
et al. (1974, 1977, 1982) is used to transform the crescent-
shaped physical lumen to the regular geometry of a rectangular
tube. Thus, one can use regular geometric methods to inves-
tigate the process of the crescent-shaped lumen fluid flow.
Those finite difference expressions at and adjacent to the
boundary may then be applied using grid points only on the
intersections of coordinate lines without the need for any in-
terpolation between points of the grid, Fig. 3. Avoiding in-
terpolation is particularly important for boundaries with strong
curvature or slope discontinuities, both of which are common
in physical applications. Likewise, interpolation between grid
points not coincident with the boundaries is particularly in-
accurate with differential systems that produce large gradients
in the vicinity of the boundaries. As a result, the character of
the solution may be significantly altered in such cases. In many
differential systems, the boundary conditions are the dominant
influence on the character of the solution, and the use of grid
points not coincident with the boundaries thus places the most
inaccurate difference representations in precisely the region of
the greatest sensitivity. Generation of a curvilinear coordinate
system with coordinate lines coincident with all boundaries is

Nomenclature
Pr = Prandtl number, »/ar Z = dimensionless axial coordi-
a = characteristic length, a=r, R; = dimensionless inner arc ra- z
A = cross-sectional area (m?) dius, r/a nate, D,RePr
A,/A; = frequency response R, = dimensionless outer arc ra-
¢, = specific heat (kJ kg™' k) dius, r,/a Greek Symbols
D;, = hydraulic diameter (m) R, = dimensionless round corner oy = thermal diffusivity (m? )
e = dimensionless center distance radius, r./a ; = coefficient, Eq. (15)
of the lumen, Eq_ (24) Re = Reynolds number, ﬁD;,/V B — coefficient, Eq. (16)
e. = dimensionless center distance T = temperature (K) y = coefficient. Eq. (17)
of inner and outer arcs, L/r, T; = inlet temperature (K) 5 = dimensionless round corner
f = skin friction factor, T,, = circumferential duct wall of the lumen, Eq. (25)
_Du(dp/dz) temperature (_If) ¢ = damping coefficient
1/2p%* u = velocity (ms™') . § = dimensionless temperature
h = heat-transfer coefficient 4 = mean velocity (ms™") (T, —TY/{T,—T)
(Wm™2K™H u’ = dimensionless velocity, 8, = dimensionless bulk tempera-
J = Jacobian matrix of transfor- e ture (Tyy— T3)/(Tw—T5)
mation, Eq. (22) Dj(dp/dz) u = dynamic viscosity (N s m™?2)
k = thermal conductivity (Wm ™! U = dimensionless mean velocity » = kinematic viscosity (m?*s™})
) K™Y X,y = transversal coordinates (m) p = density (kg m‘3)
m = mass flow rate (kg s~ X, Y = dimensionless transversal co- ¥ = coefficient, Eq. (19)
Nu = Nusselt number, hD)/k ordinates, x/a, y/a £, 7 = transversal coordinates in
p = pressure (N m™?) z = axial coordinate (m) the computational plane
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Fig. 3 Grid configuration: (a) the physical plane, (b) the computational
domain
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thus an essential part of a numerical solution. A BFCS is
generated by solving a set of partial differential equations,
which may be of the hyperbolic, parabolic, or elliptic type.
We have used elliptic equations with Dirichlet-type boundary
conditions requiring simplification of the physical coordinates
for the end points of the curvilinear coordinate lines in the
physical domain. The crescent-shaped cross-section is used in
the transducer/tubing system. The results presented are in terms
of isotherms, variations of the bulk temperature, and the Nus-
selt number in the entire thermal region of the crescent-shaped
lumen catheter for various values of the dimensionless center
distance of lumen, e, and the dimensionless round corner of
lumen, §. Also, in order to have the same flow rate in each
lumen, the crescent-shaped lumen catheter is optimized based
on some specific features of the biomedical equipment making
different shaped lumens match each other, and the Nusselt
number is graphically presented against the § values. It is be-
lieved that the availability to the medical field of such an
analytical/numerical solhution is essential for a better designed
catheter.

Basic Equations

Consideration is given to laminar flow in a catheter having
a crescent-shaped cross-section geometry, as shown in Fig. 2.
The physical attributes are concerned with fully developed
velocity and developing temperature, where thermal properties
are assumed constant. Neglecting the axial diffusion term in
the energy equation, the governing equations in terms of di-
mensionless variables are expressed as

Momentum Equation.
*u*
aY?

2. %
+%7‘;-2—+1=0 1)

Energy Equation.
2 % 3%
az" oy ax®
where, in the above equations,
R
Di(—dp/dz)’ a

1 " u
== , ==, f=——=
> (fRe)u =
V4 HDh
= Re=—2
Dpe T,

In the above equations, u* represents the dimensionless velocity
and is taken from the solution of the momentum Eq. (1); 6 is
the dimensionless temperature; D, is the hydraulic diameter

@

VA

Pe=RePr. (3)
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of the crescent-shaped lumen catheter; and X, Y, and Z rep-
resent the two dimensionless transversal coordinates and one
dimensionless axial coordinate, respectively. Equations (1) and
(2) are also subjected to the following boundary conditions:

u* =0, =0
on the wall of the cresent-shaped lumen catheter (4)
ou” a0 . .
X O_’ X 0 on the symmetrical line 5)
and
w'=1, =1, Z=0 (6)

Parameters of Interest

The characteristics of fluid flow and heat transfer in the
catheter can be represented by the product of the friction factor
and the Reynolds number, the dimensionless bulk temperature,
and the Nusselt number.

2
/Re=2Lk (—d~p> )
wi dz
Gb(Z)=S UGdA/S UdA (8)
A A

Accordingly, considering the energy balance in a control
volume of length, AZ, the local Nusselt number may be com-

puted as follows:
1 | D;| a9,
— | =2 =2 9
40, [aZ:I dz ®

Likewise, with a length of AZ, the mean Nusselt number is
given by the relation

NUZ,TZ —

L b, (10)

AZ
where Z designates the length of the catheter.

Num, 7=

Solution Procedure

The difficulty with the complex nature of the quasi-crescent
Iumen catheter may be circumvented by a numerically gen-
erated coordinate system. The basic idea of the boundary fixed
coordinate system (BFCS) is to have a coordinate system such
that the body contour coincides with the coordinate lines. One
of the methods often used to accomplish this goal was suggested
by Thompson et al. (1974). The transformation between the
physical coordinates (X, Y) and the boundary fitted coordi-
nates (£, n) is achieved by solving two Poisson equations,
namely,

’t 0%
axt o= (an
%y
x> aYZ_Q’ (12)

where P and Q are nonhomogeneous terms, or contracting
functions, for the grid distribution in the computational do-
main. Alternatively, it should be remarked that by using Egs.
(11) and (12), a problem arises about the proper algebraic
representation of the irregular boundaries in the physical do-
main. Thompson et al. (1974) inverted Eqgs. (11) and (12) into
the transformed domain (£, %), where the boundary is easier
to specify. At the same time, using the method proposed by
Thomas and Middlecoff (1982) for selecting P and Q, Egs.
(11) and (12) are inverted into

FX X *X X X
ate |- +y| ==+ ¥ —| =0
“[ag”d’ ag] 28 3¢an 7[anz an]

(13)
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Table 1 Grid independence test for the fully developed flow
e =010 e=0.19 e =040
s 31x21 41221 31x21 41x21 3121 41x21
fRe Nu , Re Nu y fRe Nuy Re Nu_y fRe Nu oy fRe Nup
0.0001 55.063 2189 55095 | 2196 56.664 2.430 56.682 2.437 58.752 2.844 58.762 2.851
0.001 55.129 2.191 55.168 2.198 56.715 2.432 56.732 2.439 58.777 2.845 58.787 2.853
0.01 55,732 2216 55.771 2.223 57.189 2.453 57.208 2,460 59.063 2.860 59.081 2.867
0.1 61.287 2461 | 61339 2.468 61.550 2.660 61.577 2.667 61,657 2.999 61.672 3.006
02 66.435 2.740 66.484 2.747 65.553 2.894 65.581 2.901 63.949 3.150 63.965 3.157
0.3 70.497 3.031 70.538 3.037 68.651 3134 68.682 3.139 65.644 3.207 65.667 3.303
0.4 73.473 3.334 73.523 3.339 70.851 3.377 70.894 3.381 66.788 3.437 66.834 3.441
0.5 75.384 3.644 75.462 3.646 72.181 3.618 72.258 3.618 67.434 3.564 67.497 3.566
0.6 76.264 3.948 76.392 3.946 72.061 3.836 72.527 3.837 67.627 3.672 67.727 3.671
07 76.109 4216 76316 4.209 72.350 4013 72.555 4,007 67.392 3750 67.537 3.747
0.8 73.904 4.391 74.424 4.387 70.398 4.105 70.942 4105 66.695 3.788 66.853 37683
0.9 71.075 4.338 71.673 4.336 68.744 4.037 69.127 4.023 65.136 3.786 65.271 3,771
0.99875 63.140 3.669 63.383 3.664 63.815 3.658 63.929 3.656 63.679 3.663 63.887 3,658
and where
62Y+¢3Y 28 62Y+ '62Y+\I/6Y 0. (14) X Y 4XaY 22)
ol T Pyl Y| a7z rel i = A T A aer
i3 0% | dEdn an am| ot an  on ot
where ax1? Tay]? Invoking a control volume-based finite difference procedure,
a=|— + | =— (15) the partial differential equations are reduced to a standard
9 an system of algebraic equations. The energy equation is then
AX 80X 9Y dY solved by a marching technique. The cross-derivative terms
==+t (16)  appearing in the above equations are treated as source terms.
0t dn  Of dn . ;
) 5 The presence of those terms necessitates the adoption of a
_|8x + Yy a7 marching procedure in conjunction with an iterative approach
- . . - *
Y dE a¢ for calculation of the fully developed velocity field, #", and
2 2 the developing temperature field, 6, at each axial position, Z.
X °X 0dY 0°Y s .
——t— The convergence criterion chosen for each dependent variable
9t d¢” ok ¢ is given by the inequality,
¢=- (18) K
2 2 krl_ gk
axX aY M <10~* (23)
2 T 37 IFEFH a ’
¢ o¢ ij Moo
9y 8 ; where F tefers to the dependent variables, »* and 6, respec-
bl 3_12_/ +ai( _‘9_)2( tively; k stands for the kth iteration, and el is the infinite
dy dy"  dn dy norm. When the convergence temperature field is satisfied, the
¥=— (19)  bulk temperature and the local Nusselt number are tabulated

5[5

under the conditions of the given grid distribution on the
boundaries. The resulting grid construction is shown in Fig. 3
for the case studied in this paper.

Finite Difference Solution
Equations (1) and (2) can be transformed as follows:
ou*

o241 ou”
e 17| %3 P an

a (1 u*  ou”
+E7‘ {} [7 an -8 BEZB+J_=0 (20)

a6 a0
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from Eqgs. (8) and (9).

To ensure the accuracy of the results presented, numerical
tests were performed for the catheter to determine the effects
of the grid size. The tabular results are given in Table 1.
Comparison of these results indicates that for the case studied,
the grid size has no effect on the results. Therefore, the results
that are illustrated in the figures are based on a grid size of
31 x21. The axial marching step size of Az=0.00025 is used
in all the computations.

Optimization Procedure

The biomedical engineer requires an optimized design of the
lumen catheter for diagnostic use in the hospital. The lumen
geometry configuration will be optimized by certain constraints
of some specific features of the biomedical equipment, making
different shaped lumens match each other. This paper inves-
tigates all possibilities from a scientific point of view. At this
point, the optimization procedure is a problem with no con-
straints. During a cardiac catheterization procedure, several
different catheters are used. Since the contrast medium flowing

Transactions of the ASME
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Fig. 4 Variation of the flow rate

within the catheter must be heated, it is important for the
engineer to find heat transfer and flow parameters of the quasi-
crescent lumen according to the regular geometry lumen that
is matched with it.
Two geometric parameters are defined for expressing lumen
geometry changes. These are
e.— (R,— Ry)
e=——"—- 24
2R, (24)
and
p— Rr
[Ro— (Ri—e;)]/2
where, in the above equations, e and & represent the dimen-
sionless center distance and the dimensionless round corner of
the lumen, respectively. Thus, the objective function in terms
of e and § may be written as

Nu, 7= Nu(e,8). (26)
The function, Nu, is explored by the changes, e and 5. The

Nu, r function curve is found and plotted and one can easily
see the heat transfer characteristics from the graph.

b 25

Results

In this paper of primary importance are the results of the
calculations of flow rate, frequency response, and damping
coefficient of the fully developed velocity field, the bulk tem-
perature distribution, ,(z), the local Nusselt number, Nu, 7,
and optimization of the geometry parameters in the thermal
entrance region of the crescent-shaped lumen catheter. The
effects of three major parameters, namely the axial distance,
Z; the dimensionless center distance of lumen, e; and the di-
mensionless round corner of the lumen, §, are discussed in this
section. In addition, the study of grid independence for the
numerical solution has been executed by choosing different
combinations of grid sizes and marching steps. This is shown
in Table 1. The solution is terminated when the asymptotic
solution is achieved.

The crescent lumen in the dual lumen catheter has excellent
features when compared with the double circle lumen. The
crescent lumen provides more diversity than the circle lumen,
if the main circle lumen is fixed. When the designer wants to
obtain, as accurately as possible, the frequency response of
the small lumen without any change in the catheter diameter
and any alteration to the main circle lumen, the main advantage
is obvious. It is a well-known fact that the maximum flow area
is very limited due to the small circle lumen. This is because
the small circle lumen diameter is severely limited by the main
circle lumen and the catheter diameter. Therefore, the flow
rate and frequency response improvements are limited. How-
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Fig. 5 Variation of the frequency response: (a) resonant, (b) fiat

ever, the crescent lumen can break these limits and can provide
a larger flow rate. Therefore, the following section is devoted
to the enhancement of flow rate and frequency response.

Figure 4 illustrates the variation of the flow rate with respect
to the dimensionless round corner of the lumen, §, for different
values of the dimensionless center distance of the lumen, e. It
is observed that the flow rate is enhanced as e increases. This
is due mainly to the large flow area, which causes a greater
flow rate. It is also noted that the flow rate achieves an op-
timum value. In addition, the flow rate is not proportional to
the area, because when the round corner is sharp, it will provide
more resistance force. At the same time, when the round corner
is less acute, the resistance force is smaller, which causes the
flow rate to increase. However, at the same time, the flow rate
decreases until §=0.5~0.6, after which the effect of the flow
area is dominant. Finally, the flow rate decreases as the round
corner radius enlarges.

Figure 5 illustrates that the frequency response increases as
eincreases and & decreases. The flow area is dominated by the
effect of the frequency response because more fluid is in the
catheter, thus causing the elastance to be higher.

Figure 6 shows the variation of the damping coefficient with
respect to the dimensionless round corner of the lumen. In-
spection of this figure reveals that the damping coefficient of
the crescent lumen decreases as parameter e increases. It also
illustrates that when the crescent lumen flow area is wider the
damping coefficient is lower. Also, one can find that the damp-
ing coefficient will not vary when 8 is less than 0.8, and changes
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Fig. 6 Variation of the damping coefficient

0.4898

0.2449

e=0.19 6 =0.0001
Fig. 7 Isotherms for § =0.0001 and e=0.19

sharply as § rises higher than 0.8. When the é value is small,
the lumen round corner is sharp, meaning more resistance, but
also has more fluid and will produce more elastance to com-
pensate. Effects of resistance and elastance decline when 6 is
smaller than 0.8. When & is greater than 0.8, resistance dom-
inates the effect because the flow area is too small to provide
enough to compensate with elastance.

Figure 7 represents the isotherms for a dimensionless center
distance of e=0.19 and a round corner of §=0.0001. Inspec-
tion of this figure indicates that the temperature reaches a
maximum value at the center of the medium and gradually
decreases and reaches a minimum value, 0, at the inner section
of the catheter. This corresponds with the boundary conditions
specified by Egs. (4) and (5).

Figures 8 and 9 represent variations of the bulk temperature
for different 6 and e parameters. Specifically, Fig. 8 represents
the bulk temperature distribution versus the dimensionless ax-
ial coordinate of the catheter for § =0.0001, withe=0.10,0.19,
and 0.40. Inspection of these curves reveals that the bulk tem-
perature is not strongly invariant with e at the entrance region
of the catheter. However, as the medium passes through the
catheter, the bulk temperature is dependent on the value of e.
This should be obvious since more surface area is now avail-
able.

Figure 9 represents variations of the bulk temperature with
the dimensionless axial coordinate for e=0.19, with § = 0.0001,
0.5, and 0.8. Inspection of the curves in this figure indicates
that the bulk temperature is dependent on the variations of
the dimensionless round corners of the catheter. Comparison
of Figs. 8 and 9 clearly reveals that the bulk temperature can
be increased only by increasing the dimensionless center dis-
tance of the lumen, and is independent of the variations of
the dimensionless round corners of the catheter.

Figures 10 and 11 represent variations of the local Nusselt
number for different e and § parameters. Specifically, Fig. 10
represents variations of the local Nusselt number against the
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Fig. 12 Optimizat‘ion of the lumen catheter

dimensionless axial coordinate for 6 =0.0001, with various val-
ues of e=0.1, 0.19, 0.4. Inspection of the curves in this figure
clearly illustrates that the local Nusselt number increases dra-
matically at the entrance region of the catheter as the center
distance of the lumen increases. This behavior is entirely dif-
ferent from that observed in Figs. 8 and 9. This is due mainly
to the definition of the diameter. However, this variation de-
creases gradually until it reaches the asymptotic value of 3.66
at the end of the catheter.

Figure 11 illustrates variations of the local Nusselt number
with the dimensionless axial coordinate for e=0.19, with
§=0.0001, 0.5, and 0.8. The explanation for Fig. 10 is also
valid here. However, comparison of Fig. 10 with Fig. 11 reveals
that the Nusselt number is strongly influenced by e, not 6. This
conclusion is consistent with the one already mentioned in Figs.
8 and 9.

Finally, Fig. 12 represents variations of the fully developed
Nusselt number with the dimensionless round corners of the
lumen for the various dimensionless center distances of the
Iumen of e=0.1, 0.19, 0.4, and 0.9. It is apparent from this
figure that the same Nu, r is achieved at 6=0.46 for e=0.1,
0.19, and 0.4.

Concluding Remarks

Fluid flow, frequency response, in the fully develop region
and convective heat transfer in the entrance region of the
crescent-shaped lumen catheter is numerically analyzed for
various parameters of dimensionless center distances and round
corners of the lumen. The boundary fitted coordinate system
is used to solve the difficulty induced by the computational
domain. To prove the accuracy of the proposed methodology,
an independent grid size test has been performed and the values
are tabulated in Table 1. Thermally developing heat transfer
with a fully developed velocity field, frequency response, and

Journal of Applied Mechanics

damping coefficient is obtained and presented in this paper.
The results indicate that an optimum value of §=0.9 exists,
which gives a maximum local Nusselt number for a given value
of e. The isotherms, bulk temperature, and the local Nusselt
number variations with the axial distance are graphically il-
lustrated. As expected, a large Nusselt number in the entrance
region of the catheter is obtained, approaching asymptotically
the fully developed value at a greater axial distance.
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Jormance, two elementary flow patterns are studied. These elementary flows each
depend on a single generalized motion coordinate whereas general planar motions
of a damper are described by two independent generalized coordinates. Momentum
and energy approximations for the elementary flows are compared with exact so-
lutions. It is shown that the energy approximation, not previously applied fo squeeze
films, is superior to the momentum approximation in that at low Reynolds number

the energy approximations agree with the exact solutions to first order in the Reynolds
number whereas there are 20 percent errors in the first-order terms of the momentum

approximations.

Introduction

Exact solutions for the response of squeeze-film dampers
including the effects of fluid inertia do not appear to be ob-
tainable. A number of approximate solutions for the effects
of fluid inertia in hydrodynamic bearings have been proposed.
Smith (1964-1965) obtained approximate inertia force coeffi-
cients for journal bearings and concluded that the principal
effect of fluid inertia was to introduce a virtual added mass
to the rotor. Subsequent studies of inertia effects have generally
employed methods which can be divided into three categories.
The first category, in which a perturbation series in Reynolds
number is used, is represented by the papers of Tichy and
Winer (1970), Jones and Wilson (1975), and Reinhardt and
Lund (1975). The second category, in which the inertia forces
are averaged across the film, is represented by the papers of
Constantinescu (1970), Szeri et al. (1983), and San Andrés and
Vance (1986). A third category represented by Tichy and Mod-
est (1978) is based on a stream function approach using a
linearized momentum equation. Recently Ramli et al. (1987)
compared the results of Smith (1964-1965), Reinhardt and
Lund (1975) and Szeri et al. (1983) and concluded that they
were in good agreement, especially for short bearings.

In an attempt to clarify the mechanics of squeeze-film damp-
ers we identify two elementary flow patterns which are com-
bined in a complete damper. We study these mechanisms
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separately and take advantage of exact solutions to compare
energy and momentum approximations for the inertia forces
developed. Both approximations rely on the fact, developed
in the previous literature, that the introduction of fluid inertia
in a thin film does not appreciably alter the velocity profile
within the film in the low Reynolds number range of typical
squeeze-film dampers. The fundamental approximation is that
the velocity field with fluid inertia remains exactly the same
as in the inertialess case. The pressure field and the force
response do, however, change when fluid inertia is introduced.
In the momentum approximation, the inertialess velocity pro-
files are introduced into the Navier-Stokes momentum equa-
tion and the equation integrated across the film to provide a
differential equation for the pressure. Integration yields the
pressure field and the force response. The energy approxi-
mation can generally be carried out by two procedures which
lead to equivalent results. In the first procedure the Navier-
Stokes momentum equation is premultiplied by the flow ve-
locity (making each term represent power per unit volume).
The inertialess profiles are then introduced and each term
integrated across the film to provide a differential equation
for the pressure. Integration yields the pressure field and the
force response in a procedure similar to that followed in the
momentum approximation. In the second procedure the in-
ertialess velocity profile is used to construct the fluid kinetic
energy and dissipation function and then Lagrange’s equation
is used to obtain the force response. In systems with a single
generalized coordinate, simple energy balance may also be used
to obtain the force response. Both the momentum and the
energy approximations fall in the second category of methods
mentioned above. Most workers have adopted procedures es-
sentially equivalent to the momentum approximation. The en-
ergy approximation was introduced by El-Shafei (1988). For
the elementary flow patterns studied here the energy approx-
imation gives more accurate results.
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Fig. 1 Inner cylinder of squeeze-film damper has displacement r and
velocity v with respect to outer cylinder

Two Elementary Flow Patterns

Consider the squeeze film damper sketched in Fig. 1. The
outer cylinder is fixed. The inner cylinder, which contains a
rolling element bearing and shaft, is free to move in the clear-
ance space. The annular space between cylinders is filled with
liquid. The fluid film is taken to have a depth b normal to the
sketch and the fluid flow is assumed to remain parallel to the
plane of the sketch in accord with the long-bearing approxi-
mation of lubrication theory. At the instant shown the inner
cylinder has arbitrary displacement r and arbitrary velocity v.
The region of the fluid film toward which the velocity is di-
rected is identified as the squeeze zone. Directly opposite is
the suction zone. Halfway between, where the film thickness
is temporarily stationary, are the channel flow zones. At in-
termediate locations the film undergoes a combination of the
squeeze-suction flow pattern and the channel flow pattern.

To see the channel flow pattern in its pure form consider
the square block of side 2R moving with velocity x in the
chamber of width 2(R + ¢) shown in Fig. 2. The clearance c is
taken to be small compared to R{c/R=0 (0.001) is typical
for a squeeze-film damper). The pressures in the enlarged
squeeze and suction zones are taken to be constants with the
only pressure gradients occurring in the thin films of thickness
hy=c—yand hy=c+y. We shall study the force response (i.e.,
the force required to move the block with specified velocity
x and acceleration ) for the system of Fig. 2 and compare
the results of momentum and energy approximations with the
exact solution.

To see the squeeze-suction flow pattern in its pure form
consider the square block of side 2R moving with velocity x
in the chamber of length 2(R +¢) shown in Fig. 3. Here the
pressures in the enlarged flow zones are taken to be constants
with the only pressure gradients occurring in the thin films of
thickness 4, =c~—x in the squeeze zone and h;=c+Xx in the
suction zone. Despite the simplicity of this flow pattern, an
exact solution accounting for the inertia in the fluid film is
apparently unknown if there is no limitation on the displace-
ment beyond x| <c. Here we obtain an exact solution for the
linearized limit of small displacement |x/cl — 0 and use it as
a basis for comparing the results of momentum and energy
approximations.

It should be emphasized that the models shown in Figs. 2
and 3 are introduced to clarify the mechanics of squeeze-film
damper flows and not for any resemblance to practical devices.
We believe that the energy approximation developed by El-
Shafei (1988) and applied here has not been previously applied
to squeeze-film flows. In particular, the extension of La-
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Fig. 2 Block has velocity x and acceleration X with fixed y. Pressure
difference p, — p; causes return flow through channels of width h, and
h,.

Fig. 3 Block has velocity x and acceleration X with fixed y. Fluid ex-
pelled from squeeze zone enters enlarged channel flow zones while fluid
from enlarged flow zones is drawn into suction zones.

grange’s equation to control volumes by means of Reynolds’s
transport theorem, as indicated by Eqgs. (42) and (43) and
Appendix B, is believed to be new. This approach has been
applied to realistic squeeze-film damper models by El-Shafei
and Crandall (1991).

Elementary Channel Flow Pattern

We focus our attention first on Fig. 2. The classical iner-
tialess flow is described and used as input to the momentum
and energy approximations for the case where fluid inertia is
included. The exact solution including inertia is then obtained
and the approximations are compared against it. In classical
lubrication theory a number of assumptions are made. The
fluid film is taken to be incompressible with homogeneous
viscosity u. Because the film thickness is so small and the
pressure gradient across the film is O (¢*/R?) (El-Schafei, 1991),
the pressure is assumed not to vary across the thickness. As a
consequence all velocity profiles in a uniform channel are linear
combinations of a linear profile (Couette flow) and a parabolic
profile (Poiseuille flow). In squeeze-film dampers the velocities
in the Couette component are of order ¢/R smaller than the
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velocities in the Poiseuille component and hence may be ne-
glected. Another consequence of the thinness of the films is
that the resultant of the wall shear stresses acting on the moving
element are of order ¢/R smaller than the resultant of the wall
pressures and hence can be neglected in calculating the force
response. We assume that cavitation does not occur anywhere
within the fluid.

In Fig. 2 when the square block moves to the rlght, continuity
requires flow to the left through the channels of width 4, and
hs. To describe the flows we use local x;, y; directed to the left
(in the positive x-direction). The classical Poiseuille flow in
the top channel has

B p—ps (2 %
=3 R \m K M
17 2 M
with v, identically zero. The volume rate of flow through the
channel of depth b is

hy bh3
0= | wbdn=3. "% 0. @)

A parallel calculation for the bottom channel gives a similar
for g4. Global continuity requires

2Rbx=¢r—q4 3)

which permits evaluation of the pressure difference p, — p; and
the force F required to move the block at velocity x
96uR’b .
F=(p - 2Rb=—5—
(p1—p3) h§+hi X €]

In the case where the block is centered so that y=0 and
hy= hy=c the fluid velocity (1) reduces to

6q, (v, ¥ R (v, %\ .
=== _ L) =6— ===
% bc (c e c\e o * ©)

and the force response (4) becomes
R .
F= 48;1.—(;3‘ bx. ©6)

We next consider approximate solutions taking account of fluid
inertia when the block has acceleration X as well as velocity
x. For simplicity of exposition we consider only the centered
case, y=0. The case y=0 is treated in Appendix A.

Approximate Inertial Solutions for the Channel Flow
Pattern

In the momentum approximation we begin with the as-
sumption that the velocity profiles with inertia are the same
as those for the inertialess case. Thus in the upper channel of
Fig. 2 we insert the velocity (5) in the Navier-Stokes equation
applicable when v,=0.

6 u2

6p2 auz 6u2
—no=p |5 tu Y
0x; ot 6x a3
and integrate with respect y, across the channel of width c.

Under the assumption that the pressure gradient is independent
of y, we obtain, after division by c,

@)

R . R .
— o0 Xt K
Wy X Hp & ®)

A similar result applies to the lower channel by symmetry.
Integration of (8) along the channel of length 2R provides the
pressure difference p, — p; and the force F required to develop
the velocity x and the acceleration X,
2
+2 % ©)

R3
F=(p1—p3)2Rb=48) — b< 120

This is the force response according to the momentum ap-
proximation.
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In this case there are three ways to obtain the energy ap-
proximation. The first procedure is parallel to the momentum
approximation. We begin with the same velocity profile (5)
but we first multiply each term of the Navier Stokes Eq. (7)
by u,(y,). Then after integration across the channel width and
division by the common factor Rx we obtain the pressure
gradient

ap, R . 12 R,

———=12u S5 x+=p—
“dx, uch 109 x

Integration along the channel then leads to the force response

R3 2
F=48 475 b < +i’—c—x>

(10)

11
100 1n
according to the energy approximation.

The second procedure makes use of Lagrange’s equation.
The kinetic energy in the two channels is
2R c

T=2bS de —p15dy,
0 02
148 R

i
if the inertialess velocity profile (5) is inserted for u,. The
Rayleigh dissipation function is one-half the rate of dissipation
of energy due to viscosity. For the two channels it is

2R c

1 auz
Rb_
48“‘;3“

(12)

(13)

D=

if (5) is inserted for u,. Since the fluid is incompressible there
is no potential energy. We now apply Lagrange’s equation for
the complete system of Fig. 2, neglecting the mass of the block
while assuming that an external force F in the positive x-
direction acts on the block. Furthermore, since most of the
fluid in the enlarged squeeze and suction zones is stagnant, we
neglect the small contributions to the kinetic energy and dis-
sipation function located in the vicinity of the entrances and
exists of the narrow channels. With these assumptions La-
grange’s equation reduces to

_D . d aT AT

ax dt ax’
When (12) and (13) are inserted in (14) the force response (11)
is obtained directly.

The third energy method makes use of simple energy balance.
During time interval df the work done by the external force
is partly dissipated by viscosity and partly stored as an increase
in kinetic energy; i.e., on dividing by dt we have

Fx = 2D+d—T

dt
When (12) and (13) are inserted in (15) and the result divided
through by x, the force response (11) is once more obtained.

There is a subtle point concealed in the preceding two energy
methods which make use of the kinetic energy (12) in the two
channels. The fluid in the channels does not remain a mass
system of fixed identity. The identity of mass in a channel is
continually changing as new mass enters one end and old mass
departs at the other end. In the configuration of Fig. 2, how-
ever, the velocity profile of the fluid entering a channel is
identical with that of the departing fluid so that the derivatives
of the energy for the mass in a channel are also the same as
those for a slug of fluid of fixed identity which is just passing
through. This situation does not occur in the configuration of
Fig. 3 and special steps must be taken to redress the difference
between the derivative of the energy for a system of fixed
identity and that for the energy within a control volume.

(14

(15)
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For a steady-state oscillation of the block in Fig. 2 with
X = Xg Sin wt the forces response (9) provided by the momentum
approximation is

R’ " Re .
F=A48ubxqw —5 coswz‘~—e sift wf (16)
c 12
where Re stands for the squeeze Reynolds number
2
Re=2¢ a7

The corresponding responsé (11) provided by the energy ap-
proximation is
R} R
F=48ubxow —5 coswtw—esin wt ). (18)
c 10
Both (16) and (18) approach the inertialess response provide
by (6) as the Reynolds number approaches zero. The coeffi-

cients of the inertia terms in (16) and (18) differ by about 20
percent.

Exact Solution for the Channel Flow Pattern

We now obtain an exact solution to compare with the ap-
proximations (16) and (18). By ‘‘exact’” we mean that it is the
correct leading term in an expansion in powers of the clearance
ratio ¢/R. 1t is, however, valid for arbitrary Reynolds number
as long as the flow remains laminar, and valid for arbitrary
amplitude of motion within the limits imposed by the geometric
requirement of uniform channel thickness.

An exact solution for the pressure and velocities in the i-th
film must satisfy the continuity equation

6u,» 6v,-
—+—=0, 19
dx; dy; (1
the thin film momentum equations
ap; du; du; ou; 2
—=—=pl—4u—+v;— | — i 20
ax, © <6t Uix, Vi gy, ) THY U 20)
op;
- By, @1)
ay;

and the appropriate boundary conditions. In the upper channel
of Fig. 2 with A, = ¢, the assumption that v, vanishes identically
requires that du,/dx, also vanishes if (19) is to be satisfied.
This leaves only the following linear version of (20)

py_ 0wy Puy
ax, ot Moy
and the boundary conditions u,=0 at y,=0 and y,=c to be
satisfied. For steady-state oscillation at frequency w, x(¢), #2 (),
1), p2(x2, 1), and F(¢) are taken as the real part of — ixpe™,
Uy (37)e™, Py(x)e™" and Fee™, respectively. Straightforward
solution leads to

(22)

1 dpP,
Us(32) = ——5 == [1— (s, 23
2 (2) S dv [1=6(n, o] (23)
with
sinh sy, + sinh s(¢c—y,)
= - 24
d)(YZ, C) Sinh sc ( )
where s is the complex root in the first quadrant given by
A
PE=i 2= Re. 25)
I

The solution for U,(y,) is of the same form as (23) when the
block is centered so that application of the continuity require-
ment (3) yields the pressure gradient and the amplitude of the
force response
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Y, /¢

Fig.4 Real and imaginary parts ot complex amplitude Uy(y.) of velocity
protile for Re =10 (A), Re = 25 (B), and Re =50 (C)

dapr, R &2
Fy= —4R°D — =4 — 26
o= —4R°D o ubxow Iy (26)
with
2(cosh sc—1
y(o = 2eoshse— ) @7)

sc sinh sc

Note that in the exact solution the pressure gradient is inde-
pendent of x, which implies that the velocity profile (23) is
uniform along the length of the film. The shape of the velocity
profile does, however, vary with the Reynolds number Re. For
small Re(0 < Re < 10), the velocity (23) does not deviate
apprecibly from the parabolic profile (5). In Fig. 4 the real
and imaginary parts of the complex velocity amplitude (23)
are displayed for Re =10, Re =25, and Re=50. At Re=10the
deviation of the real part from the parabola (5) is not visible
with the line width employed in drawing Fig. 4. What is ap-
parent is the emergence of a small imaginary part which has
little effect on the velocity amplitude but does indicate a de-
parture from uniform phase. At Re=25 and Re =50 the de-
viations from a parabolic uniform phase profile become
increasingly evident.

The complex force response (26) also depends on the Reyn-
olds number. The low Re approximation to (26) obtained by
expanding numerator and denominator of (27) in powers of
sc¢ and retaining terms up to the sixth power is

iRe

R3
Fo=48ubxyw ? <1 +—-> . 28)

10
Note that the real part of Foe™ using (28) is the same as the
inertialess solution (6) and that the imaginary part is the same
as the energy approximation (18). We call the real and ima-
ginary parts of (26) the amplitudes of the viscous and inertial
responses, respectively. The viscous force has the same phase
as the velocity phasor xowe™’ while the inertial force has the
same phase as the acceleration phasor ixyw’e™. The exact am-
plitudes obtained from (26) are plotted as functions of the
Reynolds number in Fig. 5 along with the corresponding am-
plitudes given by the momentum approximation (16) and the
energy approximation (18). We note that for small Reynolds
number, the response is primarily viscous, while for large Reyn-
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Fig. 5 Viscous and inertial force response to oscillation with displace-
ment amplitude x, and frequency « by exact solution (A), by energy
approximation (B), and by momentum approximation (C)

olds number, the response is primarily inertial—the crossover
occurring at Re = 10. The energy approximation for the inertial
response is quite accurate in the range < Re < 50. Both
approximations underestimate the viscous response while the
inertial response is overestimated by the energy approximation
and underestimated by the momentum approximation.

The inertial response of the energy approximation (18),
F,= —48ubxyw (Re/10) sinwf, can be decomposed into the
product

12 R

n=T0c ™
where m = 4R%bp is the mass of the fluid displaced by the block
and a= —xqw’sin wt is the acceleration of the block. The ef-
fective virtual mass of the fluid in the two narrow channels in
Fig. 2 is thus 1.2mR/c, which is about three orders of mag-
nitude greater than the mass of the fluid displaced by the block
or about two orders of magnitude greater than the mass of
the block itself if the fluid is lube oil and the block is metal.
Note that as the clearance ¢ is diminished we have the para-
doxical situation that the virtual mass increases as the actual
mass of the fluid in the channels decreases.

29

Elementary Squeeze-Suction Pattern

We turn to the configuration of Fig. 3 where the film on
the right is being squeezed while the film on the left undergoes
suction. The inertialess flow is described and used as input to
the momentum and energy approximations for the flow with
inertia. The results here are nonlinear in the displacement x
due to the varying film thickness (h;=c—x and A;=c+x) and
nonlinear in the velocity x due to the convective terms in the
fluid acceleration. An exact solution for these nonlinear effects
is unknown. We obtain an exact solution for a linearized small
amplitude oscillation and find as in the channel flow case that
the energy approximation is superior to the momentum ap-
proximation. .

In the squeeze film at the right in Fig. 3 there is small
transverse velocity v (¥, #) of order x and large longitudinal
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velocity u, (x;, ¥1, ¢) of order xR/c. With large constant pres-
sure reservoirs at top and bottom the film flows are inde-
pendent of the fixed value of y. The longitudinal flow pattern
is symmetric about the block center with the flow upward in
the upper half and downward in the lower half. The symmetry
of the squeeze and suction flows implies that p,=p,. Global
continuity applied to those films shows that the flow rates
away from the block center in the squeeze film, and towards
the block center in the suction film, must increase linearly with
the distance x; from the block center. The profile of the lon-
gitudinal velocity in the squeeze film of thickness A; in the
inertialess case has the parabolic form (5) but must have linearly
increasing flow rate g, (x;) in order to satisfy the global con-
tinuity requirement

g1 (x1) =xbx. (30

The resulting velocity field

poban A _ox(n A

"bhy \h, H ho\n 1
varies linearly with x; and parabolically with y, and also de-
pends linearly on the block velocity x and nonlinearly on the
block displacement x=c— h;. The transverse velocity which

satisfies the local continuity requirement (19) and the boundary
conditions v, (0)=0 and v, (k)= — x i

2 3
v ()= —6x <ﬂ —”—).

G

— 32
2h 3k 32)
The film pressure p, which satisfies the inertialess versions of
the momentum Egs. (20) and (21) along with (31) and (32) is

x (R*—x;
Pr(x)=6p h—l i + D2

A parallel analysis applies to the suction film at the left of Fig.
3 so that the force F required to impart the velocity x to the
block is

R

F=bS [p1 (x15 hy)dxy — p3(xa, By)dxs)
-R

1 1) .
=8,ubR3<;Z—%+h—§> x. (34)

Note that when A; = iy = c the force required in the inertialess
squeeze-suction case here is one-third the corresponding chan-
nel flow force (6) for the same block velocity x. The force
here is linear in the block velocity x but nonlinear in the block
displacement x.

33

Approximate Inertial Solutions for the Squeeze-Suction
Pattern

In the momentum approximation for the squeeze film at the
right of Fig. 3 we begin with the longitudinal momentum Eq.
(20) and insert the inertialess velocity profiles (31) and (32).
Assuming that the pressure gradient is independent of y; we
integrate with respect to y, across the channel of width 4, and
divide through by 4, to obtain

3 . . 12%°
—ﬂ=xl(12;1‘%x+ﬁx+—x> 35)
1

6x1 hl 5 h—% '
Taking p, (R, h)=p, and p,(— R, h))=ps=p, we integrate

(35) to get
2 _x . .12 %
R-x (12—“—x+£x+——)-€— .

Py = 36
Dr—D2 > h% h 5 h% (36)
After a parallel analysis for p3—p,, the force F required to
move the block with velocity x and acceleration X according

to the momentum approximation is

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



R
F= bS (p1dx) — padxs)
R

11
=8bR’| pul—+-3
(i)
o (1 1N . pf1 1 .y
+ e (=) 4L [ 5-5 .
12 <h1+h3> **s (h% h§> X}

The first two terms are linear in the block velocity and accel-
eration while the final term arising from the two convective
terms in (20) is quadratic in the velocity. When p=0, (37)
reduces to the inertialess result (34).

There are again three ways to obtain the energy approxi-
mation. In the first procedure the longitudinal momentum Eq.
(20) for the squeeze film at the right of Fig. 3 is premultiplied
by u,, the velocity profiles (31) and (32) are inserted, each term
is integrated with respect to y; across the channel, and divided

6 p ..

by xx, to obtain
125 x+= 126 5
ax h3 5 hl 35 h2

3p1
in place of the momentum approximation (35). The subsequent
integrations for the pressure and the required force follow the
same path as outlined above and lead to the energy approxi-

mation

F=8bR| u( St s) 242 (et

- VRN 10 \h, " h
170 (1 1Y) .,
o <h2 h§>x} (39)

in place of (37).

The second energy procedure uses Lagrange’s Eq. (14). Since
the transverse velocity is of order ¢/R smaller than the lon-
gitudinal velocity the kinetic energy in the squeeze and suction
channels may be taken as

R hll R h3
T:bS dxlg —pu%dyl—i-bg dx3S —p1iddy,
-R 02 -R 0 2

1 1) .
= bR3 2 2
o 5v3)

37

(3%

(40)
and the Rayleigh dissipation function may be taken as
R My fou
D=bS de —u< 1> dy
_R 1()2 ay !
R 1 {8u,
+b g de -u< dy
» 3 . 2*\5y, 3
=4ubR? —1—+i X2 (4D
e VY R

The kinetic energy (40) is that of a fixed identity of fluid mass
which occupies the two channels at a particular instant of time.
It is convenient to set up a control volume congruent with the
boundary of this fluid mass at a particular time ¢. As time
evolves the control volume remains fixed in space while the
fixed identity of fluid mass changes its shape: the squeeze film
gets thinper and the suction film gets thicker. Some of the
fluid of fixed identity near the ends of the squeeze film is
expelled from the control volume and some new fluid, not part
of the mass of fixed identity, is drawn into the control volume
at the ends of the suction film. In order to evaluate the energy
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derivatives required in Lagrange’s Eq. (14) it is convenient to
use the relations (see Appendix B)

d(90)) _d (9T, § 7
dt\ax ) dt \ ax $0%
8Ty 0T 00
ax  dx s 0Ox

v,dS 42)

ds (43)
where T, is the total kinetic energy (40) in the control volume,
and 7 is the kinetic energy per unit volume at points on the
surface S of the control volume where the normal component
of fluid velocity, out of the control volume, is v,. For the
control volume enclosing the squeeze and suction films in Fig.
3, the two regions where fluid is being expelled extend from

=0to y,=h, at x;= — R and at x; =R and the two regions
where new fluid is drawn into the control surface extend from
y3=01t0 y3=~h; at x3= — R and at x3=R. These four regions
contribute to the second term on the right of (42). In each
region the kinetic energy per unit volume is of the form 7= —
1/2 pufand v, = u;sgn x; where u, is given by (31) evaluated at
X = xR and u; is given by the corresponding inertialess suction

profile
2
x5 (n %
x5, <h3 h§>

evaluated at x;= +R. The total contribution to the second
term on the right of (42) is

) hy R
i
0 1 1 i
BEOR (v A\ 108 ., (1 1
-SO [6]@3 <h—3—p dy% :—é?prx h_%_h_ﬁ . (45

The corresponding evaluation of the second term on the right
of (43) leads to a result which is just one half of (45). With
these results included, the use of (42) and (43) to evaluate the
energy derivatives when Lagrange’s Eq. (14) is applied to (40)
and (41) leads directly to the required driving force (39).

The third energy method is based on the energy balance
statement (15). Here again it is necessary to realize that the
kinetic energy involved is that of a system of fixed identity.
To compute its time derivative using a control volume, it is
convenient to use the relation (see Appendix B)

dT, dT,
—i——ci’+<§>ru,,ds
N

us(x3, y3, )= (44)

dt  dt “6)
for the control volume enclosing the squeeze and suction films
in Fig. 3. The second term on the right of (46), evaluated like
the corresponding terms in (42) and (43), has the value

(47

When (15) is applied to (40) and (41), with the derivative
evaluated by use of (47), the result, after division by x, is
precisely the same driving force (39) as obtained by the other
two energy methods.

. For steady-state oscillation of the block in Fig. 3 with x=x,
sinwt, the force response (37) provided by the momentum ap-
proximation becomes

R | 1+3e%inwt
F=16ubx 55— COSw!
] [(1 — e%sin*wr)’ cosew
_Re  sinwt 24 ezcgs.zuit 48)
121—esmwt 5 1—¢sin“wt

where ¢ =xp/c. The energy approximation (39) becomes
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—16 bwa 1 + 3e%sin’wr cos wf
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HOXW "3 | (1= Psinary’ ©
_Re si121 th 34 eze(;s.zwt 49)
10 1 —-€"sin“wt 7 1—¢"sinwt

under the same circumstances. Both these approximations re-
duce to the inertialess result obtained from (34) when Re=0.
The discrepancies in the coefficients in the inertia terms of the
two approximations are of the order of 20 percent.

Linearized Solution for the Squeeze-Suction Pattern

An exact solution to the momentum Eqs. (20) and (21) and
the continuity Eq. (19) for squeeze-film geometry must include
the nonlinear contributions of the convective acceleration terms
and satisfy boundary conditions on the moving channel walls.
The low Re approximations furnished by (48) and (49) suggest
that these two phenomena contribute O (%) effects to the force
response where e =Xx,/c is a measure of the smallness of the
motion. Here we obtain a linearized solution correct to first
order in €, but not restricted to low Re, by neglecting the
convective acceleration terms in (20) and by satisfying the
boundary conditions at the average locations of the moving
channel walls.

For steady-state oscillation at frequency w, x(f), F(¢t), and
the fluid film parameters in the squeeze film at the right of
Fig. 3, v (x, N t), vl (0208 t), and p; (X, t) are taken as the
real parts of —ixee™, Foe™, Ui(x1, y)e*’, Vi(y)e*’, and
Py (x)e™, respectively. The longitudinal velocity amplitude
profile U; which satisfies the global continuity requirement
(30) as well as the linearized version of the longitudinal mo-
mentum Eq. (20) is

¢0’1, C)
1 —¥(c)
where the functions ¢ and y are defined in (24) and (27). The
transverse velocity amplitude V,(y,) which satisfies the con-
tinuity Eq. (19) and the boundary conditions V(0)=0 and
Vi{c) = —xpw is

g
4
GD

The pressure amplitude Py (x;) which satisfies both the lon-
gitudinal and transverse momentum equations, (20) and (21),

is
R*-x
[ 2 lil + P

A parallel calculation provides the pressure amplitude P; in
the suction film so that the force amplitude Fy required to
maintain the oscillation is

U, = xpw (50)

cosh s(c—y;)—cosh sy,
scsinh sc¢

Xow

1=y(c)

—cosh sc+1
Vl= — .

UXow .S'2 C2
2¢ 1—-y(c)

Py= (52)

v K 4 R &
F0= S_Rb(Pldxl "“P3dX3) =§[Lb.X'QOJ ? T——\I/(C_)

This force applies to any Reynolds number so long as the flow
is laminar, but is only valid to first order in e=Xxy/c. The low
Re approx1mat10n to (53), obtained by expandmg Y(c) up to
the sixth power in sc, is

R Re
Fy= 16p.bx0w C <1 +i 10)

note that this is equivalent to the force prov1ded by the energy
approximation (49) when terms of order ¢? are neglected. For
small ¢, the relative accuracy of the momentum and energy
approximations as functions of Reynolds number for the
squeeze-suction flow pattern is the same as that for the channel
flow pattern displayed in Fig. 5.

(53

(54
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Conclusion

Two elementary flow patterns, which are combined in prac-
tical squeeze-film dampers, were analyzed -separately. Mo-
mentum and energy approximations for inertial flows, based
on the assumption that the inertialess velocity profiles remained
unaffected by the presence of inertia forces, were presented.
These approximations were compared with an exact solution
in the case of the channel flow pattern, and with an exact
linearized solution; valid for small amplitude oscillation, in
the case of the squeeze-suction flow pattern. It was verified
that in these cases the velocity profile with inertia does not
deviate much from the inertialess profile in the Reynolds num-
ber range 0 < Re < 50. The force responses are satisfactorily
estimated by either momentum or energy approximations in
this range. The energy approximations are, however, more
accurate (see Fig. 5). They agree to first order in Re with
expansions of the exact solutions in powers of Re whereas the
momentum approximations have deviations in the inertial
components of the order of 20 percent.

For films of comparable dimensions and with small dis-
placements of the block from the central position, the viscous
and inertial components of the force response for the elemen-
tary channel flow pattern are about three times greater than
the corresponding components of the force response for the
squeeze-suction flow pattern, and these components are nearly
linearly proportional to the block velocity and acceleration,
respectively. The magnitude of the inertial component in-
creases nearly linearly with Re and crosses over the magnitude
of the viscous component at about Re=10. For larger dis-
placements the force response becomes nonlinear as indicated
by (A9) for the elementary channel flow pattern and by (49)
for the squeeze-suction pattern.

The momentum approximation and the first method of ap-
plying the energy approximation involve substantially similar
calculations. The second energy method using Lagrange’s
equation can be significantly simpler, although care must be
exercised to distinguish between a system of fixed identity and
the changing contents of a fixed control volume (see Appendix
B). In systems with more than one generalized coordinate,
energy balance does not provide a complete solution. However,
for the elementary flow patterns considered here with the single
generalized coordinate x, energy balance does provide a com-
plete solution with slightly less calculation than Lagrange’s
equation.
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APPENDIX A
Channel Flow Pattern When 2, % h,

For the momentum and energy approximations the velocity
profiles of the inertialess case are taken as

u =£q_2 Y2 Y2 ” _6614 &_)ﬁ
2" bhy \h, M bhy \hs H)
When these are inserted in (7) and in the corresponding equa-
tion for u,, and the equations integrated across the films, and

divided by the film thicknesses, the momentum approximation
yields

=P s B P

2R bh 1250 % by
The flow rates g, and g, and their derivatives are eliminated
between the two equations of (A2) and the continuity Eq. (3)
to obtain a linear differential equation for the pressure dif-
ference p;— p; as a function of the block velocity x(£). The
force F(t) = 2Rb(p,— py) required to produce this motion
satisfies the differential equation

B P d + u + p d F
hz 12h, dt 12h, dt
o d\ fp, p dy.
=96R%b t+—— ) | z3+—— A3
(hz 12h, dt> (hi 124, dt> x (A9
according to the momentum approximation.

The energy approximation starting from (Al) proceeds in a
parallel manner. All three energy techniques lead to a pair of
equations similar in form to (A2) but with coefficients of
12/10 before the g, and g, terms (compare Eqs. (8) and (10)
for the corresponding different when h,=h,). The force re-

quired, according to the energy approximation, thus satisfies
the differential equation

., p d g, p d
[(hz 10h2dt>+< +10h4dt>]F

d I p d\ .
=96R% (H+--2) (B4 L-2) 5 (a4
<h2 10, dt) <hi 10, dt> ¥ (A9
Note that (A3) and (A4) reduce to the simpler relations (9)
and (11) when hy=hy=c.
Within the channels 2 and 4 the exact solution (23) for the
velocity amplitudes are

(A1)

=12 -5 bha @+ @a= ds.  (A2)

1 ap,
Sza’ “[1—oWs, )

where the subscript i takes the value 2 or 4 corresponding to
the channel. The corresponding flow rate amplitudes

Uiy = (A5)

hy
0i=b S Udy; (A6)
0
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are

bh; dP;
o=-—3-1

A7
us® dx; (A7)

=¥l
where the ¥ function is defined in (27). If these flow rates are
inserted in the continuity Eq. (3) and the equality of the pres-
sure gradients in the two channels is noted, the pressure drop
amplitude P, — P; and the force amplitude F, are obtained as
follows:
8ubR>xows”

2c—hyy (hy) — hat (he)’
This is the exact solution for the complex force amplitude
required to oscillate the block in Fig. 2 at frequency » and
amplitude x,, taking account of the inertia and viscosity in the
channels of width A, and h4. Note that it reduces to (26) when
hy=hs=c. The small Reynolds number approximation, ob-
tained by expanding the  functions up to the sixth power in

Sh,', is
Re 73 Re Q
<1+110 62> (1 llO
— 3
F0—96p,bR Xow h L Re Re h% +h3 . R h
4 102 U 10

which is equivalent to the energy approximation (A4) for the
special case when x(¢) is the real part of — ixge™”

F=2Rb(P,~P;)= (A8)

> (A9)

APPENDIX B
Control Volume Evaluation of Energy Derivatives for
a System of Fixed Identity

Let (G, -+ 5 Gus G1» - - - » qn) be the density of some
extensive fluid property that depends on n generalized coor-
dinates g;(¢) and n generalized velocities g;(¢), i=1, ..., n.
Let the total mass of fluid within an enveloping surface Sy
constitute a system of fixed identity. As time evolves, the
volume ¥V} enclosed by Sy will, in general, change its shape
and move about. At a particular time ¢ let V; coincide with a
stationary control volume V with boundary surface S which
coincides with the system envelope S;;. At this instant the total
system property corresponding to the density ¢ is

2= |
Vi

The time rate of change of &, at this same instant can be
evaluated by using Reynolds transport theorem (Shames, 1982)
which accounts for the rate of change of ¢ within the control
volume and for the transport of matter across the control
volume surface S. If the vector particle velocity at an element
dS of the surface S is t and n is the unit outward normal
vector, Reynolds theorem may be written in the form

odV==2a.
14

odV= S ®1)

ddy; S dé (§> .
=), @ AV § eneids (B2)
or as
dd;, d<I>c,, (§)
—I= v, dS (B3)

where v, is the outward normal component of fluid velocity
on S. The density function ¢ may stand for the kinetic energy
per unit volume, 7, in which case (B3) reduces to (46), or ¢
may stand for the derivative of the kinetic energy density with
respect to a generalized velocity, d7/3¢; in which case (B3)
becomes the justification for (42).
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The concept underlying the Reynolds theorem for the
evaluation of time derivatives can be extended to derivatives
with respect to generalized coordinates. When a generalized
variable has a differential increment dg;, the vector displace-
ment r of a particle on the surface S has the differential in-
crement

dr =~ dg;.

%, (B4)

The derivative of the system property ®; with respect to g; at
time ¢ is obtained by summing d¢/d¢; over the control volume
and accounting for the transport of matter across its surface
S as follows:

by,
——f=S —dV+<§>¢>n- (BS)
a‘Ii aQI
By inserting the classical identity (Goldstein, 1959)
b 9t (B6)
dq; 9dq;
and introducing v,=n-t we write (B5) in the form
2% 6<i> (§> av
JEfi_PFew n B7
aq; ¢aq, B

With ¢ representing the kinetic energy density 7 and g, rep-
resenting the block displacement x in Fig. 3, (B7) reduces to
43).
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Contact With Friction Between
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Department of Mechanical Engineering,
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Two Elastic Half-Planes

In the present paper the problem of contact with friction between two elastic bodies
is formulated in the form of variational inequalities using half-plane assumptions
for the elastic behavior. The formulation fits directly into a computational method

developed in a previous paper and some numerical examples investigating the effects
of using dissimilar elastic constants in the bodies and of using different load paths
in the application of the external forces are given.

1 Introduction

The purpose of the present paper is to give a variational
formulation of the contact with friction between two elastic
half-planes with dissimilar elastic constants. The contacting
half-planes are assumed to be linearly elastic and isotropic so
that their elastic behavior is given by Flamant’s solution for
a point force on the edge of an elastic half-plane. For the
contact interface we assume unilateral contact conditions in
the normal direction and Coulomb’s law of friction in the
tangential direction. These assumptions can of course be ques-
tioned from both a physical-experimental and from a math-
ematical point of view. These issues are, however, not addressed
in the present paper. The stated constitutive laws are assumed
to be valid, and the analysis proceeds from that point.

An inherent difficulty when treating contact problems using
half-plane assumptions is the arbitrary constants present in the
force-displacement relations (see Egs. (1) through (3) and com-
ments in Johnson (1985) and in Gladwell (1980)). In three-
dimensional problems using half-space assumptions this dif-
ficulty does not occur since it is possible to determine the rigid-
body constants by assuming that displacements and rotations
at points infinitely distant from the applied load are zero. But
in the plane case this removes only the constants associated
with rigid-body rotation and not the constants associated with
rigid-body translation; and making an arbitrary choice of con-
stants cannot be readily interpreted as fixing a particular ref-
erence point. In previous works where contact problems have
been solved using the Flamant solution for a point force on
an elastic half-plane, this difficulty has been circumvented by
differentiating the relations to obtain a system of integral equa-
tions involving the surface gradients of the displacements.

In the present paper it is shown how the difficulty of the
half-plane case can be avoided by calculating the displacements
relative to a point on the contact surface itself and how the
contact between two elastic half-planes can thus be given a
reciprocal variational formulation. This formulation is for-
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mally identical to the formulation used by Johansson and
Klarbring (1992) for a rigid punch problem and the numerical
method developed in this paper can be used directly. Thus a
method is obtained which solves half-plane contact problems
very accurately yet is completely general in the choice of elastic
constants, initial gap between the bodies, and load-path, and
which also includes a rotational degree-of-freedom and a mo-
ment in the loading.

In Johnson (1985) solutions are given for some two-dimen-
sional cases, without coupling between the normal and tan-
gential directions, by using integral equations based on relations
between the contact tractions and the derivatives of the dis-
placements. Important progress with formulations of this type
was made by Spence (1973) who solved the case of normal
indentation with friction of a flat or power-law profiled punch
into an elastic half-plane. This line is followed by Nowell et
al. (1988), where the coupled case is solved for a case with
second-order initial gap and normal and tangential loading
using a method involving numerical solution of integral equa-
tions. A similar approach is also followed by Bjarnehed (1991)
for the normal indentation of a rigid punch into a prestressed
orthotropic half-plane.

2 Governing Equations

Consider two elastic bodies that are pressed together by some
external forces, Fig. 1. The problem is considered as two-
dimensional and the bodies are modeled as elastic half-planes.
Quantities associated with the lower half-plane will be denoted
by superscript 1 and quantities associated with the upper half-
plane by superscript 2. The displacement fields of the bodies,
in the coordinate directions, will be denoted by v} and v% in
the x-direction and v} and v% in the y-direction.

" The bodies are assumed to be in contact on some segment
S, of the plane y=0 and the traction on the bodies in this
segment can be represented by the components pr and py in
the x and y-directions, respectively. These tractions are equal
in magnitude but opposite in direction for the upper and lower
body, respectively. Here the convention that py and p; are
positive when acting in positive coordinate directions on the
lower body is chosen. The externally applied loads M, N, and
T will be defined at the end of Section 2, and are positive when
acting in positive coordinate directions on the upper body.

SEPTEMBER 1993, Vol. 60/ 737
YASVE

r copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 1 Contact between two elastic half-planes

In the following discussion the origin of coordinates will be
used as a reference point and referred to as x;. This point is
conveniently chosen to be the point where contact first occurs
but can also be any other point of the x-axis.

For a homogeneous isotropic linearly elastic half-plane in
plane stress, the relations between displacement and normal
pressure and tangential traction on the boundary can be written
as

vA(x, y) = Ss g (x, E)pn(E)dE+ S gnr(x, E)pr(£)dE
‘ (1a)

vr(x, y) = SS grn(x, Epn(E)dE+ S grrix, E)pr()dé
¢ (1b)

VR (x, y>=—S g (x, s)pN(s>ds+S ghr(x, E)pr(£)dE
Se
(1c)

vr(x, y) = S gin(x, Opn(E)dE - S grr(x, E)pr(E)ds.
Se Se (1d)
Here

2
gﬂvN=7rLE,[ —2n(r/d) -1+ u’)(i_—g)—]

2
I=1,2

+ b+ ch(x—£), (2a)

2
g[rr=—1—,[—21n(r/d)—(1+y’)12]+b1T+c’Ty’ I=1,2
rE P
(2b)
o= —;EI)I:(I'*' )}’( -§) (1—p’)arctan<x—;—£>]
+ay—chy, 1=1,2 ()
ghr= —;Ell)[(l+ === (x £) +(1 = v)arctan i;)—‘E)}
+ap—cr(x—£), I=1,2 (2d)
r=[(x-£)2+y%" Qe)

where E', =1, 2 are the Young s moduli for the lower and
upper body, respectlve[y and v, 1=1, 2 are the Poisson’s
ratios. In Egs. (2), ak, b, ¢, ar, b’ , and ¢k are undetermined
constants, with /=1 for the lower half-plane and /=2 for the
upper half-plane. In Eqs. (2¢) and (2b), dis a constant inserted
to give the logarithm a nondimensional argument. This con-
stant will be assumed to have the value of one in the units the
coordinate values are measured in, and will be dropped below
without loss of generality.

Constants with subscript N will be multiplied by py in Egs.
(1) and constants with subscript T will be multiplied by pr.
Combining (2) and (1), ak, bk, and cy will give rise to a rigid-
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body dlsplacement and rotatxon of each half-plane depending
on py, and &, b, and ¢ will give rise to a rigid-body dis-
placement and rotation depending on p;. Similar constants
occur in three-dimensional problems in which case it is cus-
tomary to determine these constants by prescribing that the
displacements and rotation should be zero at points infinitely
distant from the applied surface load. In the two-dimensional
case, if we prescribe that the rotation w=1/2[(dvy/0x) — (BUT/
dy)] is zero as x, y tend towards infinity, we find that cN cr
=0. The remaining constants, however, cannot be determined
in this manner. Next we spec1ahze Eqgs. (2) to pomts on the
surface y=0 and introduce diy=by—(1—v)/7E" and di= bl
and also put cy=ch=0 to obtain

ghwv= ——%mu—gud;v, =1,2 (3a)
9

{ 2 {

&rr= ~—E,Inlx—£|+d7, I=1,2 (3b)
e

1- !

- ZE:} +ahy, x<t

em=1 I=1,2 (3¢)
Yol +a§v, x>
L +ay, x<

ra)

{ 2E[ —

&ENT 1= I=1,2 (3d)
— 2E’ +aT, x>¢£.

The Green’s functions ghw and ghy can be interpreted as the
normal and tangential displacement at x due to a unit normal
force at £. Thus, these Green’s functions can be deduced from
the Flamant Solution of a concentrated normal force at the
edge of an elastic half-plane (see Gladwell (1980), Tlmoshenko
and Goodier (1982), and Johansson (1990)). Similarly, grrand
gNT can be deduced from the solution for a concentrated tan-
gential force. The same results can be obtained from equations
derived in, for example, Muskhelishvili (1963), without the use
of a point force.

The relations between deformation of the surfaces of the
bodies and traction on the surfaces implied by Egs. (1) and
(3) can be written compactly using an operator notation as

=Gn(x, PN) + Ghr(x, pr) +Dy(pn) + Ar(pr)  (4a)
vr=Gin(x, pn) + Grr(x, pr) + An(DN) + Dr(pr)  (4D)
vi= — Ghw(x, Pn) + Ghr(x, pr) — Dh(pn) + A%(pr)  (4c)
vh=Gin(x, pn) — Gir(x, pr) + AN(pn) —Di(pr).  (4d)

In this notation the operators G}\,N( ), I=1, 2 correspond to
the integration of the first term to the r1ght in (3a) multlplied
by pn(£) and SImllarly for Grr(+,+), Ghr(+,-) and Gin(+, ).
The operators DN( ), {=1, 2 correspond to the integration
along S, of the second term to the right in (3a) multiplied by
pN(E) that is the 1nteg1 al of pN(E ) mulnphed by the constant
dN, and 51m11arly for DT( ), AN( ), and AT( ). Note that the
operators Di(-), Dr(-), AN(+), and A%(-), /=1, 2 do not
depend on the coordinate x and thus give the same contri-
butions at every point along Sc.

The displacements vy and v¥, I=1, 2 can only be comPuted
to w1thm arbitrary constants due to Dy(-), Dr(+), AN(-),
and A%(-), but if we compute the relative displacement be-
tween two points on one of the half-planes, the contributions
from Dy (), Di(+), AN(-), and A%(-) will cancel. Thus, the
displacement of an arbitrary surface point relative to x; can

be written as
Tn=Ghn(x, pn) + Ghr(x, pr) — [Ghn(x, DN)

+Gpr(x, pr)lly,  (5a)
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D= Gin(x, pn) + Grr(x, pr) — [Gin(x, PN)

+Grr(x, pr)lly,  (5h)
U=~ Gan(x, py) +Ghr(x, pr) = [ = Giw(x, py)

+Ghr(x, pPlly,  (5¢)
3= G (X, p) — Gor(x, pr) — [Gon(x, D)

—Gir(x, p)lly,  (5d)

where the notation IX0 means that the preceding term is eval-
uated at xg.

If the surface of the lower body modes in the positive y-
direction and the surfaces of the upper body moves in the
negative y-direction, the gap between the bodies will become
smaller. This closure of corresponding surface points on the
upper and lower half-planes is the displacement relative to xq
in the positive y-direction of a point on the lower half-plane
plus the displacement relative to xp in the negative y-direction
of the corresponding point on the upper half-plane plus the
closure at x;. Thus

fin=vN— VN, — [0 = V& | ] + fino = 0N — Ta+ o
= Ghn(x, pn) + G (x, pn) + Ghr(x, pr) — Gir(x, pr)
—[Ghw(x, pn) + Gin(x, pN) + Gar(x, pr)
—Gur(x, Pl +ino  (6)

where @iyo is the closure at xp. When the bodies are in contact
at xo we have dno=0.
Next we define

uny=Grn(X, Dn) + G (X, D)

+Gnr(x, pr) — Gir(x, pr)  (Ta)
B=[Gan(x, pn) + Gan (X, D) + Gir(x, pr)
— Gir(x, pr)1lyy—dno  (7D)

so that @y is expressed compactly as

An=un—8. ®)
We have now made definitions necessary to express the ki-
nematical impenetrability condition between the bodies. The
closure of corresponding surface points must be smaller than

the initial gap s(x) plus any increase in the gap due to relative
rigid body rotation § of the bodies. Thus,

Un(x) —B=s(x) + bx. )]
The assumptions of unilateral contact can now be expressed

as
D=0 (10a)

Pn(uy—B—5-0x)=0 (10b)

i.e., the contact pressure is always compressive and (105) holds
since (9) is always fulfilled with equality if py#0.

Next we will study the tangential direction. To this end we
will compute the relative speed between the two surface points
corresponding to the same x-coordinate—one at the surface
of each body. If the bodies are in contact at this x-coordinate
this will be the slip speed. The relative speed is the speed of a
point on the lower plane relative to the speed of the lower
plane at x, minus the speed of the corresponding point on the
upper plane relative to the speed of the upper plane at x; plus
the relative speed at xp. Thus

Ar=0F— Dily— [0F~ 0F 1) + Ao
=Gin(x, PN) — Gin(x, Pn) + Girr(x, pr) + Grr(x, pr)
- [GITN(X, DN)— GZTN(X, DN) + GITT(X, pr)
+Ghr(x, P+ Ao (11)

where XTO is the relative speed at x,. Here and elsewhere in

Journal of Applied Mechanics

this paper a superposed dot denotes the time derivative. We
now define

L.ITE G;‘N(Xa pN) - GZTN(x’ pN)

+Ghr(x, pr) +Gir(x, pr)  (12a)
a=Gin(x, pn) — Gin(X, pn) +Ghr(x, pr) )
+Grr(x, pr)lly—Aro.  (12b)
We can now write (11) as
Ar=tir— . (13)

For the frictional behavior we assume Coulomb’s law, i.e.,

Ipr(x) |l splpy(x)l=7(x) (14a)
Ipr(x}l<7(x)=ur(x)—a=0 (14b)
pr(x)=7(x)=ur(x)—&=<0 (14¢)

pr(x)=—7(x)=ur(x) - &=0. (14d)

That is, there is a friction bound 7(x). If the absolute value
of the tangential traction is below this bound, there is no slip,
and if it is equal to this bound, the sign of the slip is opposite
to the sign of the tangential traction.

Finally, the externally applied forces, which give rise to the
contact traction, are characterized by their resultants at xy.
Thus

N:S pndx (15a)
Se
T= S prdx (15b)
S
M=S XPNOX. (15¢)
S,

(o

3 A Variational Inequality Formulation

As a basis for time and space discretizations the problem
will be formulated using variational inequalities. First, let Ty
be a space of sufficiently smooth fields of contact pressures,
and define a convex set of admissible such fields:

Sh= {qNEEN: gn(x) =0, N(t)=g gndx,
S,

M(t)y= g qudx}.
Sc

Here, N and M are regarded as prescribed functions of time.
Then, letting uy and py satisfy the relations of Section 2,
we have for all gy€Sy

SS (un=9) (ay=pwdx= | (un—5=B~00) (gn—pr)dx
C SC
(16)

+B§S (qN—pN)dx+0S Xx(gn—pn)dxz0.

C

The inequality follows since the last two integrals vanish
when both gy and py satisfy (15a) and (15c¢) since they belong
to Sy, and the first integral can not be negative because of (8)
and (10). Note that 8 can be moved outside the integration
since it is independent of x according to its definition (75).

Similarly, let £ be a space of fields of tangential tractions,
and define a convex set of admissible fields

St(pn) = {qreﬂr: lgr(x)l =plpn(x)], T(t)=S qux}-
S

_ Note that this set is dependent on the field py€Sy. Letting
u, and pr satisfy the relations of Section 2 we have, similarly
to (16) for all g;€Sr(pN),
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S L.IT(CIT—pT)dX=S (L.IT‘O})(QT_pT)dx

Se Se

+ & S (gr—pr)dx=0. (17)
Se :

The inequality follows since the last term vanishes, since gr
and pr belong to S+(py) and the first integral to the right is
found to be non-negative by considering different slip situa-
tions according to (14). Note that & can be moved outside the
integration since it is independent of x according to (12b).

Finally, introducing (7a) and (124) into (16) and (17) we
obtain the following problem:

Problem V. Find pa: [0, T1—S% and py: [0, T1—SH(pn)
such that for all gn€ Sk, greSr(py) and f€[0, T]

S (Gaw(x, pv) + Grr(x, pr) —s) (gv—pNn)dx=0  (184)
SC

SS (Grn(x, pn) +Grr(x, pr)) (qr—pr)dx=0  (18b)

where Gan(+1-) =G, )+ G (-, (194)
Gnr(+5)=Ghr(+,)+Grr(+,") (19b)
Grn(+, ) =G, )+ Gin(-,") (19¢)
Grr(+,)=Grr(+, )+ Grr(+,") (19d)

with appropriate initial conditions prescribed. Here [0, 71 is
some time interval during which we are investigating the prob-
lem.

4 The Computational Method

Equations (18) are identical to the equations obtained in
Johansson and Klarbring (1992) except that the flexibility op-
erator now contains contributions from both bodies according
to Egs. (19). The computational method deviced in Johansson
and Klarbring (1989), which will be outlined as follows, can
therefore be used directly, if the calculation of the discrete
counterparts of these flexibility operators are modified.

The problem V is first discretized in time by introducing a
backward finite difference for the time derivative

Pty -‘pzv(tl—l)_

20)
L=ty (

pa(t) =
It is then assumed that the tractions are piecewise constant in
space over intervals of length 4. The integrals over ¢ in Egs.
(1) can then be performed in closed form. Finally, the integrals
over x explicit in Egs. (18) are evaluated using a one point
Gauss integration with the midpoints of the intervals A’ as
integration points. We then have problem V discretized in time
and space as follows:

Problem V7. Find PyeS% and Pre S”T(PN) such that for all
QneSY and Qe Sk

(GuwPy+ GrrPr—9)(Qn—Pp) =0
(GrnPn+GrrPr) (Qr—P7)
=(GrPn(1-1) + GrPr(4-1)) (Qr—P7)  (21b)

(21a)

where
Sn=1QNIQL=0, j=1, ..., M, N(t)=1'Qy,
M(1)=x'Qy) (22a)
SHPN)={Qr! 101 =pl P,
Jj=1, .., M, T(t)=VQr). (22b)

Here the product GuyPy of a square matrix and a column
matrix results in a column matrix of displacements and is the
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discretized counterpart of the notation Gyn(x, py) used in the
continuous case above. Column matrices Py, Pr, s, and x are
the values of the functions py, p7, s, and x at the Gauss
integration points mentioned above and 1 is a column matrix
of ones.

Finally it can be shown (Johansson and Klarbring, 1992)
that the problem V! is equivalent to the following problem:

Problem Vi. Find Pr, Py, Aws A1y, A12> @1, €2, Y1, ¥2, and
s such that
C 0] [AT
0 T
0 M
0 =| N
AN S
— 0
L-¢.] Lo,
[(Grr -1 0 0 Goy -1 1 —P;
I 0 0 0 0 0 0[] v
0 0 0 0 x 00| 7
+ 0 0 0 0O ' 0 0 Y1 (23a)
GNT 0 —-x -1 GNN 0 0 —PN
I 0 0 0 al 0 0| A
-1 0 0 0 W 0 0f| A
ANEO —PNZO >\5VPN=0
An=0 —¢;=0 Mp¢,=0 (23b)
ATZZO ‘(szO )\,12(}52:0
A=GrPr(t;_) + GraPn(t-1) (23¢)

where I is the identity matrix.

It is possible to make physical interpretations of the various
multipliers in Egs. (23). Thus Ay and A, are related to the
slip speed between points in contact and v, can be identified
as the rotation — 4. vy, and v, can be identified with the relative
rigid-body motions of the bodies, but of course this interpre-
tation is useless in the present case since there are no definite
reference points for this motion. (See Johansson and Klarbring
(1992) for more details on these interpretations.)

The solution of Eqs. (23) provides the contact forces at time
¢; provided that they are known at time ¢,_,. Thus, to proceed
with the solution we assign loads N, 7, and M to the times £,
e Y1y by oo, Ey, in agreement with the previous time dis-
cretization. The problem is then solved as follows:

(1) Find PT7 PN’ >\N’ )\T\v AT'Z’ ¢h ¢27 Yis Y2 and Y3 such that
(23a) and (23bD) is satisfied for A=0, N=N(t,), T=T(t,),
M=M(1)), s.

(2) Compute A(4).

(3) Find PT) PN’ >‘N, Ale >\72, ¢19 ¢2’ Y1 Y2y and Y3 such that
(23a) and (23b) are satisfied for A=A(¢)), N=N(t),
T=T(t), M=M(1), s.

(4) Repeat steps (2) and (3) for f=1¢ until f=15.

To obtain a solution to problem V! we note that this is a
linear complementary problem (in the second statement of the
problem), save for the fact that the unknowns of the first four
equations are not required to satisfy inequality constraints and
complementary conditions. To obtain an LCP the first two
equations are eliminated with a simple Gauss elimination. The
following two equations cannot be eliminated in this manner
since this would imply the inversion of a singular matrix, but
a more involved rearrangement suggested by Canarozzi (1980)
can be used. The remaining equations are then solved as an
LCP. We then obtain Py directly, and P+ is obtained by noting
that the last two equations imply
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Finally it is noted that in the implementation of the foregoing
method, numerical problems were encountered due to large
differences in absolute value between elements of the Egs.
(23a). These problems were overcome by multiplying the first
and fifth equations of Eqs. (23a) with a large but arbitrary
factor. Thus A, Grr, Gry, 5, Gyr, and Guy were multiplied
by this factor when setting up the problem, and v, vz, 3, Ans
A1, and Ap, appeared in multiplied form in the solution.

5 Numerical Examples

The first example concerns the contact between two half-
planes with the same elastic constants, so that no coupling
between the normal and tangential directions occur. The initial
gap was taken as s(x) =x%/R, i.e., a Hertz-type problem. The
half-planes were first pressed together by a normal force — N
per unit thickness and then subjected to a tangential load
T=0.5-u- INI (see Fig. 2). The friction coefficient was taken
to be p=0.4. For this case a closed-form solution due to Cat-
taneo exists (see Johnson (1985)) and this solution is compared
to the solution with the present algorithm in Fig. 3 where

2INI
Po=""— (25a)
4 172
a=< l:;',R> . (25b)
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Fig. 4 Normal pressures and tangential tractions due to normal and
tangential loads with proportional loading

Here, E=E'=F? is the common modulus of elasticity and R
is defined above. In Fig. 3 and in the other examples in this
section the normal pressures were multiplied by a factor —1
to obtain positive pressures.

It is noted in Fig. 3 that the two solutions are almost in-
distinguishable, except for a small discrepancy in tangential
tractions at the point where the solution changes from stick
to slip conditions. This discrepancy is in part due to the par-
ticular discretization chosen in the calculations for the example,
since the approximate solution must necessarily break off at
a discretization point, and it does so at the discretization point
immediately outside the point where the Cattaneo solution
changes from stick to slip conditions.

Next a few examples with no known closed-form solution
will be studied. In particular, the dependence of contact trac-
tions on the load path and on the difference in Young’s moduli
E' and E? between the bodies will be investigated. To this end
we introduce S as a measure of combined flexibility and g as
the quotient between the Young’s moduli of the bodies

1 1
S=E+EE (26a)
q=E'/E%. (26b)

It is seen from Eqgs. (3) and (19) that Gy and Grr will not
change if the Young’s moduli are changed provided S is kept
constant. The changes in contact tractions will then depend
only on the coupling terms between the normal and tangential
directions, i.e., on Gnr and Gyy. In the following examples
the value of S was kept constant at the value obtained with
E'=E*=205000 [MPa]. A value of g was then chosen and E'
and E? were calculated from Egs. (26). Poisson’s constants
were »'=1*=0.3 in all cases. In the examples the initial gap
was taken to be s=cx* with ¢ such that s (34 mm)=0.5 [mm)].
The half-planes were discretized over a 69 [mm] wide segment
into 69 elements of equal width, the circular markers on some
of the curves indicating the midpoints of these intervals. The
friction coefficient was taken to be u = 0.4. First, the tractions
due to a normal force of N= — 100000 [N ] per unit thickness
and a tangential force of T=0.6pIN| were investigated. In
Fig. 4 the results are shown when the tangential load was
applied proportionally to the normal load as indicated in Fig.
5. The normal pressures show the typical saddle form of a
fourth-order problem. It can be noted that the tangential trac-
tions are much more dependent on the value of ¢ than the
normal pressures.
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Fig. 6 Normal pressures and tangential tractions due to normal and
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Fig. 8 Normal pressures and tangential tractions due to normal load
and applied moment with nonproportional loading

Figure 6 shows the corresponding results when the normal
load was first applied and the tangential load was applied after
the normal load had been applied as indicated in Fig. 2. Com-
paring Figs. 4 and 6 it is seen that the tangential traction is
heavily load-path dependent, and this is also the case with the
same elastic constants in both half-planes.

In the final example a normal load of N= — 80000 [n] and
a moment of M= ~400000 [Nmm] were applied. Figure 7
shows the result when the normal load and the moment were
applied proportionally, analogously to Fig. 5, and Fig. 8 shows
the result when the normal load had first been applied and the
moment was applied after the normal load had been applied
analogously to Fig. 2. Again the tangential tractions are much
more dependent of the value of ¢ than the normal pressures,
but does not show the large degree of load-path dependence
as when a tangential force is applied. Note that no tangential
tractions at all occur when ¢ =1 with this loading.

References

Bjarnehed, H. L., 1991, “‘Rigid Punch on Stressed Orthotropic Half-plane
with Partial Slip,”> ASME JOURNAL OF APPLIED MECHANICS, Vol. 58, pp. 128~
133,

Canarozzi, A. A., 1980, *‘On the Resolution of Some Unilaterally Constrained
Problems in Engineering,”” Computer Methods in Applied Mechanics and En-
gineering, Vol. 24, pp. 339-357.

Gladwell, G. M. L., 1980, Contact Problems of the Classical Theory of
Elasticity, Sijthoff and Nordhoff.

Johansson, L., and Klarbring, A., 1992, “The Rigid Punch Problem with
Friction using Variational Inequalities and Linear Complementarity,”” Mechan-
ics of Structures and Machines, Vol. 20, No. 3, pp. 293-319.

Johansson, L., 1990, *‘Rigid Punch Problems and Green’s Functions,” Thesis
for the Degree of Licentiate of Engineering, University of Linkdping, Linkoping,
Sweden.

Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cam-
bridge, U.X.

Muskhelishvili, N. I., 1963, Some Basic Problems of the Mathematical Theory
of Elasticity, P. Nordhoff.

Nowell, D., Hills, D. A., and Sackfield, A., 1988, “‘Contact of Dissimilar
Elastic Cylinders Under Normal and Tangential Loading,”” J. Mech. Phys.
Solids, Vol. 36, No. 1, pp. 59-75.

Spence, D. A., 1973, ““An Eigenvalue Problem for Elastic Contact with Finite
Friction,”” Proc. Camb. Phil. Soc., Vol. 73, pp. 249-268.

Fig. 7 Normal pressures and tangential tractions due to normal load

_ k € Timoshenko, S. P., and Goodier, I. N., 1982, Theory of Elasticity, McGraw-
and applied moment with proportional loading cory of e, Mehraw

Hill, New York.

742 ] Vol. 60, SEPTEMBER 1993 Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



P. Kelly
D. A. Hills

D. Nowell

Department of Engineering Science,
Oxford University,
Oxford 0X1 3PJ, England

Stress Field due to a Dislocation
on the Interface Between Two
Quarter Planes

Solutions are found for the state of stress obtaining along the interface between two
bonded quarter planes, induced by an edge dislocation located at an arbitrary point
on the interface. Explicit asymptotic expressions are given for the stress at points

close to the free surfaces.

1 Introduction

The characteristics of dislocations located at interfaces are
of great interest in applied mechanics; first, they enable us to
describe the motion, stability, and self-stress associated with
“‘real”” dislocations, in the sense of lattice flaws, and secondly,
they provide a useful Green’s function for the solution of
cracks located at the interface. The now classical solution of
Dundurs and Sendeckyj (1965) giving the solution for the be-
havior of an edge dislocation at or near an elastically dissimilar
circular inclusion embedded in an infinite matrix has been used
as the starting point for many crack solutions. For example,
it is ideal for use as a Green’s function for solving the problem
of a crack between bonded semi-infinite planes (Gautesen and
Dundurs, 1987), for cracks at or near circular inclusions (Er-
dogan et al. 1974) or for cracks in a half-plane near a free
surface (Nowell and Hills, 1987). The state of stress for an
edge dislocation at the junction of two half-planes has also
been found by Hui and Lagoudas (1990). A further funda-
mental problem which is of great practical interest is that of
an interface dislocation in the neighborhood of a free surface
(Fig. 1). As well as adding to the repertoire of solutions de-
scribing the behavior of real dislocations, the solution provides
the means of solving the surface breaking interface crack. This
problem is of great fundamental interest, as failure of inter-
faces may often be initiated at the edge of the joint, where,
for some material pairs, a singularity in the stress field occurs.
This singularity may be relieved by localized plasticity or by
immediate failure of the bond, both of which promote the
development of an edge-initiated interface crack.

2 Formulation
Consider two quarter planes (Fig. 1(@)), region “‘1”’, x =
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Fig. 1 Geometry of the problem

0, y < 0 and region ‘2, x = 0, y = 0 bonded along the
interface x = 0, y = 0 with a dislocation having Burgers vectors
by, b, located at a position (d, 0).

The primary purpose of this paper is to determine the stress
field ¢ due to the dislocation and this may be found by the
superposition of two solutions (as was done by Keer et al.
(1983) for the case of a dislocation in a quarter plane). These
are as follows:

(i) the stress field  which is itself a composite of two solutions,
viz. the state of stress induced in two perfectly bonded half-
planes by a dislocation having Burgers components by, b,
located at (d, 0), and the state of stress induced by an image
dislocation, having Burgers components — b,, — b, located
at (—d, 0), Fig. 1(b).

(ii) a stress field ¢ intended to clear the boundary x =

any remaining tractions, Fig. 1(c).

0 of

The net stress is then given by
o(x, y) =6(x, y) +0o(x, »). M

We shall be primarily interested in the stress arising on the
interface y = 0, x > 0, where the stress & may be readily
derived from the Airy stress function of a dislocation at the
junct}on of two half-planes given by Dundurs and Mura (1964).
Thus

"The normal and shear stresses are continuous across the interface, but the
G, Stress component is discontinuous.
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—(2+B)wo(x—d)
+(2—B)wd(x—d)

2 (x, 0)
Falx, 0)

z =b
C Gy, 0) - —Brdé(x—d)
Fy(x, 0) R S
x—d x+d
(28] L)
x—d x+d
1 1
a —25)[~—~—~}
+b,4 X—d x+d] b x50 ()
1 1
x—d x+d
Brd(x—d)
where 5() is the dirac delta function,
2p(1+a) 2p(1 — o) @)

T DU=) (ot DAY
and «, B are the Dundurs elastic composite parameters defined
as (Dundurs, 1969)

T+ D= (et 1)
"I+ D+ (kg + 1)

and k; = 3 — 4y; (j = 1, 2) in plane strain, x; = (3 — »)/(1
+ ) inplanestressandT = p,/p, where v, u; are, respectively,
the Poissons’ ratio and shear modulus of material j. (The
superscripts on the stress components in Eq. (2) and in what
follows refer to regions ““1°7, ¢2°°.)

Similarly, the stress arising along the intended free surface
x = 0 due to the dislocation pair is

_Ta-1)-(=-1)
T+ D+ Ky + 1)

“

_ (805 0
WO =by 0
B0.0) (X orarm-a)
1

2d
rt

(O —d*(1+28))

o) B paragray| ©
1

0
where r? = y* + d* and
#0, y; B =520, y; ~B). (6)

The choice of image dislocations has, of course, already
rendered the x = 0 line free of direct tractions for the case of
a dislocation b, and free of shear tractions for a dislocation
b,. Thus, from Eqgs. (5), we need now to apply direct tractions
Fx(y) and shear tractions F;(y) along the x = 0 line in order
to satisfy the free boundary conditions, where these distri-
butions are given by

0 =, 7/2)=5 by{-i—i’ [*-d*(1 +26)]}

1 .
C 2d
F§(r; B=53(r, 7/2)== bx{? (1 +25)*d2]}
3 1
FO(r; B)=3"(r, ~a/2)=FP(r; —f), i=N,S ()
where along x = 0, y* = r2, r} = r?+d” and we have now
employed a polar coordinate set (Fig. 1{(a)). :

The next step is to deduce the state of stress induced by the
tractions Fy, Fs, and the most convenient way to do this is to
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transform the problem into the complex plane by emgloying
Mellin transforms. The Mellin transforms of rZFN, r°Fy are
defined as

o

(s B)= SO Fi(r; P*'dr, i=N, . @®)

Substituting in from Eqgs. (7) the transforms of the applied
loads may be found explicitly (Erdélyi et al. 1954), and are

3% _.____bedm 207 A2 (o
R (s; B=Gnsar (G D +6s), ) (s; B)=Fi (55 —B)
s+ 1
E(s; 8)= “g{;%{) {(s+1)+B(s+2)},

FD (s B)=F(s; —B). 9

Once the transforms of the applied loads are known, the

transforms of the stress field along the interface y = 0 due to

these loads may be found from results given by Bogy (1970).

Let the transforms of %G, (7, 9), rzTr,g (r,0), )'20,,(r, #) obtaining
along the interface (8 = 0) be

Gop(S, 0) = byGrgp (5, 0) + byGyee (5, 0)
100, 0)=byGx (s, 0)+byGy(s, 0)
825, 0") =60 (s, 07)+ b,62(s, 07)
805, 07)= b6 (s, 07)+b,650(s, 07) (10)
so that each stress component is made up of two contributions,

one for each component of the Burgers vector. Then, from
Bogy (1970, Eqs. 3.14, 3.15):

Cds+ 1 .
20) {—(-aBf)a-B)s+1)
+a(l — B+ D + 1)% — cos¥sn/2)] + Beos’(sw/2)
— [?8— (o — 28 + aB)cos’(s1/ (s + 1)?}
Cd**'cos(sm/2) 5 4
AGpineary) @ AEFD
+ 11— a? = B2 — (1 = 208 + BHcos (sm/2)}(s + 1)2 + BrcosX(sn/2)

&xrﬁ(s s O) = 8y09(s s O)

s+ 1
_ _ 4
A(5) {+ (1 —aB)a-B)(s+1)

+ (1 — B+ DI(s+ 1)* — cos*(sm/2)] — BeosX(sw/2)
+ [8 — (ot — 28 + aBBcos (sm/2)] (s + 1)?)

Oyg0(s, 0) =

Oyoo(s, 0) =

a,vrﬁ(s » 0) =

Cds+ 1
A0) {l@a=B)s+ D1 -B)2B—)+ (1 - )]
+(1 =8 a-2B)(s+ DI(s+ 1)? = cos*(sm/2)]
+ (s + D 2afa — 1) — af(a — 28) + (a— 4B(a — )
+ 82— 2B))cos (st/2)1 + B(1 — 2B)cos*(sw/2) )
s+ 1
e (- A1 -26)+ )
+2(a— D1 = BH(s + D[1 ~ cos*(s7/2)]
+(s+ D[~ (a— 1)°+ BB —2) +2B(c” — B+ £7)
+ (1 =20+ 28(1 + o) — B2(3 — 2B + 20))cosX(sw/2)]
+ 81 —2B)cosX(sm/2))}

af(l —_
s, 07)=

~(l _
O;r)r(S, 07)=

R 1+« N -
694s, 0%; a B)=1—_O—l (—554s, 075 —a, =)

565, 0%, oy B) =T (+0505, 075 —e, =) (an

and

A(s) = (a=8)%(s+ )* + [2B(c.— B)cos’(s7/2) — o] (s + 1)*
+[(8> = cos*(sw/2) + 1lcos*(sx/2). (12)
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To obtain the stresses in the physical problem, we apply the
inverse transform, namely
c+ic
aylr, 0)=5— S G5(s, Oy Vs (13)

c—ico

The transformed stresses dge(s, 0), d,4(s, 0) and o,.(s, 0) are
regular at s = ~ 1 and so we may use the path of integration
in (13) defined by ¢ = —1. To convert Eq. (13) into a line
integral®> we make the substitution —(s + 1) = ¢ + it and
integrate along the ¢ = 0 axis which yields, in terms of the x
— y cartesian coordinate set

1 o0
%Exi,-(x, 0)=)—( SO [Axij(é; @, f)cos <£10g g)

+ By (£, a, B)sin (glog g) dt  (14a)
_ 1 (" i
(1: By, 0)=> SO [Ay,-,(g; a, B)cos <glog g)
+ By (E; o, Bsin (glog §> dt (14b)
where? )
Agy={~ (1-aB)a~PE
+ [o?B + (a — 28 + af?)sinh (£ 7/2) ] £2
— Bsinh*En/2) )}/ A(E)
Byyy={ —a(1—-BAHE[E* —sinh®(E7/2)]1}/A®%)
Ayyy =0
_sinh(§w/2) o 2,4 2 @
= cosh(garz) L @R E -8
+ (1= 2apB + BH)sinh?(Ew/2)] 2
+ B%inhX(£w/2) )/ A%)
AXX)’ - A)'y}’ 0 BXX)’ Yyys A)’Xy == AX)’)” B)'X}' = BX)’)’

AGk={(a—B)[1-B)2B— )+ (1 - ))&
— B(1 — 2B)sinh* (£ w/2) — £* 2o — 1) — aff(e— 28)
— (@ —4B(c— B) + B*(c— 2B))sinh*(E 1/2)] } / A%)
BG={— (a=28)(1 - BHE[£* — sinh*(E1/2) } /A(%)
0.~ ST 2= D1 = BYELL +sinken/2)])/AD
=S = = B - 26)¢"
+8Y1 = 2B)sinh*(E7/2) + £ — (0 — 12+ B(B—-2)
+2B(c* — B+ ) — (1 - 2a +28(1 + @)
— B%(3 =2+ 2a))sinh*(E7/2)] } /A(E)
AR (& o, B)= — ALK& —a, —B),
B (& o, B)= — B (& —a, —B)
AR (&5 o, B)=AN(E; —a, —B),

BR(&; o, B)=Byh(%; —a, —P) (%)
and, in terms of the new variable &,
A(E) = (e — BYE* + [2B(a— B)sinh*(E1/2) + o] &2

+[(8* - Dsinh?(¢7/2) — 11sinh?(§7/2).  (16)

The integrals contained in Eqs. (14) are, perhaps not sur-

See Pipes and Harvill (1971), Chapter 1, for further information regarding
integrals of the type given in Eq. (13).

3In the following expressions, (1), (2) have been added as in the earlier equa-
tions to denote the half-plane in which the result applies.
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prisingly, intractable analytically. However, a useful check on
the algebra to this point may be made by specializing the elastic
constants to render « = § = 0, i.e., make the quarter planes
similar, whereupon the integrals do become feasible and we
are able to recover the solution for a dislocation in a homo-
geneous half-plane. In this case, the only nonzero functions
in Egs. (15) which remain are

By ()= B ()=
BB =i A= (D)
Using the integrals
[ Bt 12
&) gﬁ%%?(%”—] dt =% ai tanh <2> (18)

where a = log(x/d) and from Egs. (1), (2), (3), and (14), we
find that the stress field due to a dislocation in a half-plane a
distance d from the surface is given by

w(k+1) w(k+1)

2“ Uyyy(-xy 0) = 2# Jxxy(xs 0)
1 1 2d 4d*
= - - 1
v—d xid Grd)l ety %9
7k +1) 1 1 6d 4d*
, 0)= - - . (19b
24 TyrlXs 0) x—d x+d+(x+d)2 (x+d)? (190)

which agrees with the general stress field given by Nowell and
Hills (1987).

3 Numerical Solution

For dissimilar pairs of materials the integrals in Egs. (14)
must be solved numerically. It will be noted that the integrals
are all of the form

o) (o

These integrals are difficult to evaluate efficiently since, as
x/d — 0, the argument of the trigonometric functions can be
quite large resulting in rapidly oscillating integrands. Special
care is needed with the numerical quadrature and a procedure
due to Filon (see Tranter, 1956) is utilized. First, we write the
integrals as

| f(£)< )(aog ) a- | f(£)< )(slog )ds
+f f(£)< )(slogd)ds. ey

The second term on the right-hand side of (21) can be made
arbitrarily small for sufflclently large N, since the functions
Ay and By; — order 0(t%e™ ") or less as £ — oo, Considering
the first term and dividing the interval [0, N] into 2n equal
parts of length A, we have (Tranter, 1956)

1 h(_ x
S f(£)cos<£log >d£~— {af(N)sin(NIog 3)
- 1
+B [Ef«)) + 2‘) J(gapcos <sz,-log ’;;) +3 S(N)eos (Nlog g)]

+v ; S(&zi-1)cos <$2i—110g g)}

(20
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17" , x
SRGE <zlog 5>ds
-2 {a [ F(0)=F(N)cos <Nlog 5)}
X d
+E|:”21f(£2i)5in <Ezf10g )—C> +£f(N)sin <Nlog Z)]
i=1 da/ 2 d
+Y Zf(SZi—'l)Sin (Ez:’—nIOg 5)} (22a, b)

i=1

where & = ih,

o =[0%+ OsinOcosO — 2sin’0]/60°
B =2[6(1 + cos*0) — 25inOc0s0]/0>

¥ =4[sinO — Ocos0]/0’ 23)

and © = h » log(x/d). Also, by examining Eqs. (15) in the
limit as £ — O we find that in Eqgs. (22) we have

Axyy(o; o, 6)= +B’ Ayxy(o; o, ﬁ): ~B

_ 20(a—1) + BB~ ) + Br*(1 - 28)/4
o —n?/4

Agpxx(0; o, B)=

1—a)(1—p?
AD0; 0, = - TS

AB(0; @, B)= —AR(0; —a, —B),

AR(0; 0, B)=A(0; —ar, —B) -

. 4)
with the remaining functions A, By; — 0 as § — 0. Con-
vergence of Eq. (21) was obtained with N = 12, n = 50 for
x/d > 0.01, but values of x/d down to 1.0 x 10”7 demanded
n be set as high as 300.

4 Asymptotic Analysis

As (x/d) — 0 the characteristics of the solution are domi-
nated by the well-known asymptotic behavior at the apex of
two bonded quarter planes (Bogy, 1970). (The most general
problem, i.e., the asymptotic behavior at the apex of two
bonded wedges of arbitrary angles has been investigated sep-
arately (Bogy, 1971; Kelly et al., 1992)).

The asymptotic behavior of the stress field along y = 0 due
to the prescribed tractions Fy, F is obtained by evaluating the
most dominant terms of 6;(r, §) in Eq. (13). This is achieved
by carrying out residue computations at the poles of the in-
tegrand in Eq. (13). An elementary example of the procedure
is outlined by Bogy and Sternberg (1968). Three kinds of be-
havior may be anticipated depending on the combination of
elastic constants obtaining:

I a(a — 28) > 0. The stress field is in this case singular
with the asymptotic behavior of the stress field being given by
the residue of the integrand in (13) at the simple pole s = s,
where s, is the zero of A(s) in the range —2 < s < — 1. Thus,

wd _ (B, 9AG)) _w (xA\ 7
C okU(x’ 0)_€ Cdsl+l } A’(Sl) <d>

A7) =

where A = s5; + 2. A can take values in the range 0 < \ <
0.41 depending on the values of o and 8 (Bogy, 1970). These
material combinations also have a simple pole at s = —2, and
the residue there gives a bounded second term to the above
expansion. These terms are presented in Case III.
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II «a(e — 28) = 0. These combinations of materials give
rise to the possibility of a logarithmically varying stress field
(Egs. 4.6, 4.7 Bogy, 1970). However, it transpires for the
present problem the stress field is bounded as x/d — 0 with
the asymptotic behavior given by

l6ra(l -4 C

_ __l6ra(l-) C_
Pl 0= oo 2y wa oD

_ 2C
306, 0)=—+0(1)

Txyy

-4

-6+

_8 It L 1 t L 1 ]
0 0.05 0.1 015 0.2 0.25 0.3 0.35

Txyy stress

Fig. 2 Variation of the stress component 7, with position along the
interface for a dislocation having a Burgers vector in the x-direction

Tyyy
Txxy

0.5}

Q 0.05 0.1

Tyyy, xxy stress

Fig. 3 Variation of the stress component r,, with position along the
interface for'a dislocation having a Burgers vector in the y-direction
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Exxy(x’ 0):%+0(1)= - Fy(0, 6)/bx

wd _ wd _ wd _ ,
E nyy(xy O):”é— U,(rlx)x(xy O):F Gf\’%c)x(x’ 0 =o0(1)

Tocx, 0')%—2 (1-2B)+o(1)= + F{)(0, B)/b,

2(x, o+)=—2—§ (1+28)+o(l)= +F2(0, B)/b,. (26)

These expressions take on the values of the applied clearing
tractions Fy, Fyat x = 0, § = Fx/2. (see Eq. (7)). Note that
the expressions in Eqs. (26) agree with those considered by
Bogy but include one further term in the series expansion.

Ml ol — 28) < 0. Here, again, the stress field is not
singular with the stress components having the same values as
for Case II above except o,,,, which is of order o(l) as (x/d)
- 0.

5 Results

Using normalized dimensionless stress components defined
as
dn .
Tk,'j(X/d, O):— O'kij'(X/d, 0), I A k=x, Y (27)
Cby
Figs. 2, 3, 4, 5, and 6 show, respectively, the stresses 7,,,, 7,,,
= Ty Tyys Tuxe and 7" along the interface y = 0 as given
by Egs. (1), (2), (14), and (27) as a function of (x/d) for the
material combinations, i.e., (a, 8) values, listed in Table 1,
column 2. The labels on the graphs refer to the numbers in
column 1 of the table while column 3 refers to the asymptotic
nature of the stress field as defined in Section 4.
The graphs display the nature of the stress field as (x/d) —
0 as given by Egs. (1), (2), (25)-(26). For example, with (a,
B) = (.5, 0) (Case I) we find that, in Eq. (25), A = 0.147 and
the following asymptotic stress fields arise:

X —0.147
Teyy—1.265 <5> +o(1)

X -0.147
Teay = Typy— — 0.356 (Zi) +o(1)

0\ "o
Tyy—0.100 <c—1> +o0(1)

X —0.147
Too—0.544 <c_1> +o(l)
% —0.147
Tho— —0.153 (Zi> +o(1)

X —0.147
72—~ —0.898 <Zz> +o(1)

* —-0.147
72,~0.253 <Zi> +o(1). (28)

These one-term expansions agree with the full numerical so-

“Since the strain in the x direction, e, is continuous across the interface,

7). may be derived from 7{2 by use of Hookes law and is omited for brevity.
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Tyxy

05

—1 1 1 L I ! L L

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
x/d
Tyxy Stress

Fig. 4 Variation of the stress component r,, with position along the
interface for a dislocation having a Burgers vector in the y-direction

[

TXXX

L ] t 1 1 1 — 1
0 005 01 015 02 02 03 035
x/d

Txxx (1) stress

Fig. 5 Variation of the stress component r,, in body “1" with position
along the interface for a dislocation having a Burgers vector in the x-
direction

Iution for material combination 1 (see Table 1) for values of
(x/d) < .001. For some stress components, the asymptotes
remain reasonably accurate up to much larger values of x/d.
However, the range of validity of these asymptotes depends
on the (o, B) values of the material pair under consideration
and under the stress component under consideration. Similar
expressions to those given by Eq. (28) can be obtained for
material combinations 2, («, 8) = (—.6, —.2), and 3, («, B)
= (.3, .1), for which A = 0.0929 and A\ = 0.0239, respectively.
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(1)
Tyxx

0.4

N
L | 1

0.25 0.3 0.35

1 L I i 1
0 0.05 0.1 Q.15 0.2

x/d

Tyxx (1) stress

Fig. 6 Variation of the stress component 7,, in body “1” with position
along the interface for a dislocation having a Burgers vector in the y-
direction

Table 1
asymptotic
(a,p) case

1 (.5,0) I Power singularity

2 (=~.6,-.2) I Power singularity

3 (-3,.1) I Power singularity —‘
4 (-5,.25) II Bounded stress

5 (.1,.3) 111 Bounded stress

6 (0,0) Homogeneous | Bounded stress

For material combinations satisfying a(a — 26) = 0, all
stress components 7 are of order o(1) except 7,,, which goes
to either 16ma(1 — $2)/(168* + 7*(1 — o)) (Case II) or o(1)
(Case III).

The values have been plotted for x/d < 0.3 as this is the
region of greatest interest, where the influence of the free

748 | Vol. 60, SEPTEMBER 1993

surface is strong. Remote from the free surface the bonded
half-planes solution given by Eq. (2) is recovered.

For the material pairs chosen (Table 1) the influence of the
free surface becomes very small by the time x/d reaches 0.5
for all the stress components except 7,y In the case of this
stress the influence of the surface persists up to x/d = 1.0.

6 Conclusions

The burden of. this paper is to deduce the display the influ-
ence functions for an edge dislocation at the interface of two
bonded quarter planes. This has been achieved through Eqgs.
(1), (2), (14), and (27), but inevitably closed-form expressions
are not attainable although the case of similar quarter planes;
i.e., a half-plane can be evaluated and is shown to agree with
earlier results. Further, we have investigated carefully the be-
havior of the stress field very near to the surface of the solid
and given explicit asymptotic expressions for this case. The
intended principal use of the results is to provide a Green’s
function for the solution of an interface crack breaking a free
surface.
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A Computational Model for Fe
Ductile Plastic Damage Analysis of
Plate Bending

This paper presents a computational model for the finite element plastic damage

Guangyu Shi’

Research Associate.

G. Z. Voyiadjis analysis of ductile flexural plates. The phenomenological damage model proposed
Professor by Lemaitre is adopted here. The damage effect parameters of a cross-section are
Mem. ASMEj defined and employed to account for the damage effect across the thickness of a

bending plate. Similar to the effective stresses used in many damage models, the
effective stress couples are introduced in this work and used in the yield function.
The damage criterion is defined in terms of damage strain energy release rates. Based
on the damage node model proposed here, the elastoplastic-damage stiffness matrix
of element is derived. When the corresponding elastic stiffness matrix is given
explicitly, the resulting elastoplastic-damage stiffness matrix can be evaluated with-
out use of numerical integration. The feature of the expicit form of element stiffness
matrix makes the computational model proposed here very efficient. Several nu-
merical examples of ductile plastic damage analysis of plates are also given in this
work to demonstrate the validity of the computational model.

Department of Civil Engineering,
Louisiana State University,
Baton Rouge, LA 70893

1 Introduction

A ductile material is capable of undergoing large plastic
deformations. The accumulated plastic deformation can in-
duce the changes of microstructures of the material through,
for example, the nucleation, growth, and coalescence of mi-
crovoids. These changes in material microstructures are the
irreversible thermodynamic processes and result in a progres-
sive degradation on the material properties. The process of the
initiation and growth of microvoids and other microdefects
induced by plastic deformations in ductile solids is called the
ductile plastic damage. The primary interest of the ductile
plastic damage is to study the influence of microvoids resulting
from plastic deformations on the degradation of material prop-
erties. The changes on material properties can be studied by
either a phenomenological damage model or a micromechan-
ical damage model. A number of damage definitions and meas-
ures were proposed for both the models (vide the review papers
of Krajcinovic, 1984, 1989; Chaboche, 1988; among others).
Within the framework of phenomenological damage model,
the damage of a material can be measured in macroscale by
the deduction of mechanical properties, such as the elasticity
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constants (Lemaitre et al., 1979). Moreover, the changes of
the macromechanical properties can be characterized by the
damage effect parameters which are able to be determined
from experiments (Lemaitre, 1985). These damage parameters
are the internal state variables in thermodynamics. The phe-
nomenological damage model in conjunction with thermo-
dynamics is not only simple in material modeling, but also
quite accurate for the representation of a damage process.
Therefore, the phenomenological model is very attractive in
the practical application of the damage mechanics for engi-
neering structures. The present study is based on the phenom-
enological damage model.

Quite a large number of papers on continuum damage me-
chanics have been published (see the references given in reviews
of Krajcinovic, 1984, 1989; Chaboche, 1988). However, the
ductile plastic damage of plate bending has received little at-
tention up to now even though some damage models for the
bending analysis of brittle beams have been proposed, e.g.,
Krajcinovic (1979). The flexural plates made of ductile metals,
a very important type of structure, may undergo large plastic
deformations under certain boundary and loading conditions.
The large plastic deformations in a metal plate can induce the
initiation and growth of microvoids and consequently cause
the deterioration of the mechanical properties of the plate, a
damage process. The load-carrying capacity of the damaged
plate is lower than the one predicted from the elastoplastic
analysis. Therefore, the ductile plastic damage analysis can
provide a useful tool for a safe design of metal plates.

The objective of this paper is to present a computational
model for the ductile plastic analysis of plates. The application
and numerical examples of the proposed model is also pre-
sented in this study.

SEPTEMBER 1993, Vol. 60 / 749
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In the present computational model, the damage effect pa-
rameters of a cross-section are introduced from irreversible
thermodynamics to take into account the damage effect across
the plate thickness. Analogous to the concept of effective
stresses, the effective stress couples are defined for plate bend-
ing problems. The yield function is then defined in the effective
stress couple space. The evolution law of ductile plastic damage
proposed by Lemaitre (1985), in which the damage evolution
is a linear function of the equivalent plastic strain, is adopted.
The concept of the plastic node model presented by Shi and
Voyiadjis (1992a) is extended here to discretize the distribution
of the damage matrix in an element. Finally, by using the
principle of virtual work together with the damage node model
proposed here, the elastoplastic-damage stiffness matrix of
element is derived. The resulting element stiffness matrix can
be obtained explicitly as long as the elastic part of the element
stiffness matrix is given explicitly. Consequently, the com-
putational model presented here is very simple and efficient
for the damage analysis of elastoplastic bending plates.

The damage-related matrices in the elastoplastic-damage
stiffness matrix are dependent on the damage effect matrix (or
tensor). The damage model used for the application presented
here is the scalar isotropic damage model which is the simplest
and most widely used model for the one-dimensional and iso-
tropic phenomenological damage (vide, e.g., the review papers
of Chaboche, 1988; Krajcinovic, 1989). In this model, the
change of macromechanical properties of a material caused
by microdefects is described by a simple scalar variable: a
damage parameter. A new damage strain release rate proposed
by the authors (Shi and Voyiadjis, 1992b), in which the influ-
ence of damage on the plastic deformations is taken into ac-
count, is used in this work. This damage strain release rate
can be defined in the effective stress couple space.

The four-noded quadrilateral (12 degree-of-freedom) c?
strain element for plate bending developed by the authors (Shi
and Voyiadjis, 1991) is employed here to evaluate the elastic
stiffness matrix. This assumed strain plate element is based
upon the shear deformable plate theory proposed by Voyiadjis
and Shi (1991a) and the quasi-conforming element method
presented by Tang et al. (1980). Unlike most C° plate elements
where the element stiffness matrix is evaluated by numerical
integration, the element stiffness matrix of the C’plate element
used here is given explicitly. Consequently, the assumed strain
C° plate element presented by the authors is very computa-
tionally efficient. Furthermore this four-noded quadrilateral
(12 degree-of-freedom) C° plate clement possesses a linear
bending strain field and is free of shearing locking and nu-
merical ill-condition. Therefore, this finite element is capable
of giving reliable and accurate results for both thick and thin
plate analysis.

Several numerical examples of the ductile plastic damage
analysis of plate bending are presented in this paper to dem-
onstrate the validity of the proposed computational model.
The damage analysis results are compared with the elastoplastic
analysis results.

2 Ductile Plastic Damage in Plate Bending Problems

The damage analysis presented here is based on the phe-
nomenological method. As mentioned earlier, so far there is
not much information about the ductile plastic damage analysis
of plate bending in the literature. As an earlier step towards
the ductile damage analysis of plates, the following assump-
tions are adopted in the present study for simplicity:

(1) Thedamage process in ductile plastic damage is induced
by plastic deformations.

(2) Tension and compression have the same influence on
the damage development (Lemaitre, 1985).

The first assumption is reasonable for ductile materlals since
the degradation of elastic modulus in elastic range is really
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Fig. 1{(a) The variation of elastic modulus
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Fig. 1(b) The damage curve for annealed 30CrMnSi (Li et al., 1920)

Fig. 1 Ductile plastic damage in the extension of a bar

negligible. The second assumption is similar to the plastic be-
havior of ductile materials. It has some limitations in appli-
cation. Nevertheless, when the degradation of mechanical
properties of a ductile material is primarily induced by micro-
voids rather than by microcracks, this assumption will be quite
feasible.

In order to demonstrate the ductile plastic damage of plate
bending more easily, the corresponding one-dimensional case
will be examined first.

2.1 Ductile Plastic Damage of Beams. Within the frame-
work of the phenomenological damage, the measure of damage
can be characterized by the degradation of the elastic modulus
of the material (Lemaitre, 1985; Voyiadjis, 1988), as shown
in Fig. 1 (Liet al., 1990). If one lets E, be the Young’s modulus
of the material in the undamaged state (virgin material), then
the instantaneous Young’s modulus E can be determined by
the damage effect parameter d (0 < d < 1) as

E=(1-d)E,. m

Since the stress induced by bending is nonuniformly distributed
along the thickness direction z, the damage parameter d, in
general, varies through the thickness of a beam, i.e., d = d(z).
Let €,(z) be the elastic axial sirain of the cross-section of a
beam, o(z) be the corresponding axial stress. According to
the assumption of the plane cross-section, ¢, (z) can be ex-
pressed in terms of the elastic rotation of cross-section ¢ as

d¢
c()=2"2. @
X
The corresponding stress then is given by the Hooke’s law as
follows:
d¢
0(2)=Ee,=(1~d)Ege,=(1—d)E, pwid 3)
where x is the coordinate in the axial direction of the beam.
It should be noted that ¢(z) might be nonlinear across the
thickness since d(z) can also be a function of z.
The elastic bending strain energy density of the beam, W,,
is of the form

b S.h/z bog Sh/Z 4)
- 2 w2
with
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h/2 3‘1)

h2
M=p S 0zdz=b — E, S [1—d(z))z%dz (5)
ax —h/2

—-h/2
in which 4 and b are, respectively, the thickness and width of
the beam. If one lets :

E 0 } 6
—d“"1-a ©)
then the stress couple also takes the form
12 W2

EZE()EeI

M=b S [1-d(z)lozdz=M—-b S d(z)ozdz  (Ta)
—h/2 —~h/2
with
h/2 h/2 3
— _ ¢ S d¢ bh
M=b S dz=bE, — Yz=Ey— —.
L ozdz (P 7’1/22 dz=E, I 12 (7b)

G in Eq. (6) is the so-called effective stress. The quantity M

defined in Eq. (7b) can be considered as the effective stress

couple. In the beam bending problem considered here, the

product of @ and z does not change its sign across the beam

thickness — /2 < z < h/2. Therefore, by using the weighted

mean-value theorem for integrals, the last term in Eq. (7a)

can be expressed as

h2 -
ozdz=d({)M

~h/2

=d"M for some £ in [~ h/2, h/2]. (8)

The parameter d* in the above equation is the mean value of
damage parameter d(z) across the beam thickness. In the
present study, d* is taken as the damage effect parameter of
a cross-section of the beam. The determination of d* will be
presented later. Substituting Eq. (8) into Eq. (7a) gives
M=(1-d")M. )
The rate form of Eq. (9) can be written as
M=(1-d"YM-d*M

%)
b S d(z)ozdz=bd(§) S
-n2

(10)

where the symbol ““* *’ signifies the material rate.

Similar to the strain energy release rate in fracture mechanics
which is used for the fracture criterion, a damage strain energy
release rate associated with a unit damage growth is defined
in damage mechanics (Lemaitre, 1985). From thermody-
namics, there is an internal variable, named D here for a one-
dimensional problem, corresponding to the damage strain en-
ergy release rate — Y. By taking the free-energy ¥ as the ther-
modynamic potential, the damage strain energy release rate
— Y of a beam can be defined as

_o¥
oD’
In general, the free energy V¥ is the function of elastic strains

€., equivalent plastic strain €,, internal variables d, and absolute
temperature 7, i.e.,

¥ =V,(6,8,,d, T).

)]

(12)

¥ can also be expressed in terms of effective stresses o as
\I,:‘I/Z(Eigpyd)T)- (130)

For the one-dimensional problem considered here, the above
equation takes the form

¥ =¥ (M,x,,D,T) (13b)

where «, is the plastic curvature. In damage mechanics, the
internal variables d are the damage effect parameters. It should
be noted that both elastic and plastic strains in a damaged
material are associated with the damage parameters d, even in
the case where the elastic and plastic free energies can be
decoupled.
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The damage evolution D can be determined by the normality
property of the dissipation potential. By defining a suitable
dissipation potential, Lemaitre (1985) proposed a damage ev-
olution model for ductile plastic damage as follows:

S
D= (TT:) O'e,, (14)
with
- YD=0 (15)
D=0 when —-Y<Y, (16)
D=D, ruptured a7

in which S, and s, are the material constants; Y. is the critical
value of the damage strain energy release rate — Y; D, is the
critical value of the damage parameter D. Both Y, and D, are
material constants and can be determined from experiments.
The damage parameter D then can be evaluated from D by
integration.

When the stresses rather than stress resultants are used, Eq.
(11) takes the form

_o¥
T ad’
Because of the analogy between Egs. (6) and (9) as well as
between Egs. (18) and (11), it is feasible to assume d* = D.
From now on, d* will be used to represent the damage pa-

rameter of a cross-section determined from the free energy in
terms of stress couples.

(18)

2.2 Ductile Plastic Damage of Plate Bending. In the plane
stress problem of plate bending, the in-plane strains e and
stresses ¢ can be written in the matrix forms, respectively, as

€x Oy
€= € ¢, 0=1{0, (19)
2¢y, Oy

For a linear elastic, isotropic material, the stresses ¢ and elastic
strains ¢, in the undamaged state have the following relation:

o= Sq¢,
with
1 Vo 0
E
So=1 °V2 v 1 0 (20)
]
I—V()
0 0
2

in which », is the Poisson’s ratio of the undamaged material.
After the material is subjected to damage, the corresponding
damaged elasticity matrix S(d) can be written as (Krajcinovic,
1989)

S(d) = [I-D(d)]S, 21

where I is the identity matrix and D(d) signifies the damage
effect matrix (or tensor) which is symmetric and composed of
damage parameters d. The expression of D(d) can be deter-
mined from suitable micromechanical models (Krajcinovic,
1989). The evolution of the damage parameters @ can be eval-
uated from the free energy as described earlier.

The stress-strain relation in a damaged state takes the form

0=58(d)e, = [1 - D(d)]Spe. = [I - D(d)]o (22)
with the introduction of the effective stresses o defined as

o = Soe,. 23)
The increment of ¢ can be expressed as
Ao =[1-D(d)]Ac — AD(d,Ad)e (24)

in which AD is the increment of D and is composed of d and
Ad.
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Under the assumption of the plane cross-section, the elastic
strains e, across a cross-section can be expressed as
.
Obse )
ox '

995

€= 3y 25

>~ zzxeé

Dbse , 0y
ay  dx )

N\
where ¢, and ¢,, are the generalized elastic rotations of the
cross-section at x = constant and y = constant, respectively,
and «, signifies the elastic curvatures of the plate. The incre-
mental form of Eq. (25) is as follows:
(" 9Ag A
ox

A,

3y (26)

> 2= AK.Z.

0Ady, APy
1 I
ay ax D,

~

Consequently, the increment of the elastic bending strain en-
ergy density of a plate, AW,, can be expressed as

h/2 1 h/2
AW,== g AeTAodz =~ AKZS
2 —h/2 2 —h/2

1
% [(1 — D)AG — ADw]zdz = 5 Ax]

- 1
x[X-D )AM—AD*M]=EA:<€TAM @7

in which the right superscript 7 signifies the matrix transpose
and
Y Px
AM = S Aozdz =% SolAk, = 8yAk, (28)
~h/2 12
h/2
D(d(z))Aezdz,

D*AM =D(d($))AM = g
—h/2

29
some £ in [~ h/2, h/2]
w2

AD(d(2),Ad (2) )ozdz.

AD*M = AD*(Ad(8),d(§))M = S ;
—h/2

B0

In Eqgs. (29) and (30), the weighted mean-value theorem for
integrals is utilized. The parameters d(¢) and Ad(¢) are the
mean values of damage parameter d (z) and its increment Ad(z)
along the plate thickness, respectively. d(¥) and Ad(¥) are de-
fined as, respectively, the damage effect parameter and its
increment of a plate at the point of the plate under consid-
eration. Similar to the one-dimensional problem, Ad(¢) and
d(§) can also be evaluated by the internal variables D; corre-
sponding to the damage strain energy release rates — Y. For
plate bending problem, —Y takes the form —Y = {Y}, Y3},
and is given by the free energy of the plate ¥(M, k,, D;, T)
as

_o¥

"~ oD, ,
The increments of the damage effect parameters of a cross-
section, Ad(§), are given by

@1n
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. I\ (-v9) _
Ad* = Ad(§) = AD, = (S—> { YSO}AK,, (32)
0 — L2

where Ak, is the increment of the equivalent plastic curvature.

Let Ax,y,, Ax,,, and Ak, be the increments of plastic curva-
tures, then Ak, can be expressed as

_ 2

Ay =317 (Akp+ Ay + Ak, + Ak, /42 (33)

Following the concept used in the three-dimensional problem

presented by Lee et al. (1985), the damage criterion of a plate

can be written as
FAY __]; YT 172 .

ul ,B)—Z( JY) [Bo+B(B)]=0 (34)

in which J is a symmetric matrix; B, is the initial damage

threshold; B(B) is the damage threshold strengthening; and g

is a overall damage parameter. The determination of J can be

found in Lee et al. (1985) and Chaw and Lu (1989). B, and

B(f) can be obtained from experiments (Chaw and Wang,
1988). The increment of 8 can be expressed as (Lee et al., 1985)

3 (35

The following expression can be used as a rupture criterion
(Lee et al., 1983)

1 172
AB=2 <— AD,TJAD1> .

B=XAB=0. (36)

where B, is the critical value of overall damage which is a
material constant and can be obtained from experiments (Chaw
and Wang, 1988).

3 A Damage Node Model for Ductile Plastic Damage
of Plate Bending

A new plastic node model for the finite element plastic anal-
ysis of plates and shells was presented in the authors’ previous
paper (Shi and Voyiadjis, 1992a). In this plastic node model,
the yield function, in terms of stress couples and stress re-
sultants, is checked only at the element nodes. When the stress
couples and stress resultants at a node satisfy the yield function,
the node of the element is considered to become a plastic node.
The plastic deformations are developed only at these plastic
nodes, and the interior of the element is always elastic. The
concept of plastic nodes is extended to damage analysis in the
present work. That is, the damage criterion is only checked at
the element nodes and it is assumed that the damage only
undergoes at the damaged nodes.

Because of the nonlinear nature of the plastic analysis, the
incremental scheme is used in the evaluation of the elastoplastic
stiffness matrix. It is assumed in this work that the incremental
bending strains of a plate, i.e., incremental curvature Ak, can
be decomposed into two parts: elastic parts Ak, and plastic
parts Ak, i.e.,

Ak= Ak, + Ak, (37
Similarly, the incremental nodal displacement vector of an
element Aq takes the form

Aq=Aq.+ Agy. (38)

In the finite element modeling of plate bending using the gen-
eralized displacement method, Ak, in an element can be ex-
pressed in terms of the strain-displacement matrix B and the
nodal elastic displacement vector of the element Aq, as

Ak, (x,y) =B (x,y) Ag.=BAq,. (39

If one lets §;, be the flexural rigidity matrix, the element stress
couples AM are then given by
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AM,
AM,
AM,,

AM(x,y) = =84k (x,y) =8,BAq,. (40)

Consequently, the elastic stiffness matrix of an element K.,
can be written as

KFS B’S,Bdxdy 3))
Q

where Q denotes the element domain.

The plastic curvatures can be obtained from the yield func-
tion and the associated flow rule. If one lets F;(M,) be the yield
function, and d)\; be the plastic proportionality parameter at
node i, then by recalling that the plastic deformations are only
developed at the plastic nodes, the increment of the plastic
curvature «, in an element is given by

NPN

oF,
Aty (%,9) = D 8(x =1y = y)dAN; 7

£ oMy 42

in which NPN denotes the number of plastic nodes in the
element under consideration.

By using the variational principle to determine dA; in terms
of elastic nodal displacement vector Aq (Shi and Voyiadjis,
1992a), then the elastoplastic stiffness matrix of a finite ele-
ment, K, takes the form

K=K [I—a(a™Ka+H) 'a’K) 43)
where a is the plastic nodal displacement matrix which is as-
sociated with the yield function in terms of the stress couples,
and H is a matrix related to the plastic stiffness of the given
material (Shi and Voyiadjis, 1992a).

It is worthwhile to mention that K,, presented here can be
evaluated explicitly, i.e., without numerical integration, when
the elastic stiffness matrix K, can be given explicitly. This
feature makes the present plastic node model very computa-
tionally efficient and attractive.

When a material is subjected to a damage process, the me-
chanical properties of the material are degraded. Conse-
quently, the yield stress of the damaged material decreases as
the damage increases. However, when the stresses ¢ are re-
placed by the effective stresses o which are associated with the
virgin material, the yield function of the virgin material can
be used for the damaged material. For example, in the plastic
damage analysis of plates, the yield function takes the form

F(M,0,4(D),k) =F(M,0y,,k,) =0 (44)

where M is the stress couple vector of the plate; 0,,(D) is the
yield stress of the damaged material which is the function of
the damage tensor D; M is the effective stress couple; g, is
the yield stress of the virgin material; and k£ and k, are the
strain hardening parameters of the damaged and virgin ma-
terials, respectively.

From the associated flow rule, the incremental plastic cur-
vatures at node i are given by

3F; oM, 3F; | OF;
=(I-D;)" i
aM; T oM, oM = D™ M, dx

Aky,= (45)

(no summation on )

in which Egs. (22) and (27) are used. It should be noted that
there is no summation on the repeated indices in this work.

For an element in the damaged state, corresponding to a
virtual nodal displacement vector 6Aq = 0Aq, + dAq, and a
virtual bending strain field 6Ax = Ak, + dAk,, the principle
of virtual work for the element gives

Journal of Applied Mechanics

sAqTAf = S 8Ak TAMdxdy
Q
= S (AL + 84k )1 - D*)AM —~ AD *M]dxdy
Q

:S [6Ak] AM+5AK,,(I D*)AM - 6Ax/D*AM
Q

—6Ak,AD*M — 8AkJAD"Mldxdy (46)

where Af represents the increment of the internal nodal force
vector of the element. In Eq. (46), D*(x, ) and AD*(x, »)
are yet undefined fields.

Similar to the concept of the plastic nodes, a damage node
model is proposed here to construct D*(x, y) and AD”(x, y).
In this damage node model, the damage is assumed to be
developed at the element nodes only, and the interior of the
element is always in the undamaged state. Consequently, the
damage matrix or tensor in an element D* and AD* can be
expressed as

NDN *
D™ (xp) =] 8(x=x,y—y)D; @
J=1
., NDN "
AD™ (x,p) = 3 8(x—Xx;,y—y,)AD; (48)

j=1
where D} and AD; are the damage matrix and its increment
at node j of the element under consideration; and NDN rep-
resents the number of damage nodes of the element. Substi-
tuting Eqgs. (41), (45), (47) and (48) into Eq. (46) leads to
6AqTAf=5Aq K Aq, + SdNTHA X

NDN - —

-5 [MKZ,-D*AM,MAKZJ-ADJ- M;
j=1
! M

In the above derivation, the consistency condition of yield
function

+6d)\a—(l D)f AD M} 49

oF] F

— dM;= ko

oM, ako, G d o=
is also utilized. It follows from Eqgs. (39) and (40) that the
elastic bending strains and stress couples at node j of the
element can be written as

=Hd\;

Akgi= Ak (X, ;) = B(x;, ;) Aq. = B,;Aq, (50
AM; = Sy0Ak, (X;,¥;) = SpoBrAGe. (51D
After some mathematical manipulations, one can obtain
NDN
> 64k D*AM;=5Aq]B D, S,.B,Aq, (52)

Ji=1
in Wthh B, is the matrix consisting of B,; (/ = 1, 2, NDN),

D, is the damage matrix of the element, and S, is the enlarged
diagonal matrix of Sgo. D, takes the form

Dl 0 0
D,={ 0 D 0 (53)
0 0 Dupw

In the ductlle plastlc damage, the increment of the damage
tensor AD at node j is the function of the damage parameters
Ad at the node, and Ad depends on the increment of the
equlvalent plastic curvature Axpj shown in Eq. (32). By using
Eqgs. (33) and (45), AD (Ad ) can be transformed into
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AD; (Ad}) =D (Ak,) = Dy (dN;). (54)
Therefore, in the case when AD; is a linear function of Ad;,
aiter a simple rearrangement the last two terms in Eq. (49)
can be written as
NDN . NDN N
> 6AKGAD M, = > 6Akg D (dN)M;=5Aq/B [(DM)d\

j=1 Jj=1

(55
NDN oFT R
,; éd)\ja—-M—’;(I—-Dj) AD;M;
=8d\T(DF) "ADXDM)d\  (56)
with
AN = {d\,dN,dApw) - (57)

By substituting Eqs. (52), (55), and (56), Eq. (49) becomes
5AqTAE = 5Aq K Aq, + 5dA"HAA - 5AqBD, S;,.B,Aq,
—5Aq B (DM)d — 6dAT(DF) '(ID)(DM)d )
=8Aq[(K.~ BID,'S;B,)Aq,— BI(DM)d)]
+6dAT[Hd X — (DF) T(ID)(DM)d ).
By recalling Eqgs. (38), Eq. (58) can be rewritten as
5Aq 7K. (Aq — adA) — BI(DM)d\ — Af]
+8dATTHA\ — (DF) " AD)DM)dA - 2K, (Aq —dd))
+a"BI(DM)IN =0 (59)

where 2 is the modified plastic nodal displacement matrix be-
cause of the damage and K, is the modified elastic stiffness
matrix. Matrix a gives the plastic nodal displacement vector
as (Shi and Voyiadjis, 1992a)

Aq,=adA

(58

(60)
K is of the form
K, =K,— BID,S,B,. (61)

Since 6Aq and 64\ are independent of each other and arbitrary,
Eq. (59) then gives the following two equations:

K, (Aq— ad)\) —BIDM)d ) = Af (62)
Adr—3TK Aq=0 (63)
where A is the nonsingular square matrix and of the form

A=H+a’K,a+a’BJ(DM)— (DF)(ID)(DM).  (64)
Equation (63) gives
dr=A"a"K; Aq. (65)
Substituting Eq. (65) into Eq. (62), one finally obtains
Kepahq = Af (66)

in which K,,, is the elastoplastic-damage stiffness matrix of
an element and takes the form

K,o=K.A-a'A"'a’K;)-BI(DMA~a’K,. (67)
It should be noted that K,,, is, in general, unsymmetric in the
presence of damage. It can be seen that K,,; reduces to K,,
when the damage tensor is null which results in D, = 0, (DM)
= 0 and (ID) = I. Similar to K, K.,s can also be evaluated
explicitly as long as the elastic stiffness matrix K, is given
explicitly. A four-noded strain element with the explicit stiff-
ness matrix for the elastic plate bending analysis can be found
in the paper of Shi and Voyiadjis (1991).

4 Application

4.1 Scalar Isotropic Damage Model for Bending
Plates. Based on Kachanov’s pioneering work (1958), the
scalar isotropic damage model has been widely used by many
researchers (e.g., Chaboche, 1988; Krajcinovic, 1989; Le-
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maitre, 1985). In the scalar isotropic damage model, it is as-
sumed that the degradation of macromechanical properties
induced by microstructural changes of a material can be rep-
resented by a scalar parameter. For the plate bending problem
considered here, the damage will be quite isotropic if the prin-
cipal stress couples at any point of the plate are quite close in
magnitude. Under such a model, if one lets 8§,, be the elastic
flexural rigidity matrix in the undamaged state, then the flex-
ural rigidity matrix S, in a damage state can be expressed as

Sp=(1-d")So (68a)
or

Sp=0E—d*DSy (68d)

where d* is the scalar damage parameter of the plate. This
scalar isotropic damage model is very attractive because of its
simplicity. However, this damage model implies that the dam-
age process has no influence on the Poisson’s ratio. It was
shown that even for an isotropic material, the Poisson’s ratio
changes as the microstructures of the material change (Sumarac
and Krajcinovic, 1989; among others). Consequently, the sca-
lar isotropic damage model is too restrictive. Nevertheless, it
is feasible to employ this simple damage model here to dem-
onstrate the validity of the computational model presented in
this work.

Within the framework of scalar isotropic damage model,
the effective stress couple vector M takes the form

M=M/(1-d%. (69)

By recalling Eq. (68), the damage effect matrix at node j of
an element Df defined in Eq. (29) can be expressed as

D/ (d})=d;1 (70)
where df is the damage parameter across the plate thickness
at node j.

The damage strain energy release rate of a system is derived
from the free energy of the system. The assumption that the
elastic and plastic parts in the free energy are uncoupled is
widely used (Lemaitre, 1985; Lehmann, 1991). This assump-
tion is also adopted here even though it is not necessary. How-
ever, it should be noted that in a damage state, both elastic
and plastic parts in the free energy are associated with the
damage parameter. Consequently, Eq. (12) can be rewritten
as

¥ =¥ (e.,d,T)+ ¥, (e,(d), T) 71

where €,(d) represents that the equivalent plastic strain €, also
depends on the damage parameter d. Under isothermal con-
ditions, the scalar isotropic damage gives the free energy in
tensor form as (Lemaitre, 1985)
1
‘I/EZE (1—d)e Sy (72)
in which e, is the elastic strain tensor; 8, is the elasticity tensor
in the undamaged state; and symbol ‘“:>’ signifies the tensor
contraction.
Substituting ¢, from Eq. (72) into Eq. (71) leads to
1 _
\II=5 (1 —d)e:8pte.+ V(e (d),T). (73)
The free energy defined here is different from the one presented
by Lemaitre (1985) in which 0¥,/8d = 0, although the elastic
part is identical. By accounting for the influence of damage

on the plastic deformations, a new damage strain energy release
rate proposed by Shi and Voyiadjis (1992b) is as follows:

__ v (oY, 0%\ S
—Y= = <6d+6a’>_(1 dYe:Sy6..  (74)

For the plate bending problem considered here, the elastic
bending strains &, can be expressed in a matrix form as
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Fig. 2 A typical four-noded quadrilateral plate element

k=5 ' M=S;'M/(1-d*)=8,,M (75)

where Eqgs. (68) and (69) are utilized. Therefore, the damage
strain energy release rate — Y of a bending plate can be ex-
pressed in terms of the effective stress couple vector M as

—Y=(1-d")M"8,,78,,85 M =(1 —d*)M’S,,'M. (76)
By substituting Eq. (76) into the damage evolution law given
in Eq. (32), one obtains

Ad* =AD;=[(1—d")M"8;,'M/S,|"0AK,,. an

If one lets kdf be the damage parameter of node j at config-
uration k, then the damage parameter at configuration k£ + 1
can be written as

kel kg 4 Ad) (78)

Making use of Eqgs. (33) and (45) and recalling Eq. (70), the
increment of equivalent plastic curvature at node j from con-
figurations & to k + 1, Ak, takes the form

1 . .
AEpj:I—J? dF,;d\; (no summation on j) (79)
J

with

2 [ (oF\* [aF\’
dij"3l/2[ <3ij> + <3Myj

= - - 2 172
+ a—F’ E)_F, + ?f’ 41 . (80)
oM,; OM,;  \OM,,;
Therefore, the increment of damage parameter at node j of a
plate from configurations & to k + 1 can be written as

Ad; = Ad\,

(81)
with

y — 1
Aj: [(1 __kdj )ijTSl;—olij/So]so W dij. (82)
-

Equation (81) indicates that the increment of damage param-
eter at a nodal point is a function of the plastic proportionality
parameter of the same node.

4.2 [Elastoplastic-damage Stiffness Matrix of Element
Based on the Scalar Isotropic Damage Model. The incre-
mental form of Eq. (67) at configuration &, which gives the
elastoplastic-damage tangent stiffness matrix at configuration
k, can be expressed as follows:

“Kpa=K, A-3"(A"HaK,) - BJ(‘DM)A Ha'K, (83)
where the left superscript & denotes configuration k, and K,
and *A are of the form

K. =K,—B;*(D,)SB,
kA —H+a’K,a+a BT{DM) — (DF) “(ID)(‘DM).

84
(85)
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In Eqs. (83) to (84), K, is the elastic part of the element stiffness
matrix; B, can be constructed by B, (see Eqs. (87) and (94));
matrices H, &, and DF, associated with plastic deformations,
were presented in Section 3.

The finite element considered here is the four-noded quad-
rilateral plate element shown in Fig. 2. The assumed strain c°
element for the thick/thin plate analysis developed by the au-
thors (Shi and Voyiadjis, 1991) is employed in this work for
the elastic stiffness matrix. The element stiffness matrix of this
element is of the form

Kﬁg Bl(x,y)SbBb(x,y)ddeS B/TBdxdy (86)
Q Q

in which Q signifies the element domain; S, and T, are the
customary flexural and transverse shear rigidity matrices, re-
spectively; B, and B, are the bending and transverse shearing
strain-displacement matrices, respectively. The quasi-con-
forming element method gives B, and B, as

B, (x,7) =P, (x.y)A; 'C, (87

B,=C/A (88)
where P (x, ) is the interpolation function matrix for element
bending strains; A, Cp, and C; are matrices independent of x
and y; and A represents the arca of the element. P,, A, Cp,
and C; for the element shown in Fig. 2 can be found in the
authors’ previous paper (Shi and Voyiadjis, 1991). Substituting
Eqgs. (87) and (88) into Eq. (86) gives

K,=CJA;' S Pl (x,y)8,Py (x,)dxdyA;, 'C,+ CIT.C/A.,
Q

(89)

It is worthwhile to mention that the element stiffness matrix
presented here can be evaluated explicitly since the integrands
appearing in Eq. (89) are only simple polynomials.

In order to illustrate the validity of the proposed compu-
tational model by solving some numerical examples, the de-
rivation of D., DM and ID will be presented for the scalar
isotropic damage model in this section.

By substituting Eq. (70) into Eq. (53), the damage effect
matrix of an element at configuration & can be expressed as

) S 0
‘D;=| 0 (¢aH1 0 (90)
0 0 (Cdupm)l

in which NDN represents the number of damaged nodes in the
element under consideration.
The incremental form of Eq. (70) takes the form

AD; (d} ) =Ad/ 1= Ad\] ©n

By comparing the above equation with Eq. (54), one can obtain

D, (dN;) = AddN;. 92)
According to the definition given in Eq. (55)
N NDN
SAq B (DM)dA= > 8AkgD, (dN)M; 93)
j=1
together with
B, (x:01) an
Bn: an(xjsyj) , dA= d)\j s (94)
B,.von (XnpnsYNDN) d\npn

matrix DM at configuration £ can be written as
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kMxl kMyl kMxyl 0 0 0 0
‘DM=| 0 0 0 My *M,; *M,, 0
0 0 0 0 0 0 *“Mon
A0 0
0 A 0 (95)
0 0 Anpy

By recalling Eq. (56)
NDN 617/7 K T *—
3dAT(DF)TUD)DM)AA = D | dd); s 0-D;)""AD;M,,
j=1 d

(96)
matrix ID at configuration & takes the form
1/(1—*dy) 0 0
“ID= 0 1/(1-%d}) 0 ©7)
0 0 /(1 —*drpn)

D}, DM, and ID are the only matrices associated with damage.
Having obtained these matrices related to damage, the elas-
toplastic-damage stiffness matrix of an element given by Eq.
(83) can be evaluated easily. It is worthwhile to emphasize it
again that the elastoplastic-damage stiffness matrix presented
here is given explicitly.

4.3 Numerical Examples. Three numerical examples of
the damage analysis of elastoplastic plates are presented in this
section. The computer program NAPSASE (Nonlinear Anal-
ysis of Plates and Shells by Assumed Strain Elements) devel-
oped by the authors (Voyiadjis and Shi, 1991b) is used here.
The updated Lagrangian formulation is adopted in NAPSASE.
The yield function in terms of the stress couples is employed
here. The notations of the yield function used in this section
are of the form

™M = | = 8
F(M) M 1=0 (98)

— M| Y,(k)
T A 1) 9
F(M,k) M, e 99

— M|

F(M,o) v 0 (100)

— M| Y,(k)
= =0 1
F(M,a,k) YA (101)

with

M| = (M%+M2%~ MM, +3M2%,;)"? 102)
My=oph*/4 (103)

where gy is the uniaxial yield stress of the virgin material; 4 is
the thickness of the plate; o (2/3 = o < 1) is the plastic
curvature parameter used to take into account the progressive
development of plastic deformations across the plate thickness
in plate bending problems (Crisfield, 1981); and k represents
the strain hardening of a material. A linear hardening with
plastic stiffness H’ = E/9 is used in all the examples presented
here. The material constants appearing in the damage evalu-
ation of Eq. (80) and the rupture criterion of Eq. (17) are taken
as

$o=1.0, S,=Y, D.=02 (104)

in which Y, is the critical value of the strain energy release
rate. Different values of Y, are used in each example.

Since not much information about the ductile plastic damage
analysis of bending plates is available for comparison, the
numerical study of the damage analysis presented here is less
ambitious.
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k
Mnpn

0 0
0 0

P
M xyNDN

Example 1. Clamped Circular Plate Under a Uniform
Load. A clamped circular plate subjected to a uniformly
distributed load is considered in this example. Because of the
symmetry, only one-quarter of the plate is analyzed here and
the finite element layout is depicted in Fig. 3. The critical value
of strain energy release rate used in this example is Y, = 3024/
4E. The curves of central deflections versus the load for both
elastoplastic and elastoplastic-damage analysis are illustrated
in Fig. 4. In this example, the edge of the plate becomes a
plastic hinge line first. The collapse load given by the plastic
analysis with F = F(M) is very close to the lower bound
obtained by Hopkins and Wang (1954). When the yield func-
tion I = F(M) is used, the result of the elastoplastic-damage
analysis is almost identical to that of the elastoplastic analysis.
Corresponding to yield function F = F(M, k), the difference
between the load-deflection curves with and without damage
is not considerable either. Nevertheless, when the damage ef-
fect is taken into account, the load-carrying capacity of the
plate is lower than that of the plate without damage, since the
damage parameter can cause the plate to become unstable even
though the damage parameter is much lower than the critical
value. In the present example, the plate becomes unstable when
the damage parameter at the central point of the plate is of
the value d* = 0.0315.

Example 2. Circular Plate Subjected to a Central
Load. The clamped circular plate considered in the previous
example is studied here again, but in this case, the plate is
subjected to a central load. The elastoplastic analysis of this

)

Fig. 3 Element mesh of a quarter of circular plate

F=FiM k)l
16 +
1
<z°°5
2} & F=FIM)
q R" é\b
100 My g | b,
. —a— F=F{}4, k) with damage
—e—F=F(M) with damage
W b
0 10 20 30 40 50
w_Dx102
MR?

Fig. 4 Central deflections of clamped circular plate under a uniform
load
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125 ¢ F=F(M,x,k)
F=F
100 F & (i, )
&
&
i%
) 5+ ‘i\é'
&
PR &
100 M,
50
—a—F =F(M,x,k] with damage
- —e—F=F(M,a) with damage
1 1 1 1
0 10 20 30 40

wD 2

——x10

MR
Fig. 5 Central deflections of clamped circular plate subjected to a
central load

structure was solved in the authors previous paper (Shi and
Voyiadjis, 1992a) for various yield conditions. The progressive
development of the plastic curvatures across the plate thickness
is taken into account here. The critical strain energy release
rate in this example is taken as Y, = 3¢%h(1 —»)/4E where »
is the Poisson ratio. The element mesh shown in Fig. 3 is
employed here again. The load-deflection curves at the plate
center are depicted in Fig. 5. The plastic deformation pattern
in this example is that the center of the plate becomes a plastic
node first. As shown in Fig. 5, the damage process causes the
plate to become softer. Furthermore, if no strain hardening is
considered, the damaged plate becomes unstable when the
damage parameter at the plate center is of the value d* =
0.057. If the strain hardening is considered, the plate is rup-
tured when the damage parameter at the central point reaches
the given critical value D, = 0.2.

Example 3. Clamped Square Plate Subjected to a Central
Load. This example concerns a clamped square plate with
an aspect ratio of L/h = 20 where L is the length and # is the
thickness. In order to have considerable damage effect, the
centrally concentrated load is considered here. Making use of
the symmetry, only a quarter of the plate is studied, and a
4 x4 mesh is used for the finite element descritization. As
illustrated in Fig. 6, eight triangular elements are used along
the diagonal connecting the center and the corner, and twelve
rectangular elements are employed elsewhere. There is no an-
alytical solution for the critical load of the clamped square
plate considered here. For such a plate made of elastic per-
fectly plastic material, one of the upper bounds of the critical
load obtained from the limit analysis is P, = 47wM; (Johnson
and Mellor, 1973). The present critical load given by yield
function F = F(M, o) is about P, = 10 My. Two yield functions
are used for the damage analysis, i.e., F = F(M, o) and F =
F(M, «, k). The damage load-deflection curves depicted in
Fig. 6 indicate that in both cases, the damage processes reduce
the plate stiffness considerably, which is similar to the results
presented in the previous example. Corresponding to F =
F(M, a), the solution becomes divergent when the damage
parameter of the plate at the center is of the value d* = 0.0482.
For F = F(M, a, k), the solution becomes unstable when d*
= 0.0861. In both cases, the solutions fluctuate somewhat
when the damage parameters are close to the -values corre-
sponding to the points where divergence occurs.
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12}  —a—F =F(Ma k) with damage
—e— F=F(Ma) with dumage
F=F(M,ak
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Fig}. l6 Central deflections of clamped square plate subjected to a cen:
tral load

5 Summary and Conclusions

A computational model for the finite element damage anal-
ysis of elastoplastic bending plates is presented in this paper.
This computational model can account for the degradation of
the mechanical properties resulting from microvoids induced
by plastic deformations in ductile plates. When the elastic part
of the element stiffness matrix is given explicitly, the elasto-
plastic-damage stiffness matrix resulting from the proposed
computational model can also be evaluated explicitly. The
explicit form of the tangent stiffness matrix presented here
makes the resulting element very attractive in computation.

The proposed model is based on:

(1) the ductile plastic damage model presented by Lemaitre
(1985);

(2) effective stress couples introduced in this work;

(3) damage effect parameters of a cross-section of bending
plates defined here which can also be extended to account for
partial damage of the cross-section; and

(4) the damage node model proposed here.

The introduction of effective stress couples for bending anal-
ysis is the natural extension of the effective stresses. The pur-
pose of the use of the effective stress couples is to construct
the yield function in the effective stress space which is asso-
ciated with the virgin materials. The mean values of the damage
parameters across the plate thickness are taken as the damage
effect parameters of a cross-section, and these parameters are
the conjugate variables of the damage bending strain energy
release rates in the irreversible thermodynamics. The damage
node model is employed to discretize the damage effect mat-
rices in the element domain. The use of the damage node model
makes it possible that the elastoplastic-damage stiffness matrix
can be evaluated easily.

The assumption that compression and extension have the
same influence on the initiation and growth of microvoids in
a ductile material is used in the present computational model.
Even though this assumption has certain limitations, it is quite
feasible in ductile plates when the macrodefects induced by
plastic deformations are dominated by microvoids rather than
by microcracks.
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The application of the proposed computational model is also
given in this work. Because the purpose of this paper is merely
to demonstrate the validity of the proposed model by solving
some numerical examples, the widely used scalar isotropic
damage model is adopted here. The four-noded quadrilateral
C? strain element for plate bending presented by the authors
is employed to evaluate the element stiffness matrix. Since the
element stiffness matrix is given explicitly in this four-node C°
strain plate element, the elastoplastic-damage stiffness matrix
presented here can also be evaluated explicitly. Compared with
the elastoplastic analysis, only alittle additional computational
effort is needed in the corresponding damage analysis.

Three examples are solved here to demonstrate the proposed
computational model. The numerical results show that the
influence of damage on the deformation and load-carrying
capacity of flexural plates depends on the boundary condition,
loading condition, and material properties. Generally speak-
ing, the damage induced by the plastic deformations has con-
siderable influence on the plates subjected to concentrated load
and those made of hardening materials.

It should be pointed out that the ductile plastic damage
affects the dynamic response of bending plates more signifi-
cantly than it does on the static response. This is because the
damage process considerably influences the energy dissipation
induced by the plastic hysteresis loop and the energy dissipation
is a very important source of damping in the plastic dynamic
analysis. The present computational model can be extended to
the dynamic damage analysis of ductile plates undergoing plas-
tic deformations.
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A Doubly Periodic Rectangular
Array of Fiber-Matrix Interfacial
Cracks Under Longitudinal
Shearing

The antiplane strain problem of a unidirectional fiber composite consisting of a
doubly periodic rectangular array of fibers containing interfacial cracks in an infinite
matrix is considered. The interfacial cracks are assumed to exhibit the same peri-
odicity as the fibers. The periodicity of the geometry allows the use of a unit cell
in the formulation of the problem. The governing weakly singular integral equation
of the mixed boundary value problem permits an explicit solution which contains
a set of unknown constants. The unknown constants are then determined by sat-
isfying the boundary conditions on the external surfaces of the unit cell through the
method of least squares. The stress intensity factor is calculated for various crack
lengths, fiber volume fractions, and fiber spacings. Unlike the plane strain or plane
stress deformation, the oscillations in stress and displacement around the interface
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crack tip are absent in the current antiplane strain problem.

Introduction

In this paper we consider longitudinal shearing of a unidi-
rectional fiber composite consisting of a doubly periodic rec-
tangular array of fibers with interfacial cracks in an infinite
matrix. The interfacial cracks are assumed to exhibit the same
periodicity as the fibers. A unit cell consisting of a circular
fiber and a surrounding rectangular region of matrix material
is employed in the formulation of the problem. The resulting
mixed boundary value problem leads to a Fredholm integral
equation of the first kind with a logarithmically singular kernel,
which can be reduced to the airfoil integral equation that per-
mits an explicit solution. The solution contains a set of un-
known constants which are determined by satisfying the
boundary conditions on the external surfaces of the unit cell
through the method of least squares.

Although studies of periodic arrays of cracks in homoge-
neous materials have been carried out by many authors, for
example, Delameter, Herrmann, and Barnett (1975), and Nied
(1975), few solutions exist for periodic arrays of interface
cracks., Comninou (1979) has given a solution for a periodic
array of cracks at the interface between two half-planes.
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The problem of a rectangular array fiber composite with
perfect interface subjected to longitudinal shear has been solved
by Adams and Doner (1967) and Chen (1970). The analysis of
interface crack problems related to fiber composite materials
based on the treatment of a single fiber in an infinite matrix
has been given by a number of authors (Erdogan and Ozbek,
1969; Smith, 1969; Toya, 1974).

Formulation of the Problem

Consider a doubly periodic rectangular array of fiber-matrix
interfacial cracks subjected to a remote longitudinal shear stress
7o as illustrated in Fig. 1. The fibers are of radius «, and the
fiber spacings in the x and y-directions are 2b; and 2b, re-
spectively. Both the fibers and the matrix are taken to be
homogeneous, isotropic, and linearly elastic, with shear moduli
of Gy and G, respectively. It is assumed that the cracks are
located symmetrically at the top and the bottom of the fibers
as shown in Fig. 1. The assumption is made on the physical
grounds that for a rectangular array of fibers with perfect
interface under longitudinal shear, the magnitude of the in-
terfacial shear traction attains its maximum at both the top
and the bottom of each fiber (Adams and Doner, 1967), sug-
gesting that cracks, if they do develop, are more likely to occur
at these locations.

The periodicity of the problem allows us to confine the
analysis to a unit cell as shown in Fig. 1. The problem is that
of the antiplane strain deformation. The extent of the cracked
interface is defined by a <0< 7 —aand o + 7 <8 <27 — o, with
the half crack length given by c= o, a, where a,=7/2-o.

The symmetries of the problem imply that the analysis can
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be limited to the first quadrant defined by 0=x<b,,0<y=<b,.
Due to the symmetry and periodicity, the boundary conditions
on the sides of the first quadrant of the unit cell are

T=0,x=0,0=y<b, )
Te=0,x=b,0<y=<bh, 2
w=0, y=0,0=x=<bh ‘ 3
w=wy, ¥y=>b;, 0<x=<b,. )

In (4), wp is an unknown constant. In addition, we have the
following equilibrium condition:

bl
S ng(r, O)dr: blTo. (5)
0

The stress component 7., can be expressed in terms of 7,, and
Ty A8

Txg=Trz €OS 0~ 74, Sin 0. 6)
For the boundary conditions at the interface, we have
=7 r=a,0<8s0o N
h=1"=0, r=a, asf=<7/2 ®)
wW=w" r=a, 0<f<o ©

where the superscripts fand m refer to the fiber and the matrix,
respectively.

The longitudinal displacement w(r, 6) can be represented
by the following series:

wea 3 71,,(2) sin 1, 0<r<a, 0O<f=<w/2 (10)

n=1,3,...

a o0 r H a "
Wi=—o A=) +B, - sin #f,
AP i R

r>a, 0<x<by, 0<y<b,.
And the stress components can be expressed as

-9 n—1
—_ r .
= Gy Z na, <§> sin nf,

O<r<a, O0sfs<su/2 (12)

(1)

oo n—1
ng—-Gf Z nZ,,<£> cos nf, O<r<a, 0=f<x/2
n=13 ...
(13)
o r n-1 2 n+1
= Z n|:An<—> —B,,<—_> } sin né,
n=1,3... a !
r>a, 0<X<b1, 0<y<b2 (14)
o n—1 n+1
Thr = Z n[A,,<£> +B,,<g> } cos néf,
n=13,... a r
r>a, 0<x<b, O<y<b, (15)

Notice that the Cartesian coordinates (x, ») are related to the
polar coordinates (r, 8) by x=r cos 8, y=r sin 0.

For the shear traction to be continuous across the interface
one has

B,=A,-GiA,, n=1,3, ... (16)

The boundary conditions (1) and (3) are identically satisfied.
The remaining boundary conditions (9), (8), (2), and (4) lead
to the following series equations (17), (18), (19), and (20),
respectively,

Gm E Z ” sin nf

n=13...

2

= > A,sinn0=0,0=<0=a (17)

n=1,3,...
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Fig. 1 A doubly periodic rectangular array of fiber-matrix interfacial
cracks under longitudinal shearing

@

Z nA, sin n0=0, a<b<7/2

n=13 ...

(18)

o

3] n+l
a -
Gy E n<b—1> A, cos" 9 sin (n+ )0+ E
n=13,...

n=1,3,...

b\t sin(n—1)6 a\""!
X ity i At AR et n+1 : —
[ <a> o518 b, cos"" '@ sin (n+1)8| =0,
0=0=<6, (19)
< n+1
a - . .
Z <—> A, sin"6 sin no +

2 A
b n—1 in no n+l
X[(f) S;in"’; + bi sin"9 sin 78 | = G,yo,
2

n=1,3,...
fo<f<w/2 (20)

where \=G,/G,,, 0g=tan" '(b,/b,), and v, = wy/b,, the average
shear strain. The equilibrium condition (5) can be written as

[+ a I'I_
G i) As
5 ()

nA,

Solution of the Series Equations

Let H(0) denote the shear traction along the uncracked por-
tion of the interface. From (8) and (12) we have

o

A o H(0),0sf=<w
G Ay sin nf= 2
f,,:],z&:_”n s {0,&503#/2. (22)
The Fourier coefficients 4, are then given by
Zn: S H i
7Gon 3, (@) sin node
n=1,3,... (23)

Substituting (23) into (17), (18), (19), (20), and (21), and chang-
ing the order of integration and summation, we arrive at the
following coupled integral-series equations:
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(23

SO H($)K, (0,9)d¢ =

wA

An i y V=V =
200+ 1) ) Z sin nf, 0<f=<a

=1,3,...

(24)

=3}

>, nd,

n=13,...

1. ntl
%’;}g—a— <b£) cos"* 10 sin(n + 1)6’} =0,

jo H($)K(6,0)dep+

dich

| H K (0.0)d0 -
0

O0<8=6, (25)

b,\""" sinnd
X {—= ;
a sin” b, 4
fp<0== (26)
2
S H{(d)Ky(¢)do
0 - ® b n—1 a n+1 -
1
— — —{— A== 27
2.8 6 -G) i @
where
_1 b+o| 1 b-¢
K,(0,¢)—4log tan 2 l 4log tan ) ' (28)
cos (0 — ¢)

_l 2 _ 2
Ka(0:9)=3 A0 = pl®)] cost) T ot s

cos (6 + ¢) 1, 2 .
T 1= 20%0) cos 20+ ) + p‘,‘(a)] 3 PO+ ()] sin
sin (6 + ¢) N sin (0 — ¢)
1-2p3(6) cos 20+ ¢) +p1(0) 1 —2p7(0) cos (6 — &) + p1(6)
(29)
_La 1+20y(0) cos (60— ) +p3(6)
K 0.6)= 8 by 1—2p(6) cos (6 — ¢) + p3(6)
_la 1420,0)cos@+0)+050) g0
8By 1—2px(6)cos (0+ )+ p3(6)
1 2a/b)sing
K4(¢)—2tan ——_—1~(a/b1)2 (3D
with
a _a .
p1(¢9)=b—l cos b, p2(0)=b2 sin 6. (32)

Equation (24) is a Fredholm integral equation of the first
kind with a logarithmic singularity. We can write its solution
as
_2x
Talv+ 1)

where H,(f) are the solutions to the following integral equa-
tions:

ST AH,(0)

n=1,3,...

H(9) (33)

4 r® )
= S H,(HK,(0,0)dp=sinnb, 0<f=<c
0

n=13, ... (34

It can be shown that by differentiating both sides of (34) with
respect to @, the integral equations (34) can be reduced to the
integral equations of the airfoil type and permit the following
explicit solutions:
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cos node

sin 20 ® (sin’a — sin%g)""?
H,(6)= S

(sin®c — sin29)'? " sin’d — sin’¢
n=1,3,... (33)
The integrals in (35) are to be interpreted as Cauchy principal
value integrals. Since H,(0) =0, it follows from (33) that H(f)
satisfies the end condition H(0)=0 as demanded by the sym-
metry of the problem.
Substituting (33) into (25) and (26) leads to a system of
equations

Z A (0) =16), 0=0=<7/2 (36)
n=1,3,...
for A,, where
(1)
_ {0, 0=0=6,
¢n(0) = {\“'2)(0)’ 00 <0=<%/2 (37)
0, 0=0<6b,
S6)= 9

T
_Z Gumyo, fo<b=x/2

-1 . n+1
- 1)
sin(n—1Df_ <_a_> cos" W sin (n + 1)0}

cos" 19 b

+7r()\+1) SO H,()K,(0,0)de  (39)
n-1_. n+l
Oy T | (b2\ sinnd (a Cng o
Y (0) = 4 l: <a> e <b2> sin OSlnn{)}
oD ), H (@K 09ds. 0
Substituting (33) into (27), we obtain
Z Oln’An:E 70 41)
4
n=1,3,...
where
T bl n—1 a n+ 2\ o
=Y [(;‘) - (b_1> ] +7r0\+ ) SO H,($)K(D)ds.
(42)

Following Smith (1969), the stress intensity factor is defined

by
K= lim vV 27ra(a - 0) Trz(a;e)'

0~

(43)

Notice that 7., (@,6) in (43) is the shear traction H(f) on the
uncracked portion of the interface as given by (33). It can be
shown that the stress intensity factor can be expressed as

K A &
= [2sin2a (A, + AK, 44
== ! 325 AK)
with K, given by
cosno
Ky=— S 73 dP.
= o (sin’o — sin’e)'’? a9 “3)

Unlike the plane strain or plane stress deformation, the
oscillatory behavior of stresses and displacements around the
interface crack tip does not appear in the antiplane strain
deformation (also see Smith, 1969).

For a single fiber in an infinite matrix, we have a/b, =0,
a/by=0, and it can be easily shown that 4,=17y, A4,=0 for
n#1 so that Smith’s close-form solution (1969) is recovered.
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Fig.2 Stress intensity factor versus crack length, V,= 0.55, for various
values of G,/ G,
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Fig. 3 Stress intensity factor versus crack length, G,/ G, =20.0, for
various values of V,

Numerical Solution and Results
The method of least squares is used to solve for the coef-
ficients 4,. The method, in the present context, consists of

truncating the series equation (36) to N terms and minimizing
the mean square error Ey defined by

/2 2N~-1
EN= S
0

2
2 Awba(9) —f(ﬁ)] dd  (46)
n=1,3,...
Accordingly, Eq. (41) is also truncated to N terms so that we
have
N1 r
Z OlnA,, :Z T0.

n=1,3,...

(47
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Fig.4 Stress intensity factor versus crack length, G,/ G, =20.0, V,= 0.4,
for various values of b,/b,

Some of the results for the stress intensity factor are pre-
sented in Figs. 2-4. The values of number N used in the com-
putations range from 6 to 40. In general larger values of N
are needed when fibers are more closely packed.

Figures 2-4 show that the value of X first increases, then
decreases with crack length. Figure 2 shows that the stress
intensity factor increases as fibers become stiffer. It is of in-
terest to note that with perfect interface, the local stress con-
centration factor also becomes higher when the fiber stiffness
increases (Adams and Doner, 1967). Thus, high composite
stiffness may well result in low strength. As observed from
Fig. 3, for small to medium crack lengths, increase in fiber
volume content will decrease the stress intensity factor whereas
for large crack lengths, higher fiber volume content tends to
magnify the stress intensity factor. This suggests that the fiber-
reinforcing effect on the resistence to interfacial cracking is
apparent only at small to medium crack lengths.
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Transient Wave Propagation
Methods for Determining the
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Viscoelastic Properties of Solids

The following two solutions are proposed for deducing the viscoelastic properties
of a solid from the change in the shape of a one-dimensional transient mechanical
wave as it propagates through the medium:

(i) The general solution:—the phase

velocity and the attenuation coefficient are expressed in terms of the Fourier trans-
forms of the pulse after two distances of travel, and (ii) A filter method. An
experimental set-up is described. The results, which are obtained with no heating
of the material, come within the audiofrequency range. This method fills a gap
between the existing vibratory and ultrasonic methods.

1 Introduction

The aim of the present study is to deduce the mechanical
characteristics of a linear viscoelastic medium from the change
in the shape of a transient mechanical wave propagating through
a sample of the medium.

In the mathematical study of a one-dimensional viscoelastic
wave propagating along a semi-infinite rod, the medium can
be represented by means of viscoelastic functions of either the
time (Brun, 1974) or the frequency (Hunter, 1960). Sackman
and Kaya (1968) have established the analytical bases for de-
termining short time portions of creep or relaxation functions;
the four theories proposed so far involve, however, either
various operations on observables or related quantities, partial
sum expansions, or the resolution of Volterra integral equa-
tions. For determining viscoelastic characteristics in terms of
the frequency, there exist two modes of excitation: fixed fre-
quency wave trains and transients. The former procedure, which
extends to viscoelasticity acoustical methods previously used
in elasticity, was applied in particular by A. W. Nolle (1947)
and by Hillier and Kolsky (1949) to stretched filaments. Here
it is proposed to use the second mode of excitation, that in-
volving brief transient pulses.

Any homogeneous viscoelastic medium subjected to one-
dimensional tension or compression can be characterized in
terms of the phase velocity c(w) and the attenuation coefficient
afw) of the longitudinal wave, from which it is possible to
deduce the complex modulus and the other equivalent visco-
elastic functions (Pierrard, 1969; Ferry, 1980). To determine
these functions, a slender bar of the medium under investi-
gation is subjected to a single mechanical transient and the
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resulting wave is observed. This wave can be represented by a
Fourier integral involving the functions c(w) and a(w) as well
as the pulse at the origin. There exist several possible ways of
deriving c{w) and a(w) from this integral. First, one can attempt
to integrate it exactly by forming hypotheses as to the form
of the functions ¢{w) and a(w) and that of the initial pulse.
This approach was first used by Bodner and Kolsky (1958) and
then developed by Champomier and the present author for use
in cases where only the wave front can be observed (Blanc and
Champomier, 1976). Another possibility consists of looking
for a numerical solution. Kolsky and Lee (1962) have inves-
tigated this problem without solving it completely: these au-
thors used a partial Fourier series development to represent
the wave, but the expression they obtained for c(w) was mul-
tivalued, and they did not completely overcome this difficulty.
Satd (1955) previously encountered a similar indetermination
in formulating the celerity of an elastic surface wave. Theocaris
and Papadopoulou (1978) and Christensen (1982) have devel-
oped theories on the same lines as Kolsky and Lee. We shall
not review here other previous studies, the general validity of
which is restricted because they involve the use of mechanical
models with only a few elements to represent the medium
investigated: Kolsky and Lee (1962) have mentioned that these
models are generally inadequate, ‘‘except in problems where
only narrow frequency ranges are involved’’. We have estab-
lished (Blanc, 1971) expressions for the phase velocity and the
attenuation coefficient in terms of the argument and the mod-
ulus, respectively, of the Fourier transforms of the pulse. So-
gabe, Kishida, and Nakagawa (1982) have proposed a similar
method. We now propose to completely re-examine this prob-
lem and to fully solve it.

The plan of the present paper is as follows. After describing
the principle of the method we propose two theoretical solu-
tions. Expressions are first established for c(w) and a(w) in
terms of the Fourier transforms of the wave shapes after two
distances of travel. This is the general solution of the problem.
It is expressed quite simply in terms of the transfer function
of these two wave shapes. On the other hand, the behavior of
the medium is completely determined by measuring the real
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or complex Poisson’s ratio. Secondly, the same pulses are
applied to selective frequency filters, and again the required
results are obtained from their responses. An appropriate ex-
perimental set-up is described. As an illustration, the method
is applied to the study of a bitumen.

2 Principle

The principle of the method is as follows. Let us consider
a slender bar of the medium, with a constant cross-section
area. A short axial disturbance is produced at one end of the
bar, resulting in the propagation of a wave. In viscoelastic
media, the high frequency waves propagate and are damped
more quickly than the low frequency ones, so that the shape
of the wave will change continuously as it propagates. Let us
assume that we know the successive shapes of the pulse as a
function of time after it has travelled two distances x; and x,
along the bar. It is proposed to deduce the corresponding
functions c(w) and afw).

The bar is assumed to be thin, which means that the largest
dimension of its cross-section is small in comparison with the
wavelengths involved in the disturbance. The one-dimensional
theory will then be valid (Kolsky, 1963).

It is worth mentioning that the results established below in
the framework of the present theory in the case of a thin bar
will in fact be more general, since they can be extended to
other types of waves defined in terms of a single parameter in
both rods and extended media (Sackman and Kaya, 1968).

3 General Theory

At distance x and time ¢, let us consider the stress g, the
displacement u, or any of its successive derivatives with respect
to time, particularly the particle velocity v = du/dt or the
strain e. Let us write f(x, #) for functions of the kind

(_32
Tar
S(x, t) can be represented by the Fourier integral (Hunter,
1960)

Sf(x, heto, u, ... €l M

+ o0

flx, 1) =§ S _Jo, w)e‘“‘“’“"‘“[’“ﬁd(w)

@

where f(x, w) stands for the Fourier transform of f(x, ¢).
Taking the inverse transform of (2),

.X
—o(w)x—iw —

Flx, @) =10, we w o)
and writing this transform in polar form
](x, ) =p(x, w)eiB(x, w) 4)

yields

—a(w)x+i[e<o,w)——°’x-]'

c(w)

p(x, w)e"™ D =p(0, w)e

This relation can be decomposed into two parts by taking the
arguments and the moduli:

WX
0(x, w)=06(0, w)—c“(’w—) ®)
p(x, @) =p(0, w)e™ >, ©)

Let us write these relations for the two distances of travel x;
and x; the following two relations can then be derived:

_ X2 — X
== 5, @) —0Gn, ) ?
1 o0, w) )
)= _xz—xl fn plx1, @) ®
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" Xi, one obtains k, =

These general relations completely solve the problem. It can
be noted that c(w) and «(w) are remarkably simple functions
of the phase 8(x,, w) — 6(x;, w) and the gain p(xz, )/p(x|, w)
of the transfer function of the two waves (which can be directly
obtained experimentally by means of a spectrum analyzer).

3.1 Wave Area Conservation. Let us note that «(0) = 0
(Hunter, 1960). Substituting into Eq. (8), this results in

" p(xz, 0)=p(x, 0), ©9)

which is usually not null.

On the other hand, since the transform of a real function
is real with w = 0, it follows that 6(x;, 0) = k;7 and 0(x,, 0)
= k,m, where k; and k, are both integers. If one takes x;, =
k. This gives

0(x2, 0)=0(x,, 0). (10)

Note that this result can be obtained using a different approach,
taking as a starting point the behavior of c¢(w) when w — 0
(see Hunter, 1960).

From the definition of the Fourier transform,

+ oo
v(x, 0)= S v(x, )dt=lu(x, O S=Awu.

Substituting from (9) and (10) gives
A u=Ay .

(1n

The total displacement of any particle of the material due to
the passing of the wave is therefore invariant with respect to
the distance covered by the wave, which generalizes the validity
of a result established for the elastic case (Kolsky, 1963). Ac-
cording to (1), the area of any wave, whatever its mechanical
nature, remains the same as it propagates through the medium.

3.2 Linear Distortion Invariance. Let us examine the ef-
fects of a possible linear phase and amplitude distortion which
is liable to affect the measurement of the mechanical quantity
Sf(x, t) given by (2). Let us assume that at each angular fre-
quency w, the transducer (for example) multiplies the amplitude
by p(w) and causes a change of y(w) in the phase. In this case,
the signal obtained will be as follows (Rocard, 1960):

+ oo

£ 1) =§1; S W(@)F(O, w)e—a(w)ﬁigw[’_ﬁ]W(w)}dw.

Inverting this transform yields

——+Y(w)

I (%, @)= w)(Q, w)e““‘””‘*"[cll ]

and hence

~a(w)x+il:0(0,w)—ix—+‘l/(w)]
3

pr(x, e ) = (w)p(0,w)e o)

which can be decomposed into

6" (x, w)=6(0, w)—mw“ ¥ (w)

P (¥, @)= uw)p(0, w)e~

wX
w
a(w)x

We obtain
0" (%2, ) —0"(x1, @) =00x3, )~ O(x1, w)

p"r @) _plas, @)

p (X1, @) plxy, @)
Applying relations (7) and (8) to the distorted wave shapes
therefore does not change the results. Here it should be men-
tioned that the useful frequency range of the transducers is
thus extended to the whole interval within which their sensi-

tivity is appreciable, This increases the variety and number of
the gauges which are suitable for use with this method.
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Note that this invariance can be said to be a generalization
of relation (1), where each element of the set was taken to be
the distorted image of any other one. The invariance does not,
however, include the case of nonlinear distortions (such as
chopping or pulse clipping). .

3.3 Complete Determination of the Behavior. In order
to completely determine the mechanical behavior, it is nec-
essary to know a second viscoelastic function: we propose
the complex Poisson’s ratio (Tschoegl, 1989). The longitudinal
and radial pulses can be measured at a single point using
appropriate strain gauges. The reverse-sign ratio between the
Fourier transforms of these pulses yields »(w). Experience has
shown that in fact, »(w) usually reduces to a real constant
which can then be obtained without performing any trans-
forms.

4 The Filter Method

It is now proposed to determine functions c(w) and a(w)
without having to calculate the Fourier transforms which occur
in (7) and (8). For this purpose, transients are applied to a
frequency filter. The signal delivered each time in response to
these transients will depend not only on the input signal but
also on the filter characteristics. In order to eliminate the latter,
we apply to one same filter a single transient which has been
picked up after two distances, x; and Xx,, along the bar, and
compare the results obtained. In a previous study (Blanc, 1974),
we solved this problem in the case of an oscillating circuit. It
is now proposed to generalize the method by extending it to
the case of a narrow band filter system. Let us consider a
bandpass filter having w, as the center frequency. Let A, (¢)
be the envelope of the impulse response of the equivalent low-
pass filter. Let us assume the bandpass of the filter to be
sufficiently narrow for the Fourier transform of the input
signal to be approximately constant. Papoulis (1962) has es-
tablished that the filter response to the signal f(x, ¢) can be
expressed as follows:

(12)

Let us consider the envelope

Y(x, 1) =20(x, wo)h (¢)cos[wof +0(x, wo) — x(wo)].

4.1 Damping Measurement.
of the response:
yilx, 1) =2p(x, wo)h (1)
after two distances of travel, x; and x,, along the bar. Let us
take each of these two responses after the same time ¢’ has
elapsed from the onset of each response, i.e., making the two
auxiliary time origins coincide. Let us write the latter relation
with x, and x, and divide the two equations thus obtained part
by part. It emerges that the ratio between the two response
envelopes
2i(x ) =P(Xz, wp)
yl(xly t,) p(xh wO)
is independent of ¢. Substituting this ratio into expression (8)
yields the damping coefficient c(w) with the angular frequency
value w = wyg.
This result is immediately verified in the elastic case where
the wave propagates without changing shape. We therefore
obtain y; (x;, t') = yi(x5, ¢’), and hence a(wg) = 0.

4.2 Phase Velocity Measurement. The filter response
phase is given by the sum between square brackets in expression
(12). Let us write ¢, for the time in the filter response at point
x = x; and £, at ¥ = x,. As previously, let us then take each
of the two responses after the same time ¢’ has elapsed since
their time origins, fo, and f,, i.e., at instants

fi=ty +t'

and h=tg,+1".
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' Fig. 1 Experimental set-up

Substituting these values into the corresponding expressions
for the phases and subtracting them, the difference is inde-
pendent of ¢’. Let us write £(x;, X», wg) for this observable
difference. This gives

wolto, — fo,) + 8 (x2, o) —0(x1, wo) =E(x1, X2, wg) +2kw

which yields modulo 2k, the denominator of expression (7)
for c(w) which we were looking for.

The present relation is immediately satisfied in the elastic
case, where £ + 2kw = 0, so that one again obtains

c(wo) = (X2 —x1)/ (fo,~ to,) = const.

In the viscoelastic case, it is necessary to determine k& in order
to remove the indetermination as to c(wgp). Let us consider
relation (7). Let us now refer each pulse to an auxiliary time
origin, the abscissa ¢; of the center of gravity of its area. The
argument @ of the Fourier transform of each pulse therefore
becomes stationary around the value nwr, and the difference
between the arguments becomes stationary around the value
0. In order to relate all the functions to the same time origin,
one needs then only to subtract the quantity w(fg, — f5,) from
the difference between arguments thus obtained. Since c(w) is
an increasing function, it is worth noting that the bottom limit
of c(w)

x —
Crin = e
te,~ g,

is obtained on the left of the pulse spectrum curve.

5 Experimental Set-Up

5.1 Principle. Letusconsider aslender bar of the medium
under investigation, ending in two plane cross-sections A and
B which are distance 1 apart (cf. Fig. 1). An axial shock is
produced against A4, which results in the propagation of a
compression pulse. On being reflected at free end B, this pulse
becomes a tension pulse. It returns to the original end A, which
has meanwhile become free, and is again reflected as a
compression pulse, and so on. The experimental set-up de-
scribed below gives the wave shape as a function of time as it
reaches B (Hunter, 1960) on two occasions, corresponding to
distances of travel chosen from the sequence 1, 31, 51, etc.
This set-up is basically similar to that described by Kolsky
(1956). On the other hand, it would have been possible to
measure the wave shape at any two points x; and x, along the
bar. By comparing functions f(xy, #) and f(x,, ¢), the phase
velocity c(w) and the attenuation coefficient a(w) can be de-
termined using the solutions we established above, and hence
the complex modulus E(w) can also be obtained, for exampie.
On the other hand, it is furthermore possible to measure Pois-
son’s ratio, as mentioned in Section 3.3. Once these two func-
tions are known, it is then possible to calculate any other
complex modulus which may be required to completely char-
acterize a medium (Staverman and Schwarzl, 1956; Waterman,
1977).

The principle of the present method requires that pulses f(x;,
t) and f(x;, #) be observed separately. B. Lundberg and the
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DISPLACEMENT

TIME

Fig. 2 Longitudinal displacement versus time of one end of a sus-
pended duralumin bar after receiving an axial shock

DISPLACEMENT

TIME

Fig. 3 Bar supported by roller bearings, under identical shock condi-
tions to those pertaining in Fig. 2

author (1988) have solved elsewhere the problem where, on
the contrary, one waits until observing the superimposition of
the successive reflections of the pulse produced by the two
ends of the bar.

5.2 General Description. Figure 1 shows the experimental
set-up, which can be seen to be very simple. The suspended bar
is free to undergo any small horizontal movement. The axial
shock is produced at one of its ends by means of a hammer
or an air gun. This shock also activates an electrical switch
causing a single sweep to be made on either a spectrum ana-
lyzer, a transient recorder or a digital oscilloscope. An elec-
tromechanical transducer placed at the opposite end of the bar
gives the pulse with respect to time at two passages, successive
or otherwise.

5.3 Bar Suspension Mode. We have previously studied
the limitations associated with two means of supporting the
bar (Blanc, 1971). For this purpose, we recorded the displace-
ment u of the end of a bar while the pulse was travelling back
and forth several tens of times along the bar. It was observed
that the movement of the end of the suspended bar (cf. Fig.
2) consisted of a series of equal, regularly spaced displacements
u, in agreement with relation (11). When the bar was placed
on a support (cf. Fig. 3), the kinetic energy began to dissipate
as soon as the pulse had travelled only a few tens of times
along the bar. It is therefore preferable to suspend the bar
using flexible threads with no appreciable mass.

5.4 The Electromechanical Transducer. It is first worth
mentioning that in the case of the two theories proposed above,
the pulses f(x,, #) and f(x;, ¢) can be determined with an
arbitrary unit; only the time axis requires calibration.

From (1), it follows that the quantity to be measured can
be either o, u, v, or e. Now it is not possible to measure the
stress o directly, and in the case of a shock the displacement
u is not susceptible to Fourier transform (cf. Figs. 2 and 4).
We are left with a choice between measuring v or e.
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DA

()

TIME

Fig. 4 Upper trace (a): displacement versus time of one end of a bar
of polyvinyl chloride 0.80 m in length after receiving a shock at the
opposite end. Middle trace (b): direct recording of the corresponding
particle velocity. Lower trace (c): response to the above transients (b) of
an Alison narrow band-pass filter, type 2D, centered on a frequency of
8.5 kHz.

Both the general method and the filter method are insensitive
to distortion, so that one does not have to worry about the
severe limitations which often have to be taken into consid-
eration when choosing gauges (Kolsky, 1962). With these two
methods, it is thus possible to use either electromagnetic trans-
ducers, which are sensitive to the particle velocity v but are
otherwise not suitable for measuring mechanical waves because
their pass-band is too narrow, or metallic resistance strain
gauges, which are sometimes unsuitable because they have an
indesirable stiffening effect on soft materials (Swan, 1973).

In the present study we used a velocity-sensitive pick-up, the
Bruel and Kjaer Magnetic Transducer MM 0002, a variable
reluctance device. It is also possible to use a capacitance gauge
which is directly sensitive to v (Blanc, 1971; Graham and Asay,
1978). In fact, gauges of this kind and electromagnetic gauges,
both of which are contact-free, are the most convenient types
of transducers to use when working at the end of a bar.

5.5 Signal Analysis. The electrical signal delivered by the
transducer can be processed in either of two possible ways.
First it can be fed into a spectrum analyzer such as the Briel
and Kjaer model 2034 equipped with input time windows in
order to separate the pulses. In this case, the transfer function
of the two pulse shapes, which occurs in relations (7) and (8),
is obtained directly; this yields c(w) and c(w) without requiring
the use of a computer. The second possibility consists of feed-
ing the signal to a transient recorder; we used the Datalab
model DL 905. After being thus stored on memory, the signal
can again be used in 2 possible ways as follows: (i) it can be
displayed on an oscilloscope screen; (ii) since it is digitized, it
can be transferred to a computer to have the Fourier transforms
and transfer functions of the two pulses calculated. Further-
more, when applying the filter method, the selective frequency
filter is placed between the transducer and the transient re-
corder.

It is also possible, however, to bond two sets of gauges onto
the bar. The pulses f(x|, ) and f(x,, f) are then obtained on
two separate channels. This procedure is used when the pulses
overlap in B.

Lastly, in order to measure Poisson’s ratio, appropriate two-
element strain gauges are used.

6 Results

As an illustration, Fig. 4 gives three typical examples of
recordings obtained with a viscoelastic material.

In addition to numerous polymers and elastomers, the above
set-up has been used to study a wide range of other materials
with internal damping, such as composites, aggregates, and
even foams.
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Fig. 6 Attenuation versus frequency in a bitumen between —40 and
+90°C

6.1 Example of a Bitumen. The general theory estab-
lished in Section 3 was applied to the mechanical characteri-
zation of an industrial bitumen, Mexphalte R type 135/10
manufactured by Shell company, which is a highly oxydated
gel. The method was applied at 14 temperatures ranging in
ten-degree steps between — 40 and +90°C. From relations (7)
and (8), the families of curves shown in Figs. 5 and 6 were
obtained.

The real and imaginary parts of the complex modulus E =
E’ + iE” can then be built up using the following classical
relations:

ew) _a(w)e(w)
2 w
2 plw)
2
E' (w)=|E(w)lcosp(w)
E" (@) = |E(w) |sing(w),
p being the specific mass.
These families of curves show that we are dealing with a
thermorheologically simple medium (Ferry, 1980). Taking T,

= 293 K as the reference temperature, the shift factor ar
obtained obeys the following W.L.F. equation:

—10(T—293)
92+7-293°

1E(w) | =pc*(w)cos

lgar=
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Fig. 8 Relaxation spectrum of a bitumen at 20°C

One thus obtains the master curves given in Fig. 7. Knowing
E(w) makes it possible to calculate the relaxation spectrum,
for example, using the method described by Williams and Ferry
(Pierrard, 1976; Ferry, 1980), cf. Fig. 8.

7 Discussion and Conclusion

Transient wave propagation methods are proposed for de-
termining the viscoelastic properties of solids. Two solutions
are provided for deducing these properties from the change in
the shape of a transient mechanical wave as it propagates along
a slender bar of the medium under investigation:

(1) the general solution, i.e., one which is valid with any
transient excitation. Very simple expressions are established
for the phase velocity and the attenuation coefficient in terms
of the Fourier transforms of the wave shapes after two dis-
tances of travel. These results are shown to be linear distortion
invariant.

(2) a physical filter method, which is applicable in the case
of brief pulses and does not require calculation of the Fourier
transforms. It is again insensitive to distortion.

An appropriate experimental set-up is described for use with
these theoretical solutions. With this method, it suffices to
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determine the wave shapes with an arbitrary unit, and only
the time axis requires to be calibrated. In addition, the dis-
tortion invariance implies that a larger number of gauges can
be used, and that their useful range is extended to the whole
frequency band within which the gauge sensitivity continues
to be appreciable. These two characteristics, along with the
simplicity of the set-up as a whole, make the present method
particularly easy to use. The results occupy a frequency band
of one and a half to two decades within the audiofrequency
range (20-20,000 Hz). The slight shock required entails prac-
tically no heating of the medium: As an illustration, the method
was applied to studying a bitumen between —40 and +90°C.

The present impulse method fills a gap (see for example
Perepechko (1975), Read and Dean (1978), Whorlow (1992),

and Masson and Thurston (1990)) between the available vi-

bratory and ultrasonic methods.
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The Scattering of Plane SH-Waves by
Noncircular Cavity in Anisotropic
Media'

Liu Diankui’ and Han Feng2

1 Introduction

The scattering of elastic waves has been the subject of study
for over a hundred years, but only in the last 20 years has the
subject received a good deal of attention from seismology and
applied mechanics. A comprehensive review of them was given
by Pao and Mow (1973) and Pao (1983). The problems of
scattering by inclusions of arbitrary shape are not amenable
to an exact solution, and only in recent years has it been possible
to obtain numerical and approximate asymptotic solutions for
that. Datta (1978, 1982, 1988) and others have made a greater
contribution to these problems. The method of complex func-
tion presented by Liu (1982) offers a new approach to two-
dimensional scattering problems. Despite the fact that the wave
equation is not conserved by a conformal mapping, the scat-
tering of cavities of arbitrary shape can still be treated nu-
merically.

In general, wave in homogeneous anisotropic media cannot
be represented by the compressional (P—) wave and shear
(S—) wave parts as in an isotropic case, so there are some
inherent mathematical difficulties in solving scattering prob-
lems in anisotropic media. Until now, references of scattering
and dynamic stress concentration in anisotropic media are
extremely few. Liu (1988, 1990) tried to meet this challenge
by choosing antiplane shear motion as a simple mathematical
model to approach anisotropic media character. By means of
complex function and mapping techniques, the authors have
successfully evaluated the dynamic stress concentration around
a circular hole and the displacements along the surface of the
cylindrical canyon of arbitrary shape.
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In this paper the authors will extend this method in the case
of scattering of a plane SH-wave due to cavities with arbitrary
shape in anisotropic media by adding the technique of con-
formal mapping.

2 Statement of Problem

Under an antiplane shear model for the problem of scattering
of elastic waves and dynamic stress concentration around a
cavity in anisotropic media, the equation of motion can be
written as (Liu, 1988)
PW o SW Fw_ Fw
o S xay T T TP
The relationships between stresses and displacements in an-
isotropic media are

Css @.1)

where (X, y, t) is the displacement of an anti plane shear motion
normal to the (x, ¥) plane and independent of the z-axis; p is
the density of the media; and Css, Cys, Cyq are elastic constants.
Introduce complex variables Z = x + iy, Z = x —iy. Then,
on our study of steady-state waves, w can be expressed as

W(Z, Z, t) =Re[W(Z, Z)e™ ™ (2.3)

where w(z, z) is a function of z and z, w is the circular frequency
of wave.

Here, with the aids of complex variables and the technique
of conformal mapping, it is possible to transform the external
domain bounded by noncircular curve in the z-plane into the
external domain of a unit circle bounded by S in the A-plane.
If both L and S are unlimited and mapped in finite points, the

mapping function w(\) will be of the following form:
Z=w(N)=CA+ a holomorphic function. 2.4)

Using the mapping function (2.4), the equation of motion in
the A-plane can be written as (Liu et al., 1990)

6 1 aW
(x) a \w'O) an
13 < 1 6W>
w'(N) N w (V) 9N

1 1 ow
9 <__ —=—> +pw2W=0.
w' N @' (N I\

( C55 C44 + 2!C45)

+2(Css+ Caq) —<

+ (Css — Cyy— 2iCys) ——
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3 Analytical Method

In order to solve Eq. (2.5), we introduce a new transfor-
mation for mapping function w(\) as follows:

L1 e+ +ivam)

2
-1 — J—
s“=£ [(1 = iy)a(N) + (1 + iy)e()] (3.1)
where y is a complex constant, ¥y = — Cys5/Cyy + i(CssCy4 —

C3s)'*/Cu.
Using the transformation (3.1), Eq. (2.5) can be written as

*w_ (i)
a3t (7) v

where Ky = w/Cr, C% = p/pand p = (CssCaq — C5)/Caa.
Following our previous works (Liu et al., 1982), the scat-
tering wave governed by Eq. (3.2) can be written as

(3.2)

() M s |

where A, are undetermined coefficients, and H{(.) is the first
kind Hankel function of the nth order with argument K4l ¢1.

The incident plane SH-wave in the n-direction in anisotropic
media can be wriften as

(3.4)

W _ W<t—x Cos a-+y sin oz)

CO(
where cos o = n,, sin o = n,; C, is the wave velocity in the

n-direction. Then we shall get the expression of velocity C,, as
follows:

172
1 . .
Co= [— <C55 cos® o+ 2Cys sin o cos o + Cyy sin’ a)}
0

(3.5)

In the steady-state case, the incident plane SH-wave propa-
gating in the n-direction can be written as

W(l) Wel[K (x cos a+y sin o) —wi] (36)

where W, is an amplitude of the incident wave and w = K,C,.

In a polar coordinate system, x = rcos §, y = rsin 8. So
the incident wave can be written as

W(i) — Woei[K”‘r €OS (G—cx)]e—iw{‘ (37)
In the A-plane, the expression (3.6) can be written as
iKy . .
" —= [w\)e ™ ¥+ g (N)e'?]
W = Wye * (3.8

The expression (3.8) can be expanded into the Fourier series
in complex form

w(N)
lw (M)

wO=w>, (i)”J,,(Kalw()\)I)[ } e~ (3.9)

where J,(.) is the nth order of the Bessel function with the
argument K, lo(\)1.
In the complex plane Z, stresses can be written as

oW . aw
=ity = (C55+CA4) + (Css— Cay—20Cy5) 57 (3.10)

_ oW oW |
Trp— ITgy = [(C55+C44) + (Css— Cas— 2iCys) F—ZT}ZG'

3.11)
Similarly, in the complex plane A, (3.11) can be written as
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. 1 .
T T2 =3 {[(C55+ Cag) (1 —iy)

+(CSS~C44“‘21.C45)(1+1.’Y)]?—I;_Z+[(C55+C44)(l—i§)
AW A A
+ (Css— C44“21C45)(1+1fy)] r} w 2)\;| G.12)

When the incident. steady-state plane SH-wave is from an
infinite distance, the controlling condition for stress along the
circumference of a scatter should be given, i.e., along A = e
we have

T+ =F (3.13)

where 7,‘z", T,‘z” and F are incident stress, scattering stress, and

applied stress along the circumference of the scatterer. Again,
assuming that the time dependence of F can be the same as
that of the incident wave, we have

F=Re[fee™™. (3.14)
Substituting (3.9) and (3.3) into (3.12) and (3.13), respectively,

we have
i EI!‘An=€ (315)
where
—K o g‘ n—1
en_Ka {[(a"_lc)Hn I(KTlg‘l)lilg.lJ
— 0 . RENCYS z
(b IC)H’1+I(KT'§‘I)I:|§'I:| ]lw'()\)l—l_[(b_l—lc)
g_ n—1
(1
x H) I(Krls“l)[m}
n+
— — (1) ¢ ()\)
(a tc)HnH(KTIS”I)[W)] ] (>\)|}

€=F'*Woé[(1—n)2(i)"

| o0 T
XJy (K dw(N) ] )e [|w()\)|J
—(1=n=2i) Y, ()"

(M) ™)

w n+1 )\wl
Tw(A) ] lw” (M)
w()\) n—-1
lw(N\)
wN) "IN e (N
fw (M) lw” (M)
and |
1 52 1/2
F' =F/CssK,,, az(n—£2)1/2{1+<;~?> }

_ (77—52)”2{1— <1_§f> 1/2} sz(’?—fz)m
n ) ) 7

and § = Cys/Css, 1 = Cys/Css.
Multiplying both sides of Bq. (3.15) with e~ and integrating
on the interval [ — =, =], we find

XJII+I(KO(,w()\) l )e~ina[

+ [(1—n+2i5)2<i)" ,,,<Kalw<x)l>e*""*[

— 1+ ()" ,,H(Kalco(x)ne-""“[
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DensAn=cs  s=0, %1, £2. .. (3.16)
where
€ _1 SW e 50y, e _L Sr ‘e,,e"'“’dﬁ.
“or ), % S I

Dynamic stress concentration factor T;z along the circum-
ference of a scatterer is defined as the ratio of the stress along
the circumference to the maximum amplitude of the stress at

the same point, i.e. (Pao, 1973; Liu, 1988),
Toy=Toz/ To (3.17)
(i)

where 7o, = 742 + 74 and 7y = CssKoWo.
Using (3.9), (3.3), (3.12), and (3.17), we have

1 o w()\) n—1 ]
Tor=7 {i(Hn)Z (Y"1 (Kol (M) [m] e

—RE+i(1-m)] D, ()"

w()\) e —ina M
XJn+l(Ka|w()\)|)|:|w()\)[} ¢ }lw()\)l

1 [e<]
3 {(ZEH(W—I));U)"

n—1
X Iy 1 (Kala(N) 1) [ lz&; I} o ina

+i(1+7) ()"

w()\) n+1 e ‘pr()\)
XJ"“(K“"”O‘)”[M(MJ ¢ }Iw'()\)l

172\ o2 : 2 2 8172 oo
7/ %(cos” o+ 2£ sin « cos o+ n° sin” o) ,
+ A )72 (—c+za)ZA,,
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o ¢ g_ n+1
_ : (1) o >
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(3.18)

4 Numerical Results and Conclusions

(1) Casel, for Elliptic Cavity: The distribution of dynamic
stress concentration factor in the neighborhood of an elliptic
cavity with ¢ and b as its semi-major and semi-minor axis,
respectively, can be expressed by choosing mapping function
as

Z=u(N)=R(A+m/\)

where R = (¢ + b)/2, m = (a — b)/(a + b).

We assume that b/a = 0.75, the boundary of ellipse is free,
and the parameters of media are £ = 0.0, 4 = 0.8. Substituting
(4.1) into (3.16) and choosingn = s = 3 for K, a = 0.1, 1.0,

4.1)
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Fig. 1 Distribution of dynamic stress concentration factor: b/a = 0.75,
o =45 ¢ = 0.0, = 0.8

Fig.2 Distribution of dynamic stress concentration factor: side length
of the square cavity is 23, « = 0, { = 0.2,4 = 0.8

Fig. 3 Distribution of dynamic stress concentration factor: side length
of the square cavity is 23, @« = 45,{ = 0.2,y = 0.8

and 2.0, the coefficients 4, can be calculated. Figure 1 shows
the distribution of dynamic stress concentration factors along
the circumference of the cavity.

(2) Case II, for Square Cavity: The function to map the
external region of the square cavity with 2g as its side length
into the unit circle in the A-plane can be written as

Z=w()\)=R<)\— L @.2)

1
6x2 TseN 176)\”>
where R = 1.2a.
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Similarly, the boundary condition is free from applied stress
and the media are £ = 0.2, n = 0.8.

By truncating the infinite algebraic Eq. (3.16)ton = s =
JforK,a =0l1landn =s = 4 for K,a = 1.0, 2.0, we find
the coefficients A4,. Figures 2 and 3 show the results of stress
concentration factors of calculation.

Now, we conclude this paper with the following discussions:

(a) From the numerical results indicated above, we can see
that the effect of anisotropy on dynamic stress concentration
is quite significant in engineering sense.

(b) The convergence of Eq. (3.16) depends on wave number
K,a and on cavity shapes. For low K,a, a few terms of the
series are sufficient; while for high K,a, the convergence is
rather slow. So, in this case, the number of terms needed
becomes large in order to get reasonably good results.

(c) For the square cavity case, the mapping function (4.2)
maps the unit circle only to ¢‘nearly square cavity’’ with corners
as shown in the figure attached. Such shape of course misses
the character of sharp corners. This is the weak point of the
method of mapping as noted universally in static case. In-
creasing the number of terms of the mapping functions is a
way to make the corners of the figure rather sharp.
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Rayleigh/subseismic range (Georgiadis and Barber, 1993). In
the course of this investigation, an integral equation formu-
lation was developed for the steady-state problem of an in-
denter moving over a half-plane at constant speed, using the
classical solution of Cole and Huth (1958) as a Green’s func-
tion. However, the resulting equation exhibited different
asymptotic behavior at the ends of the contact zone from other
published solutions to elastodynamic crack and contact prob-
lems (see, e.g., Brock, 1977; Freund, 1979; Burridge et al.,
1979; Georgiadis, 1986; Robinson and Thompson, 1974). Fur-
ther investigation showed that this inconsistency was attrib-
utable to an error in the Cole/Huth solution in the transonic
range. The purpose of the present Note is to rederive the
solution for this speed range.

The Cole/Huth problem involves a concentrated load mov-
ing with a constant speed, V, over the surface of an elastic
half-space under plane-stress or plane-strain conditions. This
classical problem was formulated within steady-state elasto-
dynamics and solved by a complex-variable method. A gen-
eralization involving an inclined load, i.e., a formulation
including both normal and tangential tractions, was considered
by Eringen and Suhubi (1975), but their final results exhibit
the same error.

Obviously, the Cole/Huth problem possesses considerable
engineering importance. For instance, it is of great interest in
soil dynamics, where ground motions and stresses can be pro-
duced by blast waves (surface pressure waves due to explo-
sions), or by supersonic aircraft. Other applications are
encountered within the context of contact mechanics (see, e.g.,
Johnson, 1985); for instance, the problem of high-velocity
rocket sleds sliding over steel guide rails (Gerstle and Pearsall,
1974). Consequently, this problem has attracted much interest
being cited and fully presented in such classical texts as Sned-
don (1951), Fung (1965), and Eringen/Suhubi (1975).

This Brief Note sets out to present the correct solution to
the steady-state moving load problem for the fransonic range,
i.e., when the velocity of the load is betweern the shear and the
longitudinal-wave velocities. It is this particular velocity range,
where the results for displacements and stresses by Cole/Huth
(1958) and Eringen/Suhubi (1975) are in error.

Analysis

We shall present very briefly the solution to the Cole/Huth
problem for an inclined load. Our approach leads directly to
the expressions for the real and imaginary parts of the complex
potential function.

Assume that an elastic body in the form of a half-plane is
set into motion by an inclined concentrated load moving over
the surface with a constant velocity V (see Fig. 1). The lon-
gitudinal and shear-wave velocities are defined as ¢; = [(A +
2;&)/,0]”2 and ¢; = (u/p)m, in terms of the Lamé constants A,
p and the mass density p. The quantities M; = V/c; (j = 1,
2) are the Mach numbers which define the speed range (sub-
sonic, transonic, supersonic) of the motion.

The steady-state elastodynamic field can be described by
introducing a moving coordinate system (x, y) asx = x' —

tan"1(1/m2)

Mach wave

Fig. 1 Steadily moving load over the surface of an elastic half-plane.
The Mach wave (shock wave in shear stress) is also shown for the tran-
sonic range.
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Similarly, the boundary condition is free from applied stress
and the media are £ = 0.2, n = 0.8.

By truncating the infinite algebraic Eq. (3.16)ton = s =
JforK,a =0l1landn =s = 4 for K,a = 1.0, 2.0, we find
the coefficients A4,. Figures 2 and 3 show the results of stress
concentration factors of calculation.

Now, we conclude this paper with the following discussions:

(a) From the numerical results indicated above, we can see
that the effect of anisotropy on dynamic stress concentration
is quite significant in engineering sense.

(b) The convergence of Eq. (3.16) depends on wave number
K,a and on cavity shapes. For low K,a, a few terms of the
series are sufficient; while for high K,a, the convergence is
rather slow. So, in this case, the number of terms needed
becomes large in order to get reasonably good results.

(c) For the square cavity case, the mapping function (4.2)
maps the unit circle only to ¢‘nearly square cavity’’ with corners
as shown in the figure attached. Such shape of course misses
the character of sharp corners. This is the weak point of the
method of mapping as noted universally in static case. In-
creasing the number of terms of the mapping functions is a
way to make the corners of the figure rather sharp.
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Rayleigh/subseismic range (Georgiadis and Barber, 1993). In
the course of this investigation, an integral equation formu-
lation was developed for the steady-state problem of an in-
denter moving over a half-plane at constant speed, using the
classical solution of Cole and Huth (1958) as a Green’s func-
tion. However, the resulting equation exhibited different
asymptotic behavior at the ends of the contact zone from other
published solutions to elastodynamic crack and contact prob-
lems (see, e.g., Brock, 1977; Freund, 1979; Burridge et al.,
1979; Georgiadis, 1986; Robinson and Thompson, 1974). Fur-
ther investigation showed that this inconsistency was attrib-
utable to an error in the Cole/Huth solution in the transonic
range. The purpose of the present Note is to rederive the
solution for this speed range.

The Cole/Huth problem involves a concentrated load mov-
ing with a constant speed, V, over the surface of an elastic
half-space under plane-stress or plane-strain conditions. This
classical problem was formulated within steady-state elasto-
dynamics and solved by a complex-variable method. A gen-
eralization involving an inclined load, i.e., a formulation
including both normal and tangential tractions, was considered
by Eringen and Suhubi (1975), but their final results exhibit
the same error.

Obviously, the Cole/Huth problem possesses considerable
engineering importance. For instance, it is of great interest in
soil dynamics, where ground motions and stresses can be pro-
duced by blast waves (surface pressure waves due to explo-
sions), or by supersonic aircraft. Other applications are
encountered within the context of contact mechanics (see, e.g.,
Johnson, 1985); for instance, the problem of high-velocity
rocket sleds sliding over steel guide rails (Gerstle and Pearsall,
1974). Consequently, this problem has attracted much interest
being cited and fully presented in such classical texts as Sned-
don (1951), Fung (1965), and Eringen/Suhubi (1975).

This Brief Note sets out to present the correct solution to
the steady-state moving load problem for the fransonic range,
i.e., when the velocity of the load is betweern the shear and the
longitudinal-wave velocities. It is this particular velocity range,
where the results for displacements and stresses by Cole/Huth
(1958) and Eringen/Suhubi (1975) are in error.

Analysis

We shall present very briefly the solution to the Cole/Huth
problem for an inclined load. Our approach leads directly to
the expressions for the real and imaginary parts of the complex
potential function.

Assume that an elastic body in the form of a half-plane is
set into motion by an inclined concentrated load moving over
the surface with a constant velocity V (see Fig. 1). The lon-
gitudinal and shear-wave velocities are defined as ¢; = [(A +
2;&)/,0]”2 and ¢; = (u/p)m, in terms of the Lamé constants A,
p and the mass density p. The quantities M; = V/c; (j = 1,
2) are the Mach numbers which define the speed range (sub-
sonic, transonic, supersonic) of the motion.

The steady-state elastodynamic field can be described by
introducing a moving coordinate system (x, y) asx = x' —

tan"1(1/m2)

Mach wave

Fig. 1 Steadily moving load over the surface of an elastic half-plane.
The Mach wave (shock wave in shear stress) is also shown for the tran-
sonic range.
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Vt,y = y’, where (x’, ") is a fixed system. Then, for the
transonic case (¢; < V < ¢,), the displacement and stress
fields are given in terms of the so-called potential functions
Wi(zy = x + iBy) and W, (x + myy) (Eringen and Suhubi,
1975; Georgiadis, 1986) '

u,=2ReW +2myW,, (la)
uy= —28,ImW, - 2W,, (1b)
0, =2u[2B% + M} + DRe W, +2m, W, 1, (1c)
0,=2u[— (1 — mb)ReW, —2m, W, ], (1d)
Tyy=2ul - 28, Im W\ — (1 — m3) W3], (le)

where 8, = (I — MH"? and m, =
numbers.

The boundary conditions of the problem can be written as
gy (x,0)= ~ P sinx 6(x), (2a)
Ty (X,0) = — P cosa 6(x), (2b)

where 8(e) is the Dirac delta function, and the angle « defines
the inclination of the load, as shown in Fig. 1. Introducing
Egs. (2) into (1) and then eliminating the function W, (x) from
the resulting system yields a relation between the real and
imaginary parts of the function W,

Pef(a,m,) 48,m,
20— )’ d(x)+ A=)’ m)zl mW, (x), (3)

where fla, m,) = sino » (I — m3) — 2 cosa * m,.

The boundary value problem in (3) is a Riemann-Hilbert
problem (Gakhov, 1966) and can be solved by utilizing the
Hilbert transform and elements from the theory of singular
integral equations (Tricomi, 1985). By applying the operation
ImW| (x) = |%, [ReW/(1)/n(x — 1)ldrto (3), we get a singular
IE which has the solution

(M3 — 1)"? are real

ReW,; (x) =

’ P o,m 48\m
Rew] () = ZL(2) *2)[(1 ) (x) + 2202 } @
uR T X
where R* = (1 — md)* + 168m3. Then, ImW/ (x) follows

from (3), whereas W5 (x) may be obtained from Eqgs. (1) and
(2). Finally, the functions Re W, (x), ImW,(x), and W, (x) are
found by integrating the previous functions and omitting con-
stants of integration, i.e., rigid-body displacements.

The next step involves evaluation of the functions Re W/ (z;),
ImW, (z,) and W, (x + m,y) which enter (1) and give the
stresses. The first two functions result from ReW (x) through
the Schwarz integral formula (Churchill et al., 1974)

W) (z)) =ReW, (z,) +ilmW, (z,)

1 Sm BiysReW, (1) +i(x—7)ReW, (7')
Tl (1-x)*+B1y?

&)

In combining (4) and (5) integrals which need to be evaluated
are found in Tables (e.g., Petit Bois, 1961), and finally we
obtain

ReW; (z1) =%§1, (6a)
ImW, (z;) = < 'Ax+—'12>—1—— —B-, (6b)
By ) x*+B1y* By
where the constants A and B are given as
A=PQuR™) "' ef(a,my) «(1 - m3)?, (7a)
B=PQwuR*) 'sf(a,my) «48,m;. (7b)

We also find
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7 P
Wi (x+ ny) :m [(1/2)cosa
+ 4Bty (R™) ~'ef (0r,m3)]
PB(1—m3)ef (a,my) 1
*d(x+myy) — - Yty (®)

In a similar way, we can find the functions ReW,(z)),
ImW,(z)), and W,(x + m,y), which are required for the
determination of subsurface displacements,

ReW, (21) = LU (4, myelog () — (1 = )46,
TuR
(9a)
Im W, (z)) =2 L8 14 ey + (1 — md)Pelog ()],
2muR
(9b)
Wy(x+ ——-—'I—)—— [(1/2) co
2 (x mzy)*u(l—mﬁ) ( coSa
T 48im, (R*)~ of ()]
oH(x+myy) —281(1—m3) 'eAslog(lx+myyl), (10)

where r; = (x* + B33, 6, = tan"'(By/x), 0 < 4, < m,
and H(e) is the Heaviside step function.

Neither Cole and Huth (1958) nor Eringen and Suhubi (1975)
give expressions for ReW,, ImW/, ReW,, ImW, (our Egs. (6),
(9)), but their expressions for W,, W, are identical with our
Egs. (8), (10). However, as will be shown in the next section,
the final expressions for the stress and displacement fields given
by these authors are incorrect.

Results and Conclusions

Having available the functions given by Egs. (6)-(10), one
can readily obtain the stress and displacement field by sub-
stituting in Eq. (1). In particular, the expressions for the surface
displacements u,(x, 0), u,(x, 0) and the normal stress im-
mediately beneath the load o,(0, y) are found to be

4y (35,0) = [61(1—m2> Slems) | el

TR*

1 [46%2(1 +m}) of (a,m;)

+(1—m%) R —cosa} -H(—«x)], 11

2PBymy(1 + m3) « flar,my)

U (x,0)= iR’ log(lx1)
P
w(1-nd) [f(iemﬁ [(1- %)3+85%m%]+cosa-m2]
JJ1-H(-x)], (12)
P(1 - mj) +fa, 1
o0.9) = PC V) gt 1 -y
4P
—(l_mz) [(1/2)cosc + 482my (R*) ~ e flar, )] 6 (ma).

13)

Equations (11)-(13) differ significantly from the correspond-
ing expressions given by Cole and Huth (1958) and Eringen
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and Suhubi (1975). These researchers do not give enough detail
in their analyses for the cause of the difference to be identified
with certainty, but a possible source of error could be an
incorrect separation of their complex potentials into real and
imaginary parts. ‘

A check on the correctness of the present analysis and results
are provided by our previous findings on the asymptotics of
moving contact zones (Georgiadis and Barber, 1993). For the
case of normal load, i.e., when a = /2, and for the u,(x,
0) displacement (which was utilized as a Green’s function in
Georgiadis and Barber, 1991), the Cole/Huth expression is in
error by a factor (2/M3) multiplying the H( —x) term.

With this correction, the asymptotic behavior of the stress
and displacement field at the edges of the moving contact zone
becomes consistent with that obtained in all other published
solutions of elastodynamic crack and contact problems (Brock,
1977; Freund, 1979; Burridge et al., 1979; Georgiadis, 1986;
Robinson and Thompson, 1974) involving the edge of a crack
or contact zone moving at a speed in the transonic range.

In closing, we mention that the respective transient problem
was considered by Payton (1967). In principle, one could get
the present steady-state results by Payton’s analysis, as time
tends to infinity in the transient problem. However, the latter
work does not provide pertinent results for field quantities in
the interior of the half-space and, moreover, only the hori-
zontal surface displacement caused by a normal load was
worked out. Notice that we provide results for the more general
case of an inclined load and stresses and displacements at all
field points. It is felt thus, by also taking into account the very
complicated expressions in Payton’s analysis, that a direct
steady-state analysis (as the present one) is preferable in some
instances over a limiting procedure of exploiting already ob-
tained transient results. This is especially true when one tries
to correct some established and well-known analyses, as we
did in the present case.
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Capillary-Gravity Waves Generated
Against a Vertical Cliff in a Fluid of
Finite Depth

A. K. Pramanik® and D. Banik’®

1 Introduction

This is the problem of two-dimensional capillary-gravity
waves generated by some free surface oscillatory pressure dis-
tribution which moves with a uniform velocity. The fluid is
incompressible, inviscid and is of uniform finite depth 4 and
is bounded on one side by a vertical cliff.

This problem without the cliff has been studied by Pramanik
and Majumdar (1984). The present problem with infinitely
large depth has been discussed by Pramanik and Majumdar
(1988). To understand the motivation of our paper we state
the main results of the paper of Pramanik and Majumdar
(1984). The ultimate steady state consists of six progressive
waves, four gravity waves, and two capillary waves. There
existsin the (a, b, ¢) space, where a, b, ¢ are the nondimensional
forms of the parameters of the problem, a surface called the
critical surface, which divides the space into several regions in
each of which the propagation is different.

The aim of the present paper is (i) to fully characterize the
critical surfaces for all possible values of the parameters, (ii)
to determine the waves for all possible values of the parameters,
and (iii) to find the effect of the cliff on the reflection of waves.

As is already stated in Pramanik and Majumdar (1984), the
waves were determined on the basis of two sections of the
critical surface by the plane ¢ = constant. However, the com-
plete characterization of critical surface is possible. In this
paper the critical surfaces are determined for all possible values
of a, b, c. It is found that these surfaces divide the whole
positive quadrant of the (a, b, ¢) space into five distinct regions
for (a, b, c¢) in each of which the propagation of waves is
different and the waves for all cases are determined. It is known
that for (a, b, ¢) outside these surfaces, the waves are with
constant amplitude while the amplitude is unbounded for (a,
b, ¢) on the critical surfaces.

Previously, in linear theory, these waves for (a, b, ¢) on
critical surfaces were not of interest where essentially nonlinear
theory is to be developed for the complete understanding of
the waves. However, to develop the nonlinear theory (Akylas,
1984) one has to take into account the order of the unbound-
edness on the critical surfaces. Motivated by this idea, waves
are also determined for (@, b, ¢) on the critical surfaces.

Regarding the effect of the cliff it is found that one gravity
wave is reflected for certain values of (@, b, ¢). In (a, b, c)
space there is a surface called the surface of reflection, such
that for (a, b, ¢) on one side of this surface, including those
on the surface, reflection occurs. And the amplitude of the
reflected wave remains the same as the original waves for all
(a, b, c), excepting for those forming a curve on the surface
of reflections. For (a, b, c¢) of this curve, the amplitude is
found to be reduced.

2 Formulation and Formal Solution
We take the x-axis along the undisturbed free surface and
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and Suhubi (1975). These researchers do not give enough detail
in their analyses for the cause of the difference to be identified
with certainty, but a possible source of error could be an
incorrect separation of their complex potentials into real and
imaginary parts. ‘

A check on the correctness of the present analysis and results
are provided by our previous findings on the asymptotics of
moving contact zones (Georgiadis and Barber, 1993). For the
case of normal load, i.e., when a = /2, and for the u,(x,
0) displacement (which was utilized as a Green’s function in
Georgiadis and Barber, 1991), the Cole/Huth expression is in
error by a factor (2/M3) multiplying the H( —x) term.

With this correction, the asymptotic behavior of the stress
and displacement field at the edges of the moving contact zone
becomes consistent with that obtained in all other published
solutions of elastodynamic crack and contact problems (Brock,
1977; Freund, 1979; Burridge et al., 1979; Georgiadis, 1986;
Robinson and Thompson, 1974) involving the edge of a crack
or contact zone moving at a speed in the transonic range.

In closing, we mention that the respective transient problem
was considered by Payton (1967). In principle, one could get
the present steady-state results by Payton’s analysis, as time
tends to infinity in the transient problem. However, the latter
work does not provide pertinent results for field quantities in
the interior of the half-space and, moreover, only the hori-
zontal surface displacement caused by a normal load was
worked out. Notice that we provide results for the more general
case of an inclined load and stresses and displacements at all
field points. It is felt thus, by also taking into account the very
complicated expressions in Payton’s analysis, that a direct
steady-state analysis (as the present one) is preferable in some
instances over a limiting procedure of exploiting already ob-
tained transient results. This is especially true when one tries
to correct some established and well-known analyses, as we
did in the present case.
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Capillary-Gravity Waves Generated
Against a Vertical Cliff in a Fluid of
Finite Depth

A. K. Pramanik® and D. Banik’®

1 Introduction

This is the problem of two-dimensional capillary-gravity
waves generated by some free surface oscillatory pressure dis-
tribution which moves with a uniform velocity. The fluid is
incompressible, inviscid and is of uniform finite depth 4 and
is bounded on one side by a vertical cliff.

This problem without the cliff has been studied by Pramanik
and Majumdar (1984). The present problem with infinitely
large depth has been discussed by Pramanik and Majumdar
(1988). To understand the motivation of our paper we state
the main results of the paper of Pramanik and Majumdar
(1984). The ultimate steady state consists of six progressive
waves, four gravity waves, and two capillary waves. There
existsin the (a, b, ¢) space, where a, b, ¢ are the nondimensional
forms of the parameters of the problem, a surface called the
critical surface, which divides the space into several regions in
each of which the propagation is different.

The aim of the present paper is (i) to fully characterize the
critical surfaces for all possible values of the parameters, (ii)
to determine the waves for all possible values of the parameters,
and (iii) to find the effect of the cliff on the reflection of waves.

As is already stated in Pramanik and Majumdar (1984), the
waves were determined on the basis of two sections of the
critical surface by the plane ¢ = constant. However, the com-
plete characterization of critical surface is possible. In this
paper the critical surfaces are determined for all possible values
of a, b, c. It is found that these surfaces divide the whole
positive quadrant of the (a, b, ¢) space into five distinct regions
for (a, b, c¢) in each of which the propagation of waves is
different and the waves for all cases are determined. It is known
that for (a, b, ¢) outside these surfaces, the waves are with
constant amplitude while the amplitude is unbounded for (a,
b, ¢) on the critical surfaces.

Previously, in linear theory, these waves for (a, b, ¢) on
critical surfaces were not of interest where essentially nonlinear
theory is to be developed for the complete understanding of
the waves. However, to develop the nonlinear theory (Akylas,
1984) one has to take into account the order of the unbound-
edness on the critical surfaces. Motivated by this idea, waves
are also determined for (@, b, ¢) on the critical surfaces.

Regarding the effect of the cliff it is found that one gravity
wave is reflected for certain values of (@, b, ¢). In (a, b, c)
space there is a surface called the surface of reflection, such
that for (a, b, ¢) on one side of this surface, including those
on the surface, reflection occurs. And the amplitude of the
reflected wave remains the same as the original waves for all
(a, b, c), excepting for those forming a curve on the surface
of reflections. For (a, b, c¢) of this curve, the amplitude is
found to be reduced.

2 Formulation and Formal Solution
We take the x-axis along the undisturbed free surface and

SDepartment of Applied Mathematics, Calcutta University, Calcutta, India.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS.

Manuscript received by the ASME Applied Mechanics Division, Oct. 3, 1990;
final revision, Feb. 20, 1992. Associate Technical Editor: K. R, Sreenivasan.

Transactions of the ASME
YASME

r copyright; see http://www.asme.org/terms/Terms_Use.cfm



the y-axis vertically upwards. The system being initially at rest,
waves are produced by the continued application of the free
surface pressure distribution p(x, t) = f{x) €“' which at the
same time moves along the positive x-axis with a uniform
velocity V. Let ¢ (x, y, t) be the velocity potential, n(x, ¢) the
surface elevation, p the density, and T the surface tension of
the fluid. Then in a moving coordinate system in which the
origin initially coincides with the cliff and then moves with the
velocity V, we have the following linearized initial value prob-
lem:

Pt ey=0n0=x< oo, —h=<y=<0, t=0

p T d d
;+D<,a+g77=—p—l Ny and Dy = ¢, where D= <E~ V&)’

at y=0
¢X(_ Vt, Vs t):()» <py(x, _h9 t):O9

o(x, ¥, 0)=0, 5(x, 0)=0.

Following the usual procedure as in Pramanik and Majumdar
(1988), the integral representation for » with dimensionless
variables can be obtained. For convenience we introduce the
notation g, [4, x] = |7 Fue“*™ad\, m = 1 to 4 and then
we get

n_47rpgh Z Ly (1)

where
Ii=gila+2b\, x], L=gla+2b\, x], Iy=g,[c+ DA, x],
Li=gl—o+ b\ X1, Ii=gla, x], Is=gsla, x],
I;=gs[o+ b\, x],
Iy=gil—0+DN x], Iy=gila, —x],
To=gla, —x],
I=gilo—bN, —x], In=g| -0~ b\, —xl,
Iis=gsla—2b\, —x],
Liy=gila—2bN, —x], Lis=gslo— DN, —x],
Lg=gy~0—bA, —x]

and
PR A CN) AN
L2 gt base’ M a—brFo’
htanh \ [* .
Fo 0 =2 ey oy

0

N\ 2 v
a=w|~- , b=——5,C= =[(\ + c\’) tanh A]V2.
“’<g> (" o=[(+ ) tanh A

3 Steady-State Waves

The steady-state waves at far field from the pressure segment
will be determined by evaluating the integrals in (1) for large
values of ¢ and |x|. The ultimate steady state comes from the
integrals as contributions from the residues at the real positive
poles of the integrands. These poles are the solutions of the
following equations:

at+b\N—-0=0,a—bA\+o=0and a—bA-0=0. (2)-(4)
Pramanik and Majumdar (1984) have studied in detail the
distribution of the roots of Egs. (2), (3), and (4). However,
for our purpose we state the results in short. Equation (2) has

in general three real positive roots A\j, Ay, A3, say (A\; < M <
A3); Eq. (3) has two such roots A4, As, say (Ay < As); and Eq.

T
pgh®’
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(4) has always one such root As. The existence of the roots
depends upon the values of the parameters a, b, ¢. This dis-
tribution can be known by a study of the cases where some
roots coalesce. Following Pramanik and Majumdar (1984), the
critical cases have the following representation:

a=¥,(\) for 0 =A<\, a=—¥;(\) for " <A<o and
b=¥,(\) for 0=sA< oo

where .
00 = (\—cA¥)tanh A — A+ cA}) sech®\
! 2[(\ + c\3)tanh A]"?
00 = (1+3cN\?)tanh A+ (N +cN?)sech” A
L) =

2[(+cN*) tanh A2

where )\ is the point of inflexion of the curve o and \’, the
value of A for which the straight line m = b\ is a tangent to
the curve m = o. These equations represent some surfaces,
called the critical surfaces f(a, b, ¢) = 0in (@, b, ¢) space.
In general such a surface is divided in three portions, say S,
S,, and S3, which represent the cases \; = N\, Ay = A3, and
A+ = \s, respectively.

To determine the nature of the critical surfaces, we take
two sections of these surfaces as in Pramanik and Majumdar
(1984) by the planes ¢ = .01 and ¢ = 1 which are respectively
shown in Figs. 1 and 2 where C;, C,, and C; are the sections
of Sy, S,, and S, respectively, in Fig. 1 and Cj is the section
of S; in Fig. 2. These two sections as also the nature of the
frequency curve for different values of ¢ give some indications
about the variation of the surface for different values of c. It
is apparent that for ¢ = 1/3, §; and S, are not present. For
¢ < 1/3 all the portions S, S,, and S; are present such that
in every section a loop is present. As ¢ increases from zero to
1/3, while the point A moves along a line L parallel to the c-
axis starting from the pointa = 0, b = 1, ¢ = 0, the positions
of the points 4y and A; change such that both the points Ag
and A, approach to the line L along the space curves g, I,
respectively. Consequently, the area of the loop approaches
to zero. To verify this statement we consider the locii of the
points Ay, A; which are, respectively, given by

80

T0l-

6.0

3.0

30

2104

0 0.2 04 Ay 06 0.8 10

b —e
Fig. 1 Sections of the critical surface and surface of reflection in the
(a, b) plane for ¢ = .01
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Fig. 2 Sections of the critical surtace and surface of reflection in the
(a, b) plane forc = 1

O'”ZO, a=‘I/,()\), b:‘Pz(%) (5)
¥ i (N=0, b=¥,(N). (6)

From each set of Egs. (5), (6) it is clear that ¢ can be expressed
as a function of A and then a, b will be so. Thus, Egs. (5) and
(6) respectively represent, in the parametric form, the two
previous space curves [y, | in the (a, b, ¢) space. Now it is
easy to verify by numerical calculation that the points 4y and
A, approach to the line L as ¢ increases from 0 to 1/3.

The above descriptions give the clear idea about the shape
of the critical surfaces. Thus, the whole positive quadrant of
the (a, b, ¢) space is divided into five three-dimensional distinct
regions R,(n = 1 to 5) among which the regions R;, R,, and
R; exist only below the plane ¢ = 1/3. Now it is easy to say
that only the surface S; is intersected by the plane ¢ = 1/3
into the surfaces S3; and S;, which are, respectively, below and
above the plane ¢ = 1/3. Below this plane the surfaces S; and
83, are intersected each other by a space curve, say [,. By this
curve I, S is divided into two parts, say Sy, S{, of which only
Sy contains the space curve [;. Similarly, Sy, is divided into
two parts Sy, and S3; of which only S3; contains the space
curve I7.

The distributions of the roots in the regions, on the surfaces
and on the space curves are respectively shown in the following
schemes:

Regions: Ry, R, R, Ry R;s

various surfaces, and on the space curves mentioned above.
It is known Pramanik and Majumdar (1984) that an integral
gives a steady-state wave with constant amplitude when the
poles are distinct i.e., for (a, b, ¢) in the regions. For (a, b,
¢) on the surfaces where some of the poles are coincident, the
corresponding integral gives a wave with an unbounded am-
plitude. However, the order of this unboundedness is different
for different surfaces. To determine this order we consider the
integral I,,. Following Pramanik and Majumdar (1984) it can
be shown that for each double pole on the surfaces, the asymp-
totic value of I;, is of the order t“? when ¢ — oo. For (@, b,
¢) on [y, three poles are coincident. To calculate I;; we use
the transformation m = a + bA — o. Since the main contri-
bution comes from the neighborhood of A = Ay, we can write

Note )
I = S SN M=M= MI ey where O<e<< 1.
vooe (a+DA—0)
Now using the fact ¢'(\g) = b, 6" (Ag) = 0, 6" (A\g) > 0, we
get

l "
m=-5 A =N)’s” (\o).

So

—imt

) 1/3 e”][ oo o
I, = <§> o ol S,m feNe ]mdﬂ?

i(—5/3)! i
i(~5/3) — e )N a5 (o,

= 31/2 ,
[7 o" (m}

We now like to say something about the calculation of the
integral [}s, since in the process of this calculation some typical
feature of the problem comes out. For this purpose we use the
transformation

m=o- bA. @)

There arise several cases in each of which the curve of trans-
formation (7) has different shape and thus the asymptotic
values are different. These cases are as follows: (1) 0 < b <
bo, ¢ < 1/3; (i) by < b < 1, ¢ < 1/3; (iii)) b > 1 for any
value of ¢; (iv) b < 1, ¢ > 1/3 where by is the value of b
corresponding to N = Aq. Since for the cases (i), (iv) the curve
of transformation (7) has no extreme, by the usual method we
get the asymptotic value of I;5 as follows:

_ wif~ (M)
[0" (Ne) + ]

But since for the case (ii) the curve of transformation (7) has
two extreme points, one maximum, say «, and other minimum,
say oy, the asymptotic value of I,5 depends upon the position
of the pole of the integrand A4 relative to «; or a,. To find
the position of Ag with respect to o, or o, we consider the case
Ne = a; OF A¢ = a which is represented by ¢’ = b and a =
g + DA,

This can be regarded as a surface, called the surface of

1o\ = bAg)1~Ngx]

115= as (—oo,

reflection (the meaning of this term will be clarified later) in

Roots: A AM,M AN A M Mg
Ns A3hs AiAs,h6 As,Ng Mo
Surfaces: S/ S/ S, S3 S S32
Roots: )\1 =)\2 )\1 2)\2 )\2:)\3 )\4=)\5 )\4=>\5 )\42)\5
)\3) )\6 )\3) )\41 >\5: )\6 )\l))\6 )\19)\29)\39)\6 )\3’)\6 )\3’)\6
Space curves: o I P
Roots: M=M=2A0 MM =AA= M50 A=A, A = N5, M550

We are now in a position to calculate the asymptotic values
of the integrals in (1) for large time and distance from the
origin in terms of the residue contributions at the poles. Now
in a particular integral the poles occur in various ways for
various values of the parameters a, b, c. Accordingly, the same
integral has different values for a, b, ¢ in various regions, on
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the parametric form in (a, b, ¢) space in the present case. The
section AB,C of this surface by the plane ¢ = .01 is shown in
Fig. 1, where the point By corresponds the point of inflection
A = Ao and the equation to its locus for ¢ < 1/3 is given by
" =0,0"  =banda = ¢ + b\.

This represents, in the parametric form, a space curve [3 in
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(a, b, ¢) space which divides the surface of reflection into two
parts, say 7 and 7" of which 7 is confined between L and
3.
For other values of ¢, i.e., ¢ = 1/3, we get a similar surface
of reflection whose section AD by the plane ¢ = 1 is shown
in Fig. 2. Actually this is the continuation of the previous
surface of reflection. But in this case, T is absent because the
point By approaches to the line L as ¢ increases from 0 to
1/3. It is numerically verified from the equations representing
the locus of By.

The above descriptions give the clear idea of the surface of
reflection for all values of c.

So for the points (a, b, ¢), where ¢ < 1/3, between the axis
of b and T the asymptotic value of /s is given by

mif- (Ng) H{lo(Ng)~bAg )1 —
Iis=1as {—oo where [= —————— ¢llloe)~brg}1heH],
s = e [o” (A) + 5]
Also, for the points (a, b, ¢), where ¢ < 1/3, between 7 and
T',I,s = —1Iast — oo, For the points (a, b, ¢) where ¢ <

1/3 in the three-dimensional region bounded by the plane pass-
ing through By and parallel to the (b — c¢) plane, the (¢ —
¢) plane and the surface 7', I;s = Tas f — oo,

Above the plane ¢ = 1/3, I}s = + I as t — o according
as the points (a, b, c¢) lie on the left or right to the surface of
reflection. For the points (g, b, ¢) on the surface 7 excepting
the space curve I3 and on 7'’

L= M=) itiong-reli-2ed o5 4. oo,

2b
Also for the points (a, b, ¢) on the space curve [3, the asymp-
totic value of I;s is given by

Ijy=———— as f—oo,

6

From the above calculations it follows that for (a, b, ¢), on
the critical surfaces, the asymptotic values of the integrals
become unbounded and the order of the unboundedness is like
t'2 where two roots coincide and like #*> where three roots
coincide. Now for (a, b, ¢) in a region R,, the asymptotic
values of the integrals are bounded leading to waves of constant
amplitude. In the following we write down the waves. At first
we write down the waves for (a, b, ¢) in the region R;:

wif_ ;)\6) JITTOW R VTR

n=mn+n3+ns+n,as x—oo and f— } ®

=1, +n4+1ns+7, as x— —ce and t—oo

where
m=H, (\)e' ™M = H, (\y)e!™ 799,
N5 = —H._ ()\S)ei(a[-l-)\sx)
M= —H. (A)e"™ 729, qy=H_(Ng)e' ™™,

ne= G(>\6)ei(at+)\6x)

I i, ()
=G (N)eMe- 200010 gy, = —— 1=
=G () 208hlo’ () 2]

if_(\)
208hl0” () 151

The wave system for the case when the values of the pa-
rameters a, b, ¢ of the problem are such that the point (a, b,
¢) lies in the other regions is easy to determine. This is the
same wave system as expressed in (8), only the wave corre-
sponding to a pole not occurring in a region being deleted for
that region.

The waves 5,(n = 1 to 6) are the original waves created by
the source as found in the unbounded fluid Pramanik and
Majumdar (1984). The wave 7, is an addition to this system
due to the existence of the cliff. It is obviously seen that 5, is

G(N) =

Journal of Applied Mechanics

the reflection of the wave n¢ on the cliff. Among the six waves
generated by the source, only the wave 5¢ moves towards the
cliff. So it must be reflected on reaching-the cliff. Now the
condition by which it reaches the cliff is obvious and its group
velocity is greater than the velocity of source. One can verify
that this is the same condition that the points (a, b, ¢) to the
left of the surface of reflection. Thus, occurrence of reflection
is physically reasonable. However, it is seen that the amplitude
of the reflected wave is the same as the original wave excepting
(a, b, ¢) on the curve [3 where the amplitude of the wave 7,
is reduced than the original wave. This seems to be a striking
result. It is to be noted that we have dealt with the linear theory
in aninviscid fluid. There is no obvious reason for the reduction
of the amplitude in the reflected wave 7,.
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Analysis of the Interfacial Crack for
Anisotropic Materials Under
Displacement-Displacement or
Traction-Displacement Boundary
Conditions

Chien-Ching Ma®® and Jyi-Jiin Luo”?

Introduction

Many engineering structures are comprised of more than
one material. The strength of composite materials is influenced
by the orientation of existing cracks with respect to the bi-
material interface. A number of solutions for the stress and
displacement fields for a crack lying along bimaterial interfaces
have been obtained for isotropic materials by Williams (1959)
and Rice and Sih (1965). Extensions to anisotropic elasticity
have been made by Bogy (1972) and recently by Ting (1986,
1990). All these studies of in-plane problems have shown that
the stresses share the inverse square root singularity of the
crack and, in addition, exhibit an oscillatory behavior as the
crack tip is approached. Recently, Ma and Hour (1989, 1990)
investigated the antiplane problems of two dissimilar aniso-
tropic wedges and an inclined crack terminating at a bimaterial
interface. They found that the order of the stress singularity
is always real for the antiplane anisotropic problems.
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(a, b, ¢) space which divides the surface of reflection into two
parts, say 7 and 7" of which 7 is confined between L and
3.
For other values of ¢, i.e., ¢ = 1/3, we get a similar surface
of reflection whose section AD by the plane ¢ = 1 is shown
in Fig. 2. Actually this is the continuation of the previous
surface of reflection. But in this case, T is absent because the
point By approaches to the line L as ¢ increases from 0 to
1/3. It is numerically verified from the equations representing
the locus of By.

The above descriptions give the clear idea of the surface of
reflection for all values of c.

So for the points (a, b, ¢), where ¢ < 1/3, between the axis
of b and T the asymptotic value of /s is given by

mif- (Ng) H{lo(Ng)~bAg )1 —
Iis=1as {—oo where [= —————— ¢llloe)~brg}1heH],
s = e [o” (A) + 5]
Also, for the points (a, b, ¢), where ¢ < 1/3, between 7 and
T',I,s = —1Iast — oo, For the points (a, b, ¢) where ¢ <

1/3 in the three-dimensional region bounded by the plane pass-
ing through By and parallel to the (b — c¢) plane, the (¢ —
¢) plane and the surface 7', I;s = Tas f — oo,

Above the plane ¢ = 1/3, I}s = + I as t — o according
as the points (a, b, c¢) lie on the left or right to the surface of
reflection. For the points (g, b, ¢) on the surface 7 excepting
the space curve I3 and on 7'’

L= M=) itiong-reli-2ed o5 4. oo,

2b
Also for the points (a, b, ¢) on the space curve [3, the asymp-
totic value of I;s is given by

ly=————— as f— oo,

6

From the above calculations it follows that for (a, b, ¢), on
the critical surfaces, the asymptotic values of the integrals
become unbounded and the order of the unboundedness is like
t'2 where two roots coincide and like #*> where three roots
coincide. Now for (a, b, ¢) in a region R,, the asymptotic
values of the integrals are bounded leading to waves of constant
amplitude. In the following we write down the waves. At first
we write down the waves for (a, b, ¢) in the region R;:

wif_ ;)\6) JITTOW R VTR

n=mn+n3+ns+n,as x—oo and f— } ®

=1, +n4+1ns+7, as x— —ce and t—oo

where
m=H, (\)e @MY = H, (N\)e' ™9,
N5 = —H._ ()\S)ei(a[-l-)\sx)
M= —H. (A)e"™ 729, qy=H_(Ng)e' ™™,

ne= G(>\6)ei(at+)\6x)

Lo 2o i, ()
=G (N)eMe- 200010 gy, = —— 1=
=G () 208hlo’ () 2]
if_(\)
208hl0” () 151

The wave system for the case when the values of the pa-
rameters a, b, ¢ of the problem are such that the point (a, b,
¢) lies in the other regions is easy to determine. This is the
same wave system as expressed in (8), only the wave corre-
sponding to a pole not occurring in a region being deleted for
that region.

The waves 5,(n = 1 to 6) are the original waves created by
the source as found in the unbounded fluid Pramanik and
Majumdar (1984). The wave 7, is an addition to this system
due to the existence of the cliff. It is obviously seen that 5, is

G(N) =
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the reflection of the wave n¢ on the cliff. Among the six waves
generated by the source, only the wave 5¢ moves towards the
cliff. So it must be reflected on reaching-the cliff. Now the
condition by which it reaches the cliff is obvious and its group
velocity is greater than the velocity of source. One can verify
that this is the same condition that the points (a, b, ¢) to the
left of the surface of reflection. Thus, occurrence of reflection
is physically reasonable. However, it is seen that the amplitude
of the reflected wave is the same as the original wave excepting
(a, b, ¢) on the curve [3 where the amplitude of the wave 7,
is reduced than the original wave. This seems to be a striking
result. It is to be noted that we have dealt with the linear theory
in aninviscid fluid. There is no obvious reason for the reduction
of the amplitude in the reflected wave 7,.
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Analysis of the Interfacial Crack for
Anisotropic Materials Under
Displacement-Displacement or
Traction-Displacement Boundary
Conditions

Chien-Ching Ma®® and Jyi-Jiin Luo”?

Introduction

Many engineering structures are comprised of more than
one material. The strength of composite materials is influenced
by the orientation of existing cracks with respect to the bi-
material interface. A number of solutions for the stress and
displacement fields for a crack lying along bimaterial interfaces
have been obtained for isotropic materials by Williams (1959)
and Rice and Sih (1965). Extensions to anisotropic elasticity
have been made by Bogy (1972) and recently by Ting (1986,
1990). All these studies of in-plane problems have shown that
the stresses share the inverse square root singularity of the
crack and, in addition, exhibit an oscillatory behavior as the
crack tip is approached. Recently, Ma and Hour (1989, 1990)
investigated the antiplane problems of two dissimilar aniso-
tropic wedges and an inclined crack terminating at a bimaterial
interface. They found that the order of the stress singularity
is always real for the antiplane anisotropic problems.
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In this study, plane problems for bonded dissimilar half-
planes of anisotropic material containing an interfacial crack
are considered. The solutions obtained in this paper is valid
only for anisotropic bimaterial having monoclinic symmetry
with the axis of symmetry being the x;-axis. Here the problem
of displacement prescribed on both crack faces, and the prob-
lem of traction prescribed on one face with displacement pre-
scribed on the other, is solved. The problem is solved by
application of a generalized Mellin transform in conjunction
with the complex stress function. The dependence of the order
of the stress singularity on the material constants and boundary
conditions is studied in detail. The result shows that the order
of stress singularity has reduced dependence on material con-
stants. The full-field solutions in the Mellin transform domain
are obtained explicitly. It is very interesting to find that the
solutions of the displacement prescribed problems can be ob-
tained from the traction prescribed problems by a simple sub-
stitution.

Explicit Solutions in Mellin Transform Domain

The two-dimensional stress-strain relations for a homoge-

neous anisotropic body are
)

€up =S Lp0ys 1)

Because of assumed elastic symmetry about x3 = 0 for the

plane problem, the six independent material constants are s},

i Al 12 12 22 - .
822, S12, S12, 523, §33. The solution of displacement for the two-
dimensional problem has the following form in terms of com-
plex potentials
. —i0 ’ o (s
urtitg=e"" D7 {80 (Za) +palla (Za) ) )

a=1,2

where {, (o = 1, 2) are arbitrary analytic functions of the
complex variable z,, Q, is complex conjugate and primes de-
note derivatives with respect to the indicated arguments. The
relation between z and z, is z = re®, z, = z + v.7. The
complex constants 6,, ps, and vy, are defined in terms of the
components of the elasticity tensor sg‘}; see Bogy (1972) or Ma
and Luo (1992). We now take Mellin transform of »* and r
times the stress and displacement, respectively.

ap(s,0) = S Oug (r,0)r° " dr, 3
0

tu(s0)= | wlroyrar @
0

where s is the complex transform parameter. The physical stress

and displacement fields are recovered as follows:

c+joo

v (=5 | Guplsr s, )
c—ioo
c+ o

ucx(r’o):% S ) ﬁa(s’g)r"s_lds’ (6)
c— oo

where Re(s) = c defines the path of integration. The choice
of c has to be determined by the regularity of their integrands.
Direct use of the transforms with the complex representation
of the solution leads to (Bogy, 1972)

f,(s,0) + iy (s,0)=e7" >}

a=1,2
8aPq (8) Pobe (S)
{(ei0+,yae—i0)s+l+ (e—i0+7aeiﬂ)s+l}’ )
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G0 (5,0) — 16,4 (5,0) = — 2 (s+ D)™ Z

a=1,2
Yada(S) _pa(S) ®)
(ei0+,yae—10)s+l (eﬂﬂ_*_?aez())sﬂﬂ 4
where ¢, (s) is defined as
$a(s) = S Qa (20) 2082 ©
0(0)

For convenience, define

H,o(5,0)= (€" + 7,77y, (10)
T(5,6) = (690 (5,0) — iG,9 (5,0)]/2 (s + 1), (1)
D{(s,0)=1,.(s,0) + ity (s,6). 12)
Then (7) and (8) can be rewritten as
D(sf)=€" 3 (8uHa(5:0)9a(s) +paHa(s.0)0a(s)],  (13)
a=1,2
T(s,0)= =€ > (YaHal5,000a(s) + Ha(5,0)ba(s)}.
a=1,2
(14)

We consider an anisotropic bimaterial interface crack, sub-
jected to prescribed displacements at the crack faces § = +n
as shown in Fig. 1. Perfect bonding conditions along the in-
terface § = 0 are ensured by the stress and displacement con-
tinuity conditions. It is very interesting to find that the form
of solutions for the displacement prescribed problems are very
similar to that of the traction prescribed problems solved by
Ma and Luo (1992). For convenience, we define the following
material constants:

'yda:6a/5a’ 5dm:'Yu/ch’ pdazl/pou (15)
and
Sa1— Ya19, -
)\d:’de d1 " Ydl d2=gd1 gdz’ (16)
Yd1— Yd2 Ydi—Yd2
— b641—6
Na=Ha=—"—2, a7
Ydi1— Yd2
£mF,= Ya20d1— 'YdlEdZ. (18)

Ydi ™ Ya2

The subscript d indicates the displacement prescribed prob-
lems. It can be proved that 5,z and £, are all real values and
we also find the following relations:

Ne=Ne, Eg=ne, ng=Ee, 19
where
M oM o1 12 12 o272
S115522.512 ,512,552, 522
Material 1
r
e
X
Material 2
1" e o™ e2® c12* 22
Si 1,522 512 .55 ,S% ,5%
Fig. 1 Configuration of bonded anisotropic dissimilar interface crack
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1

=f=———— 20
€E=¢€ n$-|)\|2, (20)
Si—v6 pi—py  S¥ _
A=12mN 2.t —2=—2'[71+’Yz~’¥1’¥2-(‘¥1+’)’2)], @n
Yi— Y2 Yi—Y2 Y172
_ 8 ~b S
g=r=— 2=—2<Si{—i>, 2)
Y1—72 Yiy2
N TR 21 __
f=F=TRLY02 5 (sl SUy ). 23)
Yi—7Y2

The material constants A, 7, £ are obtained for the traction
prescribed problems analyzed by Ma and Luo (1992). It is very
interesting to find that the solutions of the displacement pre-
scribed problems can be obtained from the traction prescribed
problems if we perform the following substitution:

Traction b T(s)y G H U, V, v

L i =ma
o= cos < 2, >, (37)
md—Zld
= ’ , 38
kd md+21d ( )

and #n is an integer number. From the condition of the positive
definite for the material constant it can be shown numerically
that m,/2l; = 1. The similar results as shown in (32) and (33)
are also obtained by Ting (1986). It is shown that 8, can be
expressed in another form,

* *
Na—§a—na +&a

39

1
Bd:- tanh"'
™ * * *
(at+ Eatna + )~ 4N+ Mg 12

The order of the power-type stress singularity is A = s, +

I m n & N

Displacement p.¢o ~D(8) Gy Hy Uiy Vau Yia lg Ma Ma Ea Na-

The solutions of the displacement prescribed problem in the
Mellin transform domain can be expressed as follows:

P(GaVau— HiUgy)

Pada (Y (5, 0) = (=2 (Lo + map® 1)’
4)
where
p:e~i(s+l)7r’ (25)
lg= Mg+ Mg 12~ (na+ £2) (Eatma), (26)
Mag=2 g+ Ny 12— @+ £2)° = Eat1a), @7)
Ga=—D()[Es—Ea— (Ea+70)D"]
~D() [~ A+ M+ g+ AP
~D*(s) (ng+£4)—D*(s) (-2Ay), (28)
Hy=—D(s)[h— N~ (Rg+ Ag)p7]
~D(S) [~ na+1a + (na+Ea)pP?
~D* () (@A) ~D* () (~ni—£q), (29)
Use= Y, (1= 8ap)Yaglta+ £a + (Ea+12)0"]
B=12
— A1 +pY),  (30)
Vie= D) (1—8agyvasPha+ Na)(1 +p%)
8=12
~[Eg+ma + (gt EDPY,  (B1)

and 6,g is the Kronecker delta. The expressions for i, and 6,
now follow directly from the substitution of (24) into (7)-(8).
This completes the formal solution for the transforms of the
stress and displacement components. The location of the zeros
of the characteristic function (1 — p? (l;p* + mup? + 1) =
0 is found to be

s=n, (32)
or
1
s=n—£ +iBy if my/2l=1; (33)
s=n:|:i6d if my/2l;< —1; (34)
s=nxo if Imy2ll <1, 3%5)
where
1 _y (Mg 1 1+Kd »
=—cosh™ ' |- |=— In [—= |, 36
4= cos 20, =2 ™ [T, (36)
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1, where s, denotes the zero of the characteristic function with
the largest value in the open strip —2 < Re(s) < —1. The
order of the stress singularity A is a complex number and the
stress fields are oscillatory in the limit r — 0. The magnitude
of the oscillation is depend on the value 8, which is expressed
in (36) and depends only on one material parameter ;. There
are combinations of the material constants that will have the
square root singularity, i.e., 8; = 0, should satisfy the fol-
lowing equation:

Na—Ea="d — £a- (40)
Homogeneous materials obviously satisfy Eq. (40). For the
isotropic case, we have ny = p/(m — 1), &, = pand Ny =
0. Equation (39) is reduced to
ah-! p(m=2)(m" - 1)—p*(m" -2)(m—1)
pm(m* =D+ m* (m—1)

L ., (41)
T
which is in agreement with the result obtained by Ma and Wu
(1990). The largest value of 8, in (41) is (In \/5)/#(: 0.175),
the same as the traction-prescribed boundary conditions.
Next, we consider the interfacial crack problem with the
boundary conditions of traction prescribed along one crack
face while displacement prescribed on the other crack face.
Thus we consider the following boundary conditions:

> VaHu(5,1)9(8) + Hols,m)a(s) ) = T(s),

a=1,2

S (8 Ho (S, — Mo (5) + paHa (5, — Ta(s)) = =D*(s).

a=1,2

(42)

43)
By using the Cramer’s rule and after some algebraic simpli-
fications, we get
PQu
(=)= Q
in which Q and Q, are obtained from the determinant of eight-
by-eight matrix. The characteristic equation Q, which presents

the dependence of the stress singularity on material constants,
is reduced to an explicit simple form as

o () Ho(5,0) = (44)

2

m+Ept —N1+p) 0 1-p
N1+p%)  —g-np* 1-p? 0
Q= 2 * 2 * * 2
I-p 0 A(1+p7)  —Eg—nap
0 1-p? na+Eap®  —Na(1+p7)
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=1+ Ny +EapY) — Ny (1+ Ep%) )
X [N +1a0?) — Na(E + 1))
— (=P + (E+10%) (g +£ap®) = Mha(1+ 7))
(1 =p)2+ (n+Ep7) (£g +ap®) = NN (1+p)2). (45)
But Q, can only be reduced to the determinant of a four-by-
four matrix. The results are:

£T(s) — AT (s) ~ D" (s)
0= XT(s)—ﬁ(s)—E*(_s)
“7 |~ T(s) ~ny D" (s) +\;D* (s)

~T(s)=NgD*(s) + £,D* (s) 1-p?

All the zeros of (43) can be obtained explicitly as shown in the
following form:

1 .
S=n-—-+axif,

1 .
5 n——z—azi:zﬁ,

if lg"—qg +16g,1 =2N/q*q~; 47
s=n——5+a:i:a, I’l*-E—Ot:l:a,
ifA g +N g <V 16q,; (48)

' L.

s—n—5+1(6:i:'r), n——2 i(Bx7),
if Vg =N gq >V 16g, (49)
s=n+i(Bx7), n—i(f=x7),
if\g"-N¢qg <-+\16g,; (50
1

s=n—5:|:i(z9—s‘), nxi(d+s), if g,<0, 51

where

1
=5 cos‘l(\/q+/16qo~\/q*/16qo),

1
B=5- cosh"(\/q+/16qo+\/q‘/16qo),
T

1

o COS_1(\/q+/16£]0+\/q_/16QG):

o=

1
= cosh_l|\/q+/16qo—\/q"/l6qol,
T

1
=5 sinh ' — g /16, +N —a~/16,),
Y

1
s=5- sinh ™'\ = g* /160, -~ ~a~ /164,),

Go=—Ql2-0= (nf — INI?) (nats— INg1?)
+nbg+Eng— My —Ng+1, (52)
g" == Ql2o =[(n+E)2 =4I\l +£0)P 41N 17,
(53)
g =—Ql 2 =[(n—£) (na— 1) —41% 54
Equations (47)-(51) list all the mathematical possibility of
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~N1+P) + (1 = bughypn +£0%) 0
—t—qp*+ L1 = Sup)yeh(1 +p%)
Za(1 — bag)vs(1 — P

the zeros of Eq. (45), but not all zeros are admissible. From
the positive definite character of the material constant, it can
be shown numerically that the admissible zeros are those ex-
pressed in (47), (48), and (49). The order of stress singularity
for the mixed boundary condition can then be obtained ex-
plicitly. This is the first explicit results for the order of stress
singularity of mixed boundary condition for anisotropic in-
terfacial crack. While for the pure traction or displacement

2

1-p
1-p*
* * . (46)
NA+pY) kg —nap®
na +Eap”  —Na(1+D%)

prescribed problems Ting (1986) also obtained the explicit re-
sults by using Stroh’s formulations. For the isotropic inter-
facial crack subjected to mixed boundary condition, the
solutions can be obtained from general results shown in (47)-
(51) by setting

B p(m=1) w
qa~[1+—-——~—” MH——;L(m*FI)]’ (55
* * 2
+_ | _p mm
q -L(m*_l)}, (56)
[ =20 -
q—[4+ o —1) } (57)

This result of the order of stress singularity for an isotropic
case is in agreement with the results obtained by Ting (1986)
and Ma and Wu (1990).

Conclusions

The problem of plane deformation for a dissimilar aniso-
tropic interface crack was solved by application of the Mellin
transform. The explicit solutions of stresses and displacements
are obtained for traction-displacement and displacement-dis-
placement boundary conditions applied on the crack faces. It
is very interesting to find that the solutions of the displacement
prescribed problems can be obtained from the traction pre-
scribed problems by a simple substitution. The dependence of
the order of stress singularity on the material constants and
boundary conditions is expressed in explicit closed form. It is
shown that the order of stress singularity has reduced de-
pendence on the elastic constants. It needs only one material
parameter instead of 12 material constants for displacement-
displacement boundary conditions. The reduction in the num-
ber of elastic constants may simplify the analysis and inves-
tigation of the interface crack problem.
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Singularity Eigenvalue Analysis of a
Crack Along a Wedge-Shaped
Interface

Y. Z. Chen’ and Norio Hasebe'

1 Introduction

Recently, there has been a resurgence of interest in the elastic
interface crack problem. Works by Huchinson, Mear, and Rice
(1987), Rice (1988), Mukai, Ballarini, and Miller (1990), Has-
ebe, Okumura, and Nakamura (1990), Toya (1990), and Wu
(1990) provide examples of the recent contributions. The in-
terface crack problem between dissimilar materials was first
studied by Williams (1959). Williams showed that the stresses
at the vicinity of a crack tip possess singularities of type r* 7,
where r is the radial distance from the crack tip and ¢ is a bi-
material constant. The problem of two edge-bonded wedges
of dissimilar materials was investigated by Bogy (1971). Bogy
used the Mellin transform to investigate the nontrivial solution
for the two edge-bonded wedges. He studied the order of the
singularity in the case of some particular wedge angle and the
material constants changing continuously.

In this paper, singularity eigenvalue analysis of a crack along
a wedge-shaped interface is examined. The considered wedges
are bonded along one edge and are debonding, or cracking,
along another edge (Fig. 1). One wedge has an angle « and
the elastic constants u;, k¥, and another wedge has 3, u,, and
k. Two angles are assumed to satisfy ¢ + 8 = 27, and «
changes from 0 to 2«. The eigenvalue is denoted by E = a —
ib in the following analysis. The complex variable function
method proposed by Muskhelishvili (1953) is used for the ei-
genvalue analysis. Comparing with the Mellin transform
method, the proposed method is straightforward, and the ob-
tained results and eigenvalues can be directly related to the
stress and displacement fields. It is obviously that « = 0 or
= 2 corresponds to the isotropic case, and the eigenvalue for
leading term (abbreviated as ELT) is a real one. Also, it is
easily seen that o« = # corresponds to the conventional interface
crack problem, and the ELT is a complex value. Contrary to
a previous study, in this paper the angle « is changing contin-
uously and the material constants involved are assigned to be
some particular value. Therefore, the change of ELT from a
real value (0 = o < o), to a complex value (@, < a = o),
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L

Fig. 1

and then to a real value (o, = o < 2x) can clearly be seen
from the obtained numerical results.

2 Analysis

It is well known that the complex variable function method
proposed by Muskhelishvili (1953) provides a most effective
approach to analyze the plane elastic problem. According to
this method, the stresses (0., 0y, 0y), the resultant force
functions (X, Y), and the displacements (u, v) can be de-
scribed by two complex potentials ¢ (z) and w(z)

Oyt 0y, =4Re[®(z)]

Oy i0y=®(z) + (2-2)®' (z) +Q(z) M
P=—Y+iX=¢(2)+ (z2-2)¢" (2) +@(2) )
2u(u+iv) =k (z) — (2—2)¢ (2) —@(2) 3)

where ®(z) = ¢’ (z) and @(z) = w’ (z), pis the shear modulus
of elasticity, k = 3 — 4» for the plane strain problem, x = (3
— »)/(1 + v) for the plane stress problem, and » is the Poisson’s
ratio.

We seek the solution of the problem in some region R (R
= R; + R,, Fig. 1) surrounding by a traction-free interface
crack. The elastic constants and the complex potentials are
denoted by u, k1, ¢1(2), wi(z) and pa, K3, $2(2), wy(z) for
the regions R, and R;, respectively. From Eqs. (2) and (3) the
continuation condition of the resultant force and the displace-
ment along the positive part of real axis gives rise to the fol-
lowing relations:

¢f () +of () =¢7 () +w; (1) (x>0 @
i (x) —of (X)) =p (s () —w; (1)) (x>0, (5)
since along the crack faces OA and OB we have
z=7 expicr)y (2€0A or z€OB). 6)
Therefore, the traction-free condition along the upper and
lower crack faces can be expressed by

$1(2) + (expRic) — DT ¢1 (2) + w1 (z) =0 (z€0A)  (7)

$2(2) + (expQic) — 1)Z 7 (2) +@,(2) =0  (z€OB).  (8)

In the following analysis we let the complex potentials take
the following expression:

¢1(z) =p12° P+ gz
w1(2)=§120+ib+l‘1z‘1_ib (9)
62(2) =poz” P+ Gz
wz(z)=§22a+ib+fzza_ib (10)

where p1, qi1, S1, L1, D2, G2, S3, and £, are complex values. In
addition, the value E = a — ib (or a + ib) will be determined
by the condition of a nontrivial solution of the problem and
is called the eigenvalue for a crack problem in the bonded
wedges.

Substituting Egs. (9) and (10) in (4), (5), (7), and (8) vields
eight equations. Furthermore, after eliminating sy, ¢, §,, and
t, in these equations we get the following equations:

(I1-e)pi~eq—(1—e&)p+eq=0 (11
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Singularity Eigenvalue Analysis of a
Crack Along a Wedge-Shaped
Interface

Y. Z. Chen’ and Norio Hasebe'

1 Introduction

Recently, there has been a resurgence of interest in the elastic
interface crack problem. Works by Huchinson, Mear, and Rice
(1987), Rice (1988), Mukai, Ballarini, and Miller (1990), Has-
ebe, Okumura, and Nakamura (1990), Toya (1990), and Wu
(1990) provide examples of the recent contributions. The in-
terface crack problem between dissimilar materials was first
studied by Williams (1959). Williams showed that the stresses
at the vicinity of a crack tip possess singularities of type r* 7,
where r is the radial distance from the crack tip and ¢ is a bi-
material constant. The problem of two edge-bonded wedges
of dissimilar materials was investigated by Bogy (1971). Bogy
used the Mellin transform to investigate the nontrivial solution
for the two edge-bonded wedges. He studied the order of the
singularity in the case of some particular wedge angle and the
material constants changing continuously.

In this paper, singularity eigenvalue analysis of a crack along
a wedge-shaped interface is examined. The considered wedges
are bonded along one edge and are debonding, or cracking,
along another edge (Fig. 1). One wedge has an angle « and
the elastic constants u;, k¥, and another wedge has 3, u,, and
k. Two angles are assumed to satisfy ¢ + 8 = 27, and «
changes from 0 to 2«. The eigenvalue is denoted by E = a —
ib in the following analysis. The complex variable function
method proposed by Muskhelishvili (1953) is used for the ei-
genvalue analysis. Comparing with the Mellin transform
method, the proposed method is straightforward, and the ob-
tained results and eigenvalues can be directly related to the
stress and displacement fields. It is obviously that « = 0 or
= 2 corresponds to the isotropic case, and the eigenvalue for
leading term (abbreviated as ELT) is a real one. Also, it is
easily seen that o« = # corresponds to the conventional interface
crack problem, and the ELT is a complex value. Contrary to
a previous study, in this paper the angle « is changing contin-
uously and the material constants involved are assigned to be
some particular value. Therefore, the change of ELT from a
real value (0 = o < o), to a complex value (@, < a = o),
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Fig. 1 A crack along a wedge-shaped interface

and then to a real value (o, = o < 2x) can clearly be seen
from the obtained numerical results.

2 Analysis

It is well known that the complex variable function method
proposed by Muskhelishvili (1953) provides a most effective
approach to analyze the plane elastic problem. According to
this method, the stresses (0., 0y, 0y), the resultant force
functions (X, Y), and the displacements (u, v) can be de-
scribed by two complex potentials ¢ (z) and w(z)

Oyt 0y, =4Re[®(z)]

Oy i0y=®(z) + (2-2)®' (z) +Q(z) M
P=—Y+iX=¢(2)+ (z2-2)¢" (2) +@(2) )
2u(u+iv) =k (z) — (2—2)¢ (2) —@(2) 3)

where ®(z) = ¢’ (z) and @(z) = w’ (z), pis the shear modulus
of elasticity, k = 3 — 4» for the plane strain problem, x = (3
— »)/(1 + v) for the plane stress problem, and » is the Poisson’s
ratio.

We seek the solution of the problem in some region R (R
= R; + R,, Fig. 1) surrounding by a traction-free interface
crack. The elastic constants and the complex potentials are
denoted by u, k1, ¢1(2), wi(z) and pa, K3, $2(2), wy(z) for
the regions R, and R;, respectively. From Eqs. (2) and (3) the
continuation condition of the resultant force and the displace-
ment along the positive part of real axis gives rise to the fol-
lowing relations:

¢f () +of () =¢7 () +w; (1) (x>0 @

pakidi () —of () =p1 (ka3 (X) —w3 (%)) (x>0), (5)
since along the crack faces OA and OB we have

z=7 expicr)y (2€0A or z€OB). 6)

Therefore, the traction-free condition along the upper and
lower crack faces can be expressed by

$1(2) + (expRic) — DT ¢1 (2) + w1 (z) =0 (z€0A)  (7)

$2(2) + (expQic) — 1)Z 7 (2) +@,(2) =0  (z€OB).  (8)

In the following analysis we let the complex potentials take
the following expression:

¢1(z) =p12° P+ gz
w1(2)=§120+ib+l‘1z‘1_ib (9)
62(2) =poz” P+ Gz
wz(z)=§22a+ib+fzza_ib (10)

where p1, qi1, S1, L1, D2, G2, S3, and £, are complex values. In
addition, the value E = a — ib (or a + ib) will be determined
by the condition of a nontrivial solution of the problem and
is called the eigenvalue for a crack problem in the bonded
wedges.

Substituting Egs. (9) and (10) in (4), (5), (7), and (8) vields
eight equations. Furthermore, after eliminating sy, ¢, §,, and
t, in these equations we get the following equations:

(I1-e)pi~eq—(1—e&)p+eq=0 (11
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Fig.2 Eigenvalue (E = a — ib) distribution for the leading term under
the conditions of py = p, = 2.711.3, uy = 1.0 and g, = 2.0 (see Egs. (22)
and (23))

pa(k1 +e)p1+ mesg — (ko +ee) pr—mesqy =0 (12)

—ep+(1-1/e) g +epy—(1-1/(e12))g2=0 (13)
paeapy + po ki +1/€1)q1 — pesps— py (k2 + 1/ (€182) g2 =0 (14)
where

er=exp(b+ia)a) ey=exp(—4n(b+ia))

es= (a—ib)(exp(—2ia) —1).
15)

After some manipulation, the condition of the nontrivial so-
lution for pi, q,, p,, and ¢, gives

A=D1+iD2=O

ey= (a—ib)(expic) — 1),

(16)
where
A= (fif/e)e + (g+gi/e) /e + - (fi+f3+/3+[1)
+@fi+Dees~fiee) +hifule+1/e)]
+(gtge)e + (fifie)ed (17)
Sism—p, H=pa—rop, Hi=pt o, fa=pat ke
g =~fifll —ee) —fofs, G=/1fil—-ee)) +fofy. (18)
After using two parameters defined by Dundurs (1969)
_ el + D —mka+1) _ (e — D=k — 1)

St Dttt ) et Dimarly O
we get
A=l te fm =T A QO
Therefore, Eq. (16) can be rewritten as
A=f3A(a—ib,8,v,0)=0. @n

The above equation shows that the eigenvalue £ = a — ib
depends on the material constants (§ and v) and the wedge
angle (o) only.

3 Results

The eigenvalue E = a — ib was evaluated by some numerical
technique. To shorten the length of the present Note the detail
of computation is omitted here. It is well known:-that the most
important eigenvalue in fracture analysis is the one relating to
the leading term in the expansion form, which makes the stress
infinite and the displacement finite. Clearly, the mentioned
eigenvalue in the isotropic case is E = a = 0.5.

Thus, we first find the eigenvalue in the vicinity of Re(FE)
= (.5. The numerical computation shows the following results:

(a) If « is rather small (@ = 0) or rather large (o =< 27),
we always find two real eigenvalues a; and a, (b = 0) within
the intervals 0 < o < o, and o, < a < 27. The calculated
eigenvalues can be expressed as
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Fig. 3 Eigenvalue (E = a — ib) distribution for the ieading term under
the conditions of gy = g, = 2.7/1.3, py = 1.0 and p, = 5.0 (see Eqs. (22)
and (23)
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Fig. 4 Eigenvalue (E = a — ib) distribution at the vicinity of Re(E)
= 1.0 under the conditions of py = p; = 2.71.3, 4y = 1.0 and p, = 2.0,
5.0 (see Eq. (24))

a=fi(a), b=0,

a=fa), by=0 (22)

(b) If « is in the same vicinity of « = #, we can find a
complex eigenvalues £ = a — ib with the interval o, < o <
o, In this case, the calculated eigenvalues can be expressed as

a=fia), b=fla) (a=a=oa,). 23

The calculated results for two cases u; = 2.0, 5.0 (k; = «y =
2.7/1.3, uy = 1.0) are plotted in Figs. 2-3, respectively.

In addition, we also seek the eigenvalues in the vicinity of
Re(E) = 1.0. The calculated two eigenvalues can be expressed
by

O=a=wa. and a,=a<2m)

O=<a=<a, and q,<a=<2m).

ay=fs(a), by=0 (O=a=<2r)

@=fi(a)=1, b=0 (O=soa=2w) (24)

It is seen that the one eigenvalue is always equal to unity and
another is variable depending on the angle «. The calculated
results are plotted in Fig. 4.
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On the Convergence of Karhunen-
Loeve Series Expansion for a
Brownian Particle

W. G. Paff'' and G. Ahmadi'""

A linear Langevin equation for the velocity of a Brownian
particle is considered. The equation of motion is solved and
the Karhunen-Loeve expansion for the particle velocity is de-
rived. The mean-square velocity as obtained by the truncated
Karhunen-Loeve expansion is compared with the exact solu-
tion. It is shown, as the number of terms in the series increases,
the result approaches that of the exact solution asymptotically.

Introduction

Brownian motion was first observed by Robert Brown in
1827 while studying pollen particles suspended in liquid, and
Brownian diffusivity was first estimated by Einstein (1903).
An extensive exposition of the theory of Brownian motion was
provided by Chandrasekhar (1943).

Use of the Karhunen-Loeve (KL) expansion (Loeve, 1955)
for representing random data has attracted considerable at-
tention in the field of turbulence (Lumley, 1967) and other
areas (Lin and Yong, 1986). Here, the Karhunen-Loeve ex-
pansion for a Brownian particle is considered and analytical
expressions for orthogonal basis are derived. The particle ve-
locity response statistics as evaluated from the truncated series
are compared with the exact values and the convergence of the
KL series is discussed.

Analysis

Equation of Motion. The linear Langevin equation for the
velocity of a Brownian particle is given as

du

dt+6u=n(t) 1)

where
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B= )
and n(t) is a zero-mean Gaussian white noise process with a
constant spectral intensity, S,, given by
216vkTp

So= 7r2d5p12,Cc' ®
Here, u is the kinematic viscosity, d is the particle diameter,
C, is the Cunningham correction factor, m is the mass of the
particle, » is the kinematic viscosity, k is the Boltzmann con-
stant, T is the temperature, p is the fluid density, and p,, is the
particle density. A white noise process may be formally defined
as the derivative of a Wiener process (Papoulis, 1984). A digital
simulation procedure for generating white noise process cor-
responding to molecular agitation was described by Ounis et
al. (1991).

Assuming that the motion starts from rest,

u(0y=0. )
Equation (4) is the initial condition for particle velocity.

Karhunen-Loeve Expansion. According to the Karhunen-
Loeve Theorem (Loeve, 1955), the random velocity has a series
expansion of the form

u(t) =Y Cu, (1) Q)

n=1

where ®,(¢) are the KL orthonormal basis and C, are inde-
pendent random coefficients. The KL basis are the eigen-
functions of the Fredholm equation given by

T
SO Ruzl(tl)tZ)q)n(tZ)dtZ:)\nén(tl)' (6)

Here the kernel R, (t,, t;) is the particle velocity autocorre-
lation function, and eigenvalues N, = (1C,I%y, with ()"
denoting the expected value (ensemble average) and T, is a
specified time duration.

Following the procedure outlined by Lin and Yong (1986),
Eq. (6) may be restated as

2xS,

L_,Lr<1>n(t)=—)\ 2 ®,(1) @)
where
d d
L = = —— .
‘ dt+6, L_, dt+6 ®

The required boundary conditions are
2,(0)=0, L,2,(T)=0. )

The eigenfunctions for the boundary value problem, (7)-
(9), are given by

‘I’,,(I)ZA,, Sin(Ent) (10)
where
27S,
£n= T‘Z - 1n
n
‘are solutions to the transcendental equation
tan(¢,T) = —;". (12)
The corresponding eigenvalues are
2%S,
==5. 13
n 62 + Ei ( )

Using the normality condition,
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and n(t) is a zero-mean Gaussian white noise process with a
constant spectral intensity, S,, given by
216vkTp

So= 7r2d5p12,Cc' ®
Here, u is the kinematic viscosity, d is the particle diameter,
C, is the Cunningham correction factor, m is the mass of the
particle, » is the kinematic viscosity, k is the Boltzmann con-
stant, T is the temperature, p is the fluid density, and p,, is the
particle density. A white noise process may be formally defined
as the derivative of a Wiener process (Papoulis, 1984). A digital
simulation procedure for generating white noise process cor-
responding to molecular agitation was described by Ounis et
al. (1991).

Assuming that the motion starts from rest,

u(0y=0. )
Equation (4) is the initial condition for particle velocity.

Karhunen-Loeve Expansion. According to the Karhunen-
Loeve Theorem (Loeve, 1955), the random velocity has a series
expansion of the form

u(t) =Y Cu, (1) Q)

n=1

where ®,(¢) are the KL orthonormal basis and C, are inde-
pendent random coefficients. The KL basis are the eigen-
functions of the Fredholm equation given by

T
SO Ruzl(tl)tZ)q)n(tZ)dtZ:)\nén(tl)' (6)

Here the kernel R, (t,, t;) is the particle velocity autocorre-
lation function, and eigenvalues N, = (1C,I%y, with ()"
denoting the expected value (ensemble average) and T, is a
specified time duration.

Following the procedure outlined by Lin and Yong (1986),
Eq. (6) may be restated as

2xS,

L_,Lr<1>n(t)=—)\ 2 ®,(1) @)
where
d d
L = = —— .
‘ dt+6, L_, dt+6 ®

The required boundary conditions are
2,(0)=0, L,2,(T)=0. )

The eigenfunctions for the boundary value problem, (7)-
(9), are given by
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where
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Table 1 Listing of first nine eigenvatues for 87 = 5
n 1 2 3 4 5 6 7 3 9
E.T | 2.654 | 5.454 | 8.391 [ 11.409 | 14.47 | 17.556 | 20.657 | 23.769 | 26.887

pagter ] 3.2 ] 183 | 105 | 0.644 | 0427 03 § 0.221 | 047 | 0.134
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Fig. 1 Comparison of the mean-square velocities for the truncated
Karhunen-Loeve series

T
S ®,(t)ydt=1, (14)
0
the coefficients A, in Eq. (10) are given as
2¢,
Ap= én 15)

EnT" Sin(EnT) '

The mean-square velocity associated with the KL series is
given by

W)= Mlea(n) 12 (16)

and the exact transient mean-square velocity response as ob-
tained by use of the impulse response method is

w0y ="2 (1=e ), (17)

Results

For a nondimensional time duration of 8T = 5, Table 1
provides a listing of the first nine values of £,7 and N,. The
weightings of different modes in Eq. (15) which correspond
to eigenvalues A, can be clearly seen from this table. It is
observed that A\, | is roughly about 80 percent of \,, for higher
modes. Figure 1 compares the dimensionless mean-square ve-
locity responses, 8{u*)/8,, as obtained by the truncated KL
expansion with the exact solution given by (17). The gradual
convergence of the series solution to the exact mean-square
response is clearly observed from this figure. Figure 2 shows
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Fig. 2 Variation of energy ratio with order of truncation

the energy ratio for various orders of truncation of the KL
series. Here the energy ratio is defined as the ratio of area
under the mean-squared response curve as obtained by the
truncated KL series to that of the exact one. From Fig. 2 it is
observed that the first few terms of the KL series capture most
of the energy. However, the convergence is asymptotic and a
large number of terms are needed to recover the exact result.

Conclusion

For a finite time duration, the exact Karhunen-Loeve or-
thogonal basis for Brownian particles are derived. The mean-
square velocities as evaluated from the truncated KL series
expansion are compared with the exact one. It is shown that
the first few terms of the series contains a substantial fraction
of the energy of the response. However, for a high resolution
description, consideration of a large number of terms are re-
quired.
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Work-Conjugate Boundary Conditions
Associated With the Total Rotation
Angle of the Shell Boundary

W. Pietraszkiewicz!®

Introduction

The general structure of four work-conjugate static and geo-
metric boundary conditions for the nonlinear theory of thin
shells expressed in terms of displacements of the reference
surface as basic independent field variables was discussed by
Makowski and Pietraszkiewicz (1989). It was proved, in par-
ticular, that the angle w, of total rotation of the shell boundary
can be chosen as the fourth parameter which, together with
three displacement components, describes an arbitrary defor-
mation of the shell lateral boundary surface. In this report we
present explicit derivation of the set of work-conjugate bound-
ary conditions associated with the angle w,.

Notation and Basic Relations

Let the reference surface M of undeformed shell be defined
by the position vector r(0%), where 6%, o = 1, 2, are surface
curvilinear coordinates. On M we have the natural base vectors
a, = dr/00°%, the covariant (components of the surface) metric
tensor a,s = a,°az with determinant @ = la,zl, and the unit
normal vector n = ¢~ '"%a; xa,. The boundary contour C of
M consists of the finite set of piecewise smooth curves r(s) =
r[0%s)], where s is the arc length along C. With each regular
point M € C we associate the unit tangent vector t = dr/ds
=r' = ["a, and the outward unit normal vector » = 1, =
t X n = v®,, where ( ), denotes the outward normal deriv-
ativeat C.

Let M and C be deformed configurations of M and C defined
by the position vectors F(0%) = (0% + u(©%) and r[O°%(s)]
= r(s) + u(s), respectively, where u is the displacement vector
while 6% and s are convected coordinates. With M and C we
can associate analogously defined geometric quantities, only
now marked by an overbar: @,, @., @, 1, t, v etc. All the
quantities can be expressed through the geometry of M and C
and the displacement field u by the relations presented in more
detail in Pietraszkiewicz (1989). In particular, on C we have

F =t+u’ =@t n=,"'r,xr’, (1a)
F,o=vtu, =G " (jv+2y,.b), 1)
a=It"1, 2y,=F,T, (1o)
FA=a/a= 15,1 12— (F ,oF )%, (1d)
@ =@ = 2vy,a Pyy + a7 P (le)

It follows from (5) of Makowski and Pietraszkiewicz (1989)
that within the nonlinear theory of thin shells the work-con-
jugate boundary and corner conditions should follow from the
line integral

S [(Tvs — T)«bu + (M**2 05— H) 51 1ds, 3}
&
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which should vanish identically for any kinematically admis-
sible virtual displacement field 6F = su. Here N°*® and M*®
are symmetric Piola-Kirchhoff type stress resultant and stress
couple tensors, Cyis the part of C where the external boundary
force and moment resultant vectors T and H are prescribed,
while T# and &7 are given by
T¢ = N*%a, + M*®n , + ([((M™*8)) 1, + h]-3° )1, 3)
Si= — pga’(nedu,) ~ A" @-0u’), @
where h in (3) is the external surface moment vector, ( )i
denotes the covariant derivative in the undeformed surface
metric @,z and the moment H used in (2) is related to the
external boundary couple resultant vector Mby M = n X H.

All the vectors appearing in (1), (2), (3), and (4) are under-
stood to be expressed in components with respect to the known
triad », t, n of C.

If (4) is introduced into (2) and integration by parts of terms
containing éu’ is performed, the vanishing of (2) allows us to
derive natural static boundary and corner conditions to be
satisfied on Cr. However, the effective force and couple re-
sultants appearing in such natural boundary conditions do not
possess corresponding work-conjugate geometric counter-
parts, because the differential 1-form n « du , is not integrable
(see the Appendix of Makowski and Pietraszkiewicz, 1989).
In what follows we derive an alternative formula for én ex-
pressed entirely in terms of dw, and du’.

Total Rotation of the Shell Boundary

The total rotation of the shell lateral boundary surface can
be described either by the total rotation tensor R, (proper
orthogonal) or by an equivalent total finite rotation vector £,
which according to Pietraszkiewicz (1979, 1980) are expressed
in terms of displacement vector u by

_ 1 _
R=7@y +I@U+A®N, =7 (XF+tXT+nxi), (5)

where 7, t, o are known functions of u, and u’ following from
(1.

On the other hand, R, and €, can be represented through
the unit vector e describing the rotation axis and the angle w,
of rotation about e according to

R,=cosw+sinwe X1+ (1 —cosw)e®e, @,=sinwe, (6)

where 1 is the metric tensor of three-dimensional Euclidean
space and ® denotes the tensor product.
From (5) and (6) it follows that

trR, = 2c0Sw; + | =vep+tet+ii+n, )
e=e,v+etten, 8)

2e,sinw,=ten —Mst, 2¢sinw, =Mspr —Fen,
2e,5inw, =vet—tsr. (9)

Therefore, e and w, are known functions of u, and u’ as well.
Taking the variation of (7) we obtain

(10)
Thus in order to express dw, in terms of éu, and éu’, such
expressions for 67 and 6t should be given. ~

" Since the variation of @ = ¥’ o T’ leads to 6@, = t » Su’
then

— 25inwbw, = sy + Stst + STien.

ou’ =(t@t)-du’ +asdt.
On the other hand, éu’ =

(11

1 - 6u’ in the basis 7, t, n

reads
Su’' =(FRF)ou’ +({A@tdu’ + (m®m)-du’. (12)
From (11) and (12) it follows that
ft=a; ' (FRV+u®u)du’. (13)
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Then, (4) with (1e) leads to

=~/ (F@W)du,+a, ' (j 2,/ @i~ 1@i)-ou’.
(14

Finally, the variation of # = t x n with the help of (13) and
(14) yields

¥=aj" (A@M)+du,—a; ' (j '2y,AQU+1®7F)+du’. (15)
Including (15), (13), and (14) into (10) and using (9) we obtain

Cdw= =@, e (edu )+, (e i+ 2y oM~ e,p)edu’
‘ (16)

Now, from (16) we calculate nn » 6u, expressed in terms of
Sw, and éu’ only; this result introduced into (4) gives

8 =qbw, + Lebu’, (17)

where
a=a; ‘e juga®, (18a)
L=a % jpa’@(ei+j '2v,en—e ) ~taa"@u. (18b)

Please note that by (17) én is now expressed entirely in terms
of dw, and du’. The expression (17) provides a convenient
alternative to earlier formulae for ém reviewed by Pietrasz-
kiewicz (1989).

Work-Conjugate Boundary Conditions

Let us introduce (17) into (2) and apply integration by parts
to terms containing du’. This allows us to transform the line
integral into the final form

!

where the effective force resultants and the bending couple
resultants are defined by

P=TPu+F', F=—-M"3,05L,
P =T+F"', ¥'=-H.L,

[(P—P*)eou+(M—M")bwlds+ D (F,—Fp)eou,, (19)

(20a)
(20b)
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M=M**a,p5.q, M"=H-q, (20¢)
F,=F*s,+0)-F*(s,—0), w,=u(s,).  (20d)

From vanishing of (19) it follows that the static boundary
and corner conditions take the form

P(s)=P*(s), M(s)=M"(s) on C}, (2la)
F,,:F;,k at each corner M, € C. (21b)

Itis also seen from (19) that the geometric boundary conditions
which are work-conjugate to the static ones (21) are given by

(22)

where, by definition, w/(s) = w,[u,,(s), u’(s)] and ( )* denotes
the prescribed value. All the vector quantities in (20}, (21), and
(22) are understood to be expressed in components with respect
to the known triad », t, n of C.

The set of work-conjugate boundary conditions (21) and
(22) is valid for unrestricted displacements, rotations, strains
and/or changes of curvatures of the shell reference surface.
In specific applications to nonlinear shell problems the bound-
ary conditions (21), (22) may happen to be more convenient
than two known alternative sets of work-conjugate boundary
conditions derived earlier in (2.32) of Pietraszkiewicz (1984)
and in (32), (33), and (41) of Makowski and Pietraszkiewicz
(1989).

u(s)=u*(s), wfls)=w (s) on G,
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The Effect of Compressibility on the Stress
Distributions in Thin Elastomeric Blocks and
Annular Bushings’

Charles W. Bert’. The authors are to be congratulated for
obtaining a very interesting analysis of the behavior of a thin
elastomeric block compressed between rigid plates to which it
is bonded. Their paper clearly illustrates the quantitatively
large effect of even small changes in Poisson’s ratio from the
incompressible value of 1/2.

Recently, the writer undertook the analysis of a thin elastic
plate on a compressible foundation (Bert, 1992). This may be
considered to be an extension of the previous work of Dillard
(1989) to the compressible case. Equations (3), (4), (8), and
(9) in the intermediate stops of this analysis are exactly equiv-
alent to the author’s Eq. (24). For the deflection influence
coefficient due to a unit load applied at the center of a thin,
square, isotropic plate, the result obtained was

2,2, 2\,
4 7 (m +n)+C
K=(4a'/D) 2 Z P+ )+ ot (mP+ 0t C+F

m n

where C = 18(a/h)*(1-2p)/(1+») and F = 144
(a/h)®(1—v2)/ (G +E,). Here, a and A are length and thick-
ness of the plate, G and v are the shear modulus and Poisson’s
ratio of the interlayer, D is the plate flexural rigidity, E, and
v, are the elastic modulus and Poisson’s ratio of the plate, and
m and n are the longitudinal and transverse half-wave numbers.
The above result reduces to that of Dillard (1989) if » = 1/2,
since then C vanishes.

References

Bert, C. W., 1992, “‘Bending of Plates on Thin Compressible Foundations,”’
unpublished manuscript.

Dillard, D. A., 1989, ‘‘Deformation of Plates on Elastomeric Foundations,”’
ASME JOURNAL OF APPLIED MECHANICS, Vol. 56, pp. 382-386.

Stress Distribution in an Edge-Stiffened Semi-
infinite Elastic Plate Containing a Circular
Hole®

X. Markenscoff®. As in all problems of geometries con-
taining holes (or inclusions) and free boundaries, in which the
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1992 issue of the ASME JourNAL OF APPLIED MECHANICS, Vol. 59, pp. 902-
908.
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solution is given by a series, the behavior of the solution is
difficult to obtain numerically when the small parameter that
describes the width of the ligament tends to zero, because, as
the authors mention: ‘‘in the neighborhood of the straight
boundary (i.e., for small &), o, (0, y) cannot be accurately
evaluated because of the slow convergence of the series so-
lution, as was also mentioned by Jeffrey (1921).”” However,
this type of difficulty has been overcome (Callias and Mar-
kenscoff, 1989) by a singular perturbation analysis of the so-
lution and the order of the stress amplification can be obtained.
In the case of no stiffener (Mindlin problem) the stress was
shown (Callias and Markenscoff, 1989) to be oy ~ ((d —
R)/R)~Y2, and it would be very interesting if the authors can
show how the stiffener changes the (—~ 1/2) exponent of (d —
R)/R. In the case, for instance, of the Koiter problem (Koiter,
1957), when a straight boundary is introduced on the other
side of the hole, the exponent is (— 1). The controlling effect
of the stress distribution in the thin ligament is how the re-
sultant force and moment transmitted by the ligament depend
on (d — R)/R (Markenscoff and Dundurs, 1992; Keller, 1993),
which make the order of the stress amplification a function
of both the loading and the geometry.
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Complex Modes and Solvability of Nonclass-
jical Linear Systems®

S. M. Shahruz®. The authors consider the equation of mo-
tion of an n-degree-of-freedom linear system represented by

Mx(t) +Cx (£) + Kx(¢t) =f(t), 1)
where the real n X n matrices M, C, and K do not necessarily

_satisfy symmetry, nonsingularity, and positive definiteness

properties. The authors present conditions under which the
system (1) is solvable. The system (1) is solvable when the
matrices M, C, and K can be upper triangularized simulta-
neously, i.e., there exists a nonsingular real # X n matrix S
that results in upper triangular matrices S™'MS, S$™'CS, and

By T. K. Caughey and F. Ma and published in the Mar. 1993 issue of the
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Applications of Potential Theory in Mechanics: A Selection
of New Results, by V. 1. Fabrikant, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1989. 467 pages. Price:
$119.00.

REVIEWED BY M. HANSON!

In a field as old and well defined as potential theory, it is
seldom that a new idea or method can be developed which will
have a significant impact on the way problems are approached
and solved in the future. That is what the author claims to
have accomplished with this book and this claim is well founded
in the method he has developed to formulate and solve mixed
boundary value problems in potential theory. This book de-
velops the new method in the initial chapters and then applies
it to various problems in the latter sections. The new results
presented are those obtained by the author with reference to
other research for comparative purposes when possible.

Chapter 1 presents a description of the new method for
solving boundary value problems in potential theory. An in-
tegral representation for the reciprocal of the distance between
two points is first developed, which is the foundation of his
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method. Chapter 2 moves on to mixed boundary value prob-
lems for a transversely isotropic half-space with a circular line
dividing the boundary conditions while Chapter 3 addresses
mixed-mixed boundary value problems. Chapters 4 and 5 apply
the integral equation solutions developed in Chapter 2 to var-
ious crack and punch problems.

This book by Professor Fabrikant is a definite aid for re-
searchers in elasticity as well as other fields in which the equa-
tions are reducible to those of potential theory. Furthermore,
those interested in developing closed-form solutions to half-
space problems with a circular line dividing the boundary con-
ditions will find this book invaluable. Even with integral trans-
form formulations, the final steps in piecing together closed-
form solutions require the evaluation of formidable integrals
for which this book has developed a systematic procedure. If
Professor Fabrikant’s method is adopted for solving mixed
boundary value problems, his book can be used as a learning
tool since it is rich with detail on the analysis and it contains
many problems for exercises where the answers are also given.
Although the method requires no knowledge of special func-
tions, only integral and differential calculus, the manipulations
are often formidable and this book is best suited to researchers
or students who are well versed in the equations of potential
theory and who are comfortable with the idea of mixed bound-
ary value problems.
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