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Dynamic Wrinkling of Viscoelastic 
Membranes 
Problems associated with viscoelastic membrane structures have been documented, 
e.g., dynamic wrinkling and its effects on fatigue analysis and on snap loading. In 
the proposed analysis method, the constitutive equation is approximated by a finite 
difference equation and embedded within a nonlinear finite element spatial discre­
tization. Implicit temporal integration and a modified Newton-Raphson method are 
used within a time increment. The stress-strain hereditary relation is formally derived 
from thermodynamic considerations. Use of modified strain-energy and dissipation 
functions facilitates the description of wrinkling during the analysis. Applications 
are demonstrated on an inflated cylindrical cantilever and on a submerged cylindrical 
membrane excited by waves. 

1 Introduction 
1.1 Background. Thin membranes are inherently no-

compression structures. Compressive stress, of sufficient mag­
nitude to overcome tensile prestress, will be handled via changes 
in membrane geometry, i.e., by an out-of-plane deformation 
or localized buckling called' 'wrinkling.'' Analysis of wrinkling 
is important to the prediction of membrane structural response. 
In long-term loading situations, the creep/relaxation response 
of viscoelastic materials will tend to decrease the level of pre­
stress, thus increasing the formation of wrinkles. Problems of 
dynamic wrinkling (e.g., panel flutter) are of interest for the 
effects on fatigue analysis (e.g., tension field effects on mean 
stress distribution) and on snap loading (e.g., when a wrinkled 
region suddenly regains the lost principal stress). (Such con­
siderations are beyond the scope of the present work, however.) 

1.2 Prior Research. Wagner (1929) introduced the ideas 
of wrinkling and "tension field theory" in connection with 
flat sheet metal girders in the very thin metal webs used in 
airplane construction. Under the action of a specific loading, 
one of the principal stresses goes to zero while the other remains 
non-negative. If the non-negative principal stress remains 
greater than zero, a "tension field" is defined; if it is zero, a 
"slack" region results. The crests and troughs of "wrinkle 
waves" align with the direction of the nonzero principal stress. 
In typical wrinkling analysis, results are only in terms of av­
erage strains and displacements, while no detailed information 
is generated for each wrinkle. Furthermore, a membrane need 
not be wrinkled over its entire surface. (A review of membrane 
wrinkling research is given by Jenkins and Leonard (1991a).) 
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The formation of a finite number of wrinkles during mem­
brane deformation relies on the inherent (albeit small) bending 
stiffness of the material. Detailed description of the wrinkling 
phenomena is absent in membrane analysis since the bending 
stiffness is disregarded. Pipkin (1986) and Steigmann and Pip­
kin (1989a, b, c) discuss this further and postulate the existence 
of a "relaxed strain-energy density," which represents the av­
erage energy per unit initial area over a region containing many 
wrinkles. The relaxed energy density is constrained such that 
its derivatives (stresses) are non-negative, thus incorporating 
tension field theory into membrane theory automatically. 

1.3 Conventions. The following conventions are used: 
the summation convention is implied unless explicitly stated 
otherwise; Latin indices take the values 1, 2, 3 unless explicitly 
stated otherwise; Greek indices take the values 1, 2; capital 
and lower case Latin letters (except indices and symbols with 
a tilde) refer to the undeformed and deformed state, respec­
tively; bold type indicates vector or tensor quantities; super­
scripts or subscripts enclosed in parentheses indicate no sum, 
and the overdot symbol represents differentiation with respect 
to time. 

1.4 Strain and Stress Measure. Consider the Cartesian 
coordinates X, of a point X on the undeformed membrane 
midsurface which becomes point x with coordinates x, on the 
deformed midsurface. Also define convected curvilinear mid-
surface coordinates 9' = d', i.e., the 9' coordinates of X are 
numerically equal to the 6' coordinates of x. The metric tensor 
in the deformed state is gk/ = gk • gh g, = dr/dd', and r is the 
position vector from o to x; similarly, in the undeformed state, 
Gk! = Gk • G/, where G, = dR/dd', and R is the position vector 
from 0 to X. The convected Green-Lagrange strain tensor 
components, Ekh are given by (Green and Zerna, 1968) 

•EM=2 (Ski-G/ci) (1) 
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2 Viscoelastic Finite Elements 
2.1 Nonlinear Finite Element Method. We follow a finite 

element discretization for a combined incremental/iterative 
method with a "modified" Newton-Raphson iteration, using 
an isoparametric formulation. With the notation that the in­
crement of time is At, ^ = isoparametric shape function for 
node /, X\ = fth initial coordinate of node /, U\ = rth dis­
placement of node /, £,• = natural coordinate of the element, 
/ = 1 number of nodes (per element), and k — 1, . . . , 
number of iterations per time step, we write the combined 
incremental/iterative membrane equation of motion as (Jen­
kins, 1991): 

[MijdlUUt + ̂ k+m + lKyuit + AtmAUJU + At)} 

= [Pidt + At; k + 1)} - [F^t + At; k)) (2) 

where [My/j] = consistent mass matrix, [K^/it + At)] = 
tangent stiffness matrix, [P^t + At; k + l)j = external force 
vector, [Fu(t + At; k)) = internal force vector, and {AUJ(t 
+ At) j = incremental displacement vector between iterations 
k and k + 1. Note that, by use of the modified Newton-
Raphson method, [Kjjuit + At)] is constant during a time step. 

2.2 Constitutive Equation—General. The method of 
"local state" (see Germain, 1973; Lemaitre and Chaboche, 
1990) postulates that the thermodynamic state of a continuum 
at a specific location and time is completely defined by the 
values of certain variables (state variables) at that time and 
location. The "observable" state variables, temperature and 
deformation, define elastic (reversible) phenomena uniquely 
as a function of time. "Internal" state variables (e.g., defor­
mation rate) are required for the representation of dissipative 
phenomena, since the current state also depends on the state 
history. State laws are derived from postulated thermodynamic 
potentials which are functions of the state variables. In order 
to satisfy the Clausius-Duhem inequality (second law of ther­
modynamics), potentials must be non-negative, convex func­
tions with zero values at the origin of state variable space; a 
typical choice is that of a positive-definite quadratic form. 

In light of the above discussion, we postulate the existence 
of strain energy_and dissipation functions W = W(E, C, t) 
and V = V(E, C, t), respectively, such that 

Sij{t) 
dW , dV 

oEn dE„ 
it) (3) 

where Su is the convected, second Piola-Kirchoff stress tensor, 
and C is the constitutive tensor. In Appendix A we show the 
connection between (3) and the linear hereditary constitutive 
equation. We now generalize as follows: for suitable choices 
of state variables in W and V, and for a suitable material 
function approximation by a Prony series, the following finite 
linear viscoelastic constitutive relation is obtained from (3) 
(where the dependence of the material function on current 
strain has been neglected) 

P' dCa®yi11 — T) 
SaeU) = C"™(0)Eyt(t) - -f '- Elt(r)dr. (4) 

dr 

2.3 Constitutive Equation—Computational Form. 
Solution of complicated viscoelastic problems will generally 
require numerical techniques. (For a review of computational 
methods in viscoelasticity, see Jenkins and Leonard, 1991b.) 
In the direct method proposed by White (1968), the governing 
integro-differential constitutive equation is approximated by 
a finite-difference equation and embedded within the spatial 
discretization, thus making a viscoelastic finite element; this 
is the method followed in the present work. 

In summary, we rewrite (4) in incremental form based on a 
Taylor series approximation, then descretize with a trapezoidal 
approximation. A three-term Prony series approximates the 
relaxation modulus to reduce computational memory require­

ments (the adequacy of this double exponential model for solid 
polymers has previously been discussed by Garbarski, 1989). 
Finally, after considerable algebra, we rewrite (2) as 

[MuljlUJ(t + At;k+l)]+[KUIj(t + At)][AUJ(t + At)} 

= [Piiit + At; k+l)} - [PnV + At; k) ] + [Qi,{t + At)} (5) 

where [Quit + At)} = memory load vector. (For details see 
Jenkins and Leonard, 1991b.) 

3 Wrinkling Analysis 
3.1 Formulation. For wrinkling under a plane stress as­

sumption, we define principal stresses S® (see Appendix B): 

Sl«) = 
dW dV 

3EA0 dEAt) 
,S2(t)-

dW dV 

3E2(t) dE2(t) 
(6) 

where Ep are the principal strains. Following Steigmann and 
Pipkin (1989a, b, c), a "natural width" (in simple tension), 
E2[Ei(t)], is defined such thaMvhen S2(t) - *S2 = 0, E2(t) 
= E2[E{(t)], and S1 — Sl[Eu E2, t], where ̂ starred quantities 
denote values at wrinkling. When E2(t) < E2[EX{t)] (with E\ 
> 0), E2 —• E2, and "relaxed" strain energy and dissipation 
functions are defined as 

W*= W*(C, Eu E2, t), V*=V*(C, Eu E2, t) (7) 

from which the stresses during wrinkling may be formally 
found. We note that the above differs from the approach of 
some authors (see, e.g., Contri and Schrefler, 1988) who as­
sume Sl remains fixed instead of Ex above. In either case, the 
strain energy after wrinkling is never greater than the strain 
energy before wrinkling. 

For the moderate deformation of compressible isotropic 
elastic membranes (dissipation function equals zero), the wrin­
kling condition is shown to be (see Appendix B): 

C21 

E2(Ei) = —~ziE\. (8) 

The wrinkling condition for isotropic finite linear visco­
elastic membranes under plane stress is found from 

S2(t) = C20(O)E„(t)-
Jo 

' dCw(t-T) * 
(t T) Ep(T)dr = 0 (9) dr 

or 

C22(0)£2(O-
dC12(t-T) * 

E2(r)dT 
J0 dr 

= -C2\0)El(t)+\ d° {J~T) Ex(r)dT. (10) 
Jo dr 

i i 

Then 5 — S [Eu E2, t] in the wrinkling region, or 
l(0)£ 

' d 

Sx(t) = Cn(Q)El (t) + Cl2{0)E2(t) 

}0dr 
[Cu(t-r)Ei{T)+Cll(t-r)E2(t-r)]dT 

= Cn(0)El(0- I 
Jo 

' dCn{t-T) 

dr 
Ex(r)dT 

+ Cl\0)E2(t)-\
 dC {J T) E2(r)dr. (11) 

dr 

For constant Poisson's ratio, v, 

Cil(t) = v^-C22(t) = v^-C" 
G22 G" 

Then 
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Sl (t) = C » £ , ( 0 - f dCU(! T ) 2?, ( r )dr 
tfr 

+ c-
G1 

-̂ 22 
Cn(Q)E2(t)-

dCll(t~T) * 

o tfr 
E2(r)dT (12) 

Now, substituting (10) into (12) gives 

= C"(0)El(O 

G " 
+ c -*— 

G22 

Finally, 

J0 tfr 

C21(0)£,(0-

Ei(r)dT 

' dC2X(t-T) 

dr 
Ex{r)dT (13) 

S i ( / ) = ( l - * 2 ) C n ( 0 ) E i ( O - ( l - i ' 2 ) 
dCn((-r) 

dr 
Ex(r)dr. 

(14) 

4 Computer Implementation 

In what follows, use is made of quadratic, isoparametric 
quadrilateral (8-node) curved membrane elements. (For con­
venience, straight lines are shown connecting nodal points in 
Figs. 1 and 5.) To determine the initial equilibrium configu­
ration of a structure to applied static loads, a viscous relaxation 

technique is used. Newmark's method is used to solve the 
dynamical equations of motion. Pressure loads, a specific ex­
ample of nonconservative loads, are accounted for by iteration, 
thus eliminating the need to compute nonsymmetric matrices. 
For validation purposes, the problems of the uniform inflation 
of initially plane elastic and viscoelastic rectangular membranes 
were considered. (See Jenkins (1991) for further program de­
tails and validation results.) 

The present analysis method is used for the specific case of 
a plasticized PVC membrane material with the following rel­
evant properties: 

Thickness = 1.3 mm (0.050 in.); initial elastic modulus = 
55.16 MPa (8000 psi); 
relaxation modulus = [23 + 26exp(-2.6 x 10 ' 2 t) + 
6.2exp(-1.8 x 10-3)] MPa 
([3.4 + 3.7exp(-2.6 x 10~21) + 0.90exp(-1.8 x 10~3)] 
x 103 psi); 
Poisson's ratio = 0.45; 
mass density = 1068 N s2/m4 (1.0 x 10"4 lb s2/in.4). 

We note that only quasi-static values of moduli were available 
to us. For harmonic loading (as in the examples that follow), 
the use of "complex" moduli is indicated. Incorporation of 
such effects into the formulation is ongoing and will be re­
ported subsequently. 

Principal stress results are plotted at selected integration 
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Fig. 1 Displacement results for sinusoidal loading of cantilever cyl­
inder 
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points as follows: wherever uniaxial stress ("tension field") 
occurs, it is shown; biaxial stress is shown only where required 
for clarity; magnitudes are not indicated, although the longer 
line corresponds to the larger principal stress; orientation of 
principal stress is as shown; a circle enclosing an integration 
point indicates a "slack" region; the finite element model is 
"unrolled" into a plane surface for viewing. 

5 Applications 

5.1 Deformation of an Inflated Cylindrical Membrane 
Cantilever. Various investigators have considered the in­
flated cylindrical membrane structure, with particular interest 
in the stability of equilibrium (see Jenkins, 1991, for review). 
In the present work, we first apply a sinusoidal tip load of 
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amplitude 1.17 kN (264 lb) and period T = 1.0 S to a viscoelastic 
cylindrical cantilever beam initially inflated to a pressure of 
4.76 kPa (0.694 psi). (Advantage is taken of axial symmetry 
as shown in Fig. 1.) Cylinder dimensions are radius R = 0.46 
m (1.5 ft) and length B = 2.4 m (8.0 ft). The displacement of 
a free-end node with time is also given in Fig. 1, as well as a 
deformation profile of the free end at various times. Figures 
2 and 3 indicate the principal stresses at selected integration 
points at various times. Wrinkling results are as expected: as 
the load forces the free end up, compressive stresses build in 
the upper half of the cylinder causing wrinkling waves aligned 
perpendicular to the compressive stress; the same follows as 
the load forces the free end down and wrinkling develops in 
the bottom half of the cylinder. We note that the stress at 
t/T = 0.0, 0.5, 1.0, . . . , are purely biaxial. 

Then we apply a constant tip load (587 N) to the above 
cantilever cylinder. Time-dependent displacement and wrin­
kling results are given in Fig. 4, where the time has been non-
dimensionalized by the first relaxation time constant T\ ( = 
1/0.0262s-1 = 38.2 s) of the viscoelastic constitutive relation. 
Corresponding static elastic results are also shown for com­
parison purposes. Wrinkling results are shown for t/T\ = 13. 

5.2 Hydrodynamic Loading of a Submerged Membrane 
Cylinder. Membrane structures have been considered for use 
in the marine environment in a variety of situations including 
storage containers, dwellings, and breakwaters (Jenkins and 
Leonard, 1991a). To examine the latter case, the numerically 
predicted response of an experimental cylindrical breakwater 
model was considered. (For experimental details, see Brod-
erick, 1991.) A 0.91 m (3.0 ft) diameter right circular visco­
elastic PVC cylinder of length 2S = 3.7m (12 ft) is submerged 
in 2.7 m (9.0 ft) of water depth with the (X3) axis of the 
cylinder 3 feet below the still water level and parallel to it (see 
Fig. 5). Due to symmetry of loading, only 1/2 the length of 
the cylinder is modeled; one end has a fixed boundary con­
dition, the other is fixed only in the axial direction. The cylinder 
contains water and is subjected to an over-pressure of 0.48 
kPa (10 psf), a value corresponding to the experimentally ob­
served mean value. Surface waves of 0.15 m (0.5 ft) height 
and period T = 2 s are incident on the cylinder in the positive 
Xrdirection. Incident wave pressure on the cylinder is ac­
counted for in the numerical model by a linear Froude-Krylof 
model, i.e., no diffraction or radiation effects are considered 
to modify the incident wave field. Internal pressure of the 
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cylinder is assumed constant. The mass of the contained fluid 
is distributed to the cylinder as lumped masses at the corner 
of the elements. 

A selected finite element vertical displacement result at the 
membrane top are compared to experimental values in Fig. 6 
for approximately seven cycles of loading (results are nondi-
mensionalized by 1/2 the wave height to match experimental 
data); corresponding cross-section profiles for two cycles are 
also shown. The comparison is quite good, considering the 
lack of a more sophisticated hydrodynamic model. 

Figures 7 and 8 indicate the associated principal stresses for 
selected times. Both fore and aft sides (left and right sides of 
figures, respectively) are represented in plane "unwrapped" 
view; the symmetry end corresponds to the tank center line. A 
significant amount of the membrane is wrinkled, which is 
indicative of the complexity of the loading environment. We 
would expect increased internal pressure to decrease the amount 
of wrinkling to some extent. Comparison with experimental 
video data shows that the essential description of the wrinkled 
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surface has been captured (see Jenkins, 1991, for additional 
details and results). 
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A P P E N D I X A 

Viscoelastic Constitutive Relation 
Following Lemaitre and Chaboche (1990), we consider the 

specific plane stress case when, for small strain, 

_ 1 
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where T and T are characteristic retardation times in tension 
and shear, respectively, E is the initial elastic modulus, and v 
is the Poisson's ratio. The stress can now be shown to be 
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The shear retardation time, T*, can be determined during a 
shear test, i.e., when 

E 
Saj3 = constant = (Eafj+T*Eaf3), a*p. (A3) 

The solution of this differential equation is readily shown to 
be 

^ ( 0 = ^ S a / 3 [ l - e x p ( - ? / T * ) ] , a*p. (A4) 

Similarly, T is identified through a tension test, viz., 

'(«)(«) = constant 

Ev 
——^27 (Eyy+ TEn)8{a)ia) 

IE, (o)W' + T*EMM]. (A5) 
(1 + *) 

Using the facts that E^W) = - vE{a)(a), where v = constant, 
and 1 (1 - v)(\ + v), we combine terms to get 

S(a)(a)-EE(a){ol)+ (vT+T )E{a)ia) 

E 
= EEla)M + vE{aHcl), r)= ,l + v)(

vT+T*^ (A 6) 

We recognize (A6) as the governing equation for a Kelvin-
Voigt mechanical-analogic model with response 

E{a){a)(t)=-=S{a){a)[l-exp(-Et/ri)l (A7) 

The model can be generalized by forming assemblies of Kelvin-
Voigt models; for linear viscoelasticity, the strain responses 
may be summed, e.g., 

E(a)M(t)= )-gr + -~r [I - exp(-E2t/ri2)] 

+ j[l-exp(-Eit/m)] S ( a ) ( a ) (A8) 

This result can also be reached by use of the Prony series 
representation of the material function in the hereditary con­
stitutive relation. Consider the three-term Prony series 

J(t) = Al+A1exp(-B1t) + Azexp(~ Bzt) (A9) 

substituted into the linear hereditary integral 

Eae(t)=J(0)Sa(lV)- r dJ(t-T) 

dr 
Sas(r)dr. (A10) 

For constant Sa/3 in (A 10) we integrate to get Eq. (A8) where 

•~r = A1+A2 + A3,T = A2,-~r 
H\ £,2 £ 3 

f- = Ai+A2 + A3, -^ = A2, ir = A3, fi2 = —, B3 = ?3 

V2 Vi 

A P P E N D I X B 

Wrinkling Condition 

Define principal stresses and strains 

Sa=[S a a ]max,min> £ / S = \E{$) (0)]max,min 

where Sl > S2, E{ > E2 and parentheses around superscripts 
or subscripts indicate no sum. Now also define 

£.c*0=£(a)(a)(/3)O3>_ 

, In general, the principal axes (defined by the basis vectors 
Ga) will differ from the local coordinate axes (defined by the 
basis vectors Ga), and the metric tensor components G™'3 trans­
formed to the principal coordinates are given by 
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0=C2lEl + C22E2 Gal3 = X^XfG7f (Bl) 

where the backward change of basis coefficients A? (Malvern, and the wrinkling condition is given by 
1969) are given by the transformation * c2i 

E2(E\) = —Sri E\. Gy ~ AyGa. 

For an isotropic Hookean material, 

Sa = Cal3Efi. 

Now for wrinkling, S2 = 0, then 

(B2) -*v-w CL 

The principal stress under wrinkling is then given by 

(B3) 
S, = CnE1 + C,2E2 = [Cn CuCl 
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E R R A T A 

Errata on "The Spherical Inclusion with Imperfect Inter­
face," by Z. Hashin, published in the June 1991 issue of 
JOURNAL OF APPLIED MECHANICS, Vol. 58, pp. 444-449. 

On page 446, the last two Eqs. (19) should read: 

ate = 2G/3 3(7 + v)Ap2 + 2B + (\- 2v)CJ(? +1 D/ps 

- 7(2 + v)Ap2 - B + (1 - 2v)C/pi - - D/ps 

i = 2G(3]15vAp2-B-5(l-2v)C/pi + -D/ps 

-(\l+7v)Ap2 + 3(\-2v)C/pi--D/ps 

Equation (20) should read: 

Al = C2 = D2 = 0 Bi = l. 

The last two Eqs. (25) should read: 

( 4 W ) ^ 2 ( 3 ^ i - 2 G , ) + 6A:,G1(l + 3p) i 1 

3 cos2 

3 cos"0 . 

Co 3J<:,[3^2 + 4G2(l + 3p)] 
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9 3 
+ - f l , + - [ - 2 + 2 ( l - 2K,)CI - 1D{\ cos2i 

<4>,<9) K2QKX - 2G|) + 6ATiGi(l + 3p) 

oo 3Kd3K2 + 4G2(l+3p)] 

1 
• 1 - 5 ( 1 - 2 K , ) C , + - A 

+ - [ 6 ( l - 2 . 1 ) C 1 - 5 A ] c o s / e { . 

The help of Mr. Uri Schur in correcting these errors is grate­
fully acknowledged. 
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Green's Functions for Generalized 
Plane Problems of Anisotropic 
Bodies With a Hole or a Rigid 
Inclusion 
Green's function solutions are presented for the generalized plane problems of a 
point force and an edge dislocation located in the general anisotropic elastic medium 
with a hole or with a rigid inclusion. The Lekhnitskii's complex potential approach 
is used and a general expression of the solutions is obtained. Particular attention is 
paid to the determination of appropriate mapping functions that map the exterior 
of the hole or the inclusion onto the exterior of a unit circle. The conditions under 
which the conformal mapping is possible are explored. Examples using the Green's 
functions for the solution of notch problem are given. 

Introduction 
The solution of a point force or a dislocation located in an 

elastic medium of infinite extent is known as the Green's func­
tion solution or the fundamental solution. Among its wide 
applications, the Green's function is essential in the boundary 
element method (Brebbia, Telles, and Wrobel, 1984). In study­
ing elasticity problems involving geometrical disturbance, such 
as a hole or an inclusion, it is preferable to employ a special 
Green's function which satisfies the boundary conditions at 
the hole or the inclusion in the formulation so as to avoid 
disturbance of the stress distribution in the vicinity of the high 
stress concentration region. 

Considerable research on the related topics can be found in 
the literature. The use of special Green's function in the crack 
problems have received much attention (Snyder and Cruse, 
1975; Clements and Haselgrove, 1983; Ang and Clements, 
1987; Kamel and Liaw, 1989). Interactions between point sin­
gularities and a rigid inclusion have been a topic of considerable 
interest because of their practical importance (Mura, 1982; 
Santare and Keer, 1986; Dundurs and Markenscoff, 1989; Li 
and Ting, 1989). To the authors' knowledge, earlier studies 
on the Green's functions of anisotropic elasticity are for an-
isotropy of special kinds, and for a hole or an inclusion of 
elliptic shape which includes its geometric limits, such as a 
circle, a crack, or a line inclusion. Recently, using the Stroh 
formalism (Stroh, 1958), Hwu and Yen (1991) studied the 
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Green's function for the case of a point force in two-dimen­
sional anisotropic medium containing an elliptic hole. Ting 
and Yan (1991) studied the problem of general anisotropic 
medium with an elliptic hole subjected to prescribed traction 
on the hole surface and an elliptic rigid inclusion subjected to 
a concentrated force. While certain identities concerning ei­
genvalues and eigenvectors developed in the Stroh formalism 
may be useful in simplifying and interpreting the solutions, as 
discussed by Suo (1990), the formalism is essentially an alter­
native derivation of the classical Lekhnitskii's approach (1963). 
Due to its explicitness, the Lekhnitskii's complex potential 
formulation is employed in this paper to obtain the Green's 
function solutions for the generalized plane problems in the 
cases of a point force and an edge dislocation located in the 
anisotropic elastic medium with a hole or with a rigid inclusion. 
The anisotropy considered herein is completely general, with­
out assuming elastic symmetry of the materials. 

It is well known that the use of the complex potential ap­
proach to the notch problem involves conformal mapping. 
While it is relatively simple in the case of isotropic materials 
because a single mapping function is required, the solution is 
considerably more difficult to obtain in the case of general 
anisotropic materials, since it requires finding three conformal 
mapping functions which transform the complex parameter 
regions onto the exterior of a unit circle. Analytic solutions 
for the notch problems in anisotropic elasticity appear to be 
available only for the hole of elliptic shape (Savin, 1961; 
Lekhnitskii, 1963). For a hole contour of a general shape, 
many numerical solution methods were devised (Sih, 1978). 
Approximate solutions based on perturbation method valid in 
restrictive conditions for orthotropic materials can be found 
in Lekhnitskii (1968). In this paper, a general expression of 
the solutions for hole of arbitrary shape is derived and par­
ticular attention is paid to the determination of appropriate 
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mapping functions. The conditions under which the conformal 
mapping is possible are explored. It is shown that the conformal 
mapping in the entire region outside the unit circle is indeed 
possible only for elliptic contour or for anisotropy of a special 
kind. Nevertheless, useful mapping functions which are con­
formal and single-valued within a local region containing the 
arbitrary contour can be obtained in a simple manner. Ap­
plication of the special Green's functions to the solutions of 
problems involving holes or rigid inclusions of arbitrary shape 
is then discussed and examples are given to examine the validity 
and generality of the present solution. 

Basic Equations and General Solutions 
The stress and displacement components for a generalized 

plane deformation of a general anisotropic elastic medium can 
be expressed in terms of three complex potentials (Lekhnitskii, 
1963) as 

au = 2Re(/i?0! + nlfa + /*3A3</>3) 

<T22 = 2Re(</>,'+(T2 + X3</>3) 

<Ti2= - 2 R e ( / i ! 0 ! +IX24>2 + /*3A3$3) 

<713 = 2Re( /* iAi0 i +/X2^2</>2 + jM>3> 

tr23 = - 2Re(Ai</>1 + \2<t>2 + 4>i) 

«1 = 2Rel ^Pktkj 

w2 = 2Ref 2 9k4>k\ 

"3 = 2 R e ( S rk^k) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

in which <t>k = 4>k(Zk), (k=l, 2, 3) are the complex potentials, 
Zk = x + ixky, Re stands for the real part, and prime (') denotes 
differentiation with respect to the argument. The rigid-body 
displacements were omitted. jxk are the three complex conjugate 
roots with positive imaginary part of the characteristic equa­
tion: 

^0*)/20*)-/f0i)=o (9) 

where l2(p) = fc/*2 - 2/345/x + 044, 
hM = / W - (/3l4 + /S56)M

3 + (025 + 046)/* " 024, 
WAO = 0 1 l / - 2(316/X

3 + (20i2 + 066V2 - 2026M + 022-

0,y are the coefficients of deformation of the material. The 
expressions for the complex parameters A ,̂ Pk, Qk, and rk in 
terms of 0y- and /** can be found in Lekhnitskii's book. The 
basic equations for the generalized plane stress problem are 
obtained by replacing fty with the compliances ay of the ma­
terial. 

When the material possesses one plane of elastic symmetry 
normal to the x3-axis (monoclinic material), or the material is 
orthotropic with axes 1, 2 as its principal material axes, then 
h(jx) = 0 and Ai = A2 = A3 = 0. Determination of <£3 is not coupled 
with 4n and 4>2. The in-plane and antiplane deformations can 
be treated independently. 

For the expedience of exposition, let us adopt the following 
matrix notations similar to those given by Stroh (1958) and 
Suo (1990), 

Pi 

<7i 

n 

P2 Pi 

Qi Qi 

r2 r3 

J* = 

,L = 

£ii 

0 
0 

- / * i 

1 
- A , 

0 0 

1X2 0 

0 W 

-V-l 
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-A 2 

- / i 3 A 3 

A3 

- 1 

Then Eqs. (l)-(8) can be recast into compact forms as follows: 

ffi = — L/i^' — L ~\L ~§' (10) 

<r2 = L < £ ' + L ^ ' (11) 

u = A<£ + A ^ (12) 

where the overbar denotes the complex conjugate. 
In addition, the resultant forces T on an arc can be expressed 

by 

T = - L 0 - L ^ . (13) 

Consider an infinite region with a traction-free hole or a 
rigid inclusion. The boundary conditions on the contour of 
the interior boundary T can be written as follows: 

(1) When T is a traction-free boundary, 

L<j> + Ltf = 0 o n T . (14) 

(2) When V is a rigid boundary, 

A0 + A ^ = O o n T . (15) 

Suppose that exterior of T in the fa planes can be mapped 
conformally onto the exterior of a unit circle, a = e'e, by the 
mapping functions 

z*= **(&). £ = 1 , 2 , 3 . (16) 

Then, the boundary condition on the unit circle in the fa 
plane becomes 

L*(a) + L*(a ) = 0, 

A#(a) + A *(a) = 0, 

(17) 

(18) 

where *(r*) = 0(w*(f;t)). 
When the medium contains point singularities due to the 

presence of a concentrated force and an edge dislocation, $ 
must be holomorphic in I a\ > 1 except at the point singularities 
and at infinity. 

Let * consist of a function f which contains the point sin­
gularities but is holomorphic in I a I < 1, and function g hol­
omorphic everywhere in I a I > 1, 

*(f) = f(f) + g(f). (19) 

Note that a = o~' on the unit circle, and f(cT') is the bound­
ary value of f (f ~') which is holomorphic in I a I > 1, and g(cr ') 
is the boundary value of g(f"') which is holomorphic in I a I < 1. 
Substituting (19) into (17), (18), multiplying them by 
l/2iri(o- f). and integrating around the unit circle, we obtain 
according to the Cauchy's formula for the infinite region 
(Muskhelishvili, 1954) 

L g ( 0 = - L f ( r 1 ) , l f l > l (20) 
for the case of a traction-free hole and 

A g ( n = - A f ( r 1 ) , i f i > i 
for the case of a rigid inclusion. 

0 = J02J 
</>3 

<i\ o2-

Then by (19) we obtain 

*(f) = f ( f ) - L - 1 L f ( r 1 ) 

for the case of a fraction-free hole, and 

*(f) = f ( f ) - A - 1 A f ( r 1 ) 

for the case of a rigid inclusion. 

(21) 

(22) 

(23) 
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Equations (22), (23) are the general expressions of the com­
plex potentials satisfying the boundary conditions (17) or (18). 
It can be applied to various problems involving a notch or an 
inclusion. Determination of f(f) for a given boundary value 
problem requires that it be holomorphic in the unit circle. Once 
the solution of f(f) is determined for the problem, the pertinent 
field quantities can be obtained from (l)-(8) by replacing f in 
each component functions with ft, f2>

 a n d fo> respectively. 

Green's Function Solutions 

Consider a concentrated force P=(px, py, 0) and an edge 
dislocation with Burgers vector b = bxi + byj both located at the 
point (x*, y*) in the medium. When the point singularities are 
acting in an unbounded region without the geometrical dis­
turbance, the stress and displacement fields can be determined 
from <$>£ 

4>k°(z)=ck\og(z-z*k) (24) 

where zk = x* + ix^*, the coefficient vectors c= {cu c2, c3] are 
obtained from the condition that integrations of the force and 
displacement determined by (24) over a simple closed contour 
encircled zk produce the resultant forces equal to (px, py, 0) 
and the displacement increments (bx, by, 0). The conditions 
provide 

When the point singularities are acting in the unbounded 
region containing a hole or an inclusion, the stress and dis­
placement field must be perturbed by the presence of the hole 
or the inclusion. Consequently, in addition to <j>", a modified 
term 4>'kv/hich is holomorphic outside the unit circle should be 
included. Thus, in the £k plane, 

**(f) = c* log ( r - r ; )+ *£'«-) (26) 

where ^k=wk'(zk). 
Comparison of (26) with (22), (23) immediately gives 

/*(r)=c*iog(r-$i). (27) 
It follows from (22), (23) that 

3 

**(**) = Ck logtf* - rf) - E M«fJ l08(f* ' -&*). (28) 
j=i 

where M = L _ 1 L for the case of a traction-free hole and 
M = A~'A for the case of a rigid inclusion. 

The Mapping Functions 
Determination of the Green's function solutions (28) is based 

on the existence of the conformal mapping functions (16). In 
practice, however, it is very difficult to find the suitable map­
ping functions that transform conformally the & parameter 
regions onto the exterior of a unit circle. In the following, the 
conditions under which the conformal mapping is possible are 
explored. 

Consider a hole of arbitrary shape in the infinite region. The 
Fourier series representation of the contour can be expressed 
by 

0 0 OO 

x(6)=A0+^]An cos nd+^]Bn sin nd, (29) 

00 00 

y(6) = Co+J] C„ cos n6+J]Dn sin nd, (30) 
n=\ n = l 

where 0 < 6 < 2TT. It is shown in the Appendix that the family 
of elliptic contours can be represented by (29), (30) with 
A„ = B„ = C„ = D„ = 0 for n>2. 

On the zk planes, the contour is given by 

zk = x+lxky= (A0 + ixkC0) + 2 (A„ + nkC„)cos nd 

OO 

+ 2 (B,, + l*kD„)sinne. (31) 
« = i 

It is necessary that the mapping functions be holomorphic 
and single-valued outside the unit circle. Equation (16) thus 
may be represented by a Laurent's series in the form 

Oo 

Zk = Wk(,£k)=m0k + mlktk+^ m.nktk". (32) 
« = i 

In addition, all the roots of wk(tk) = 0 are required to locate 
inside the unit circle. 

On the unit circle, $k = e'e, then 

zk = m0k+ (mlk + m^ik)cos 6+ ^ m_nk cos nd 
n = 2 

OO 

+ i(mlk-m^ik)sin 6 - ^ m„„k sin nd. (33) 

11 = 2 

Comparing (33) with (31), we obtain 

m0k = A0 + fikC0, (34) 

/ f j 1*=[^ 1 - iS,+Ait(C 1 - iD 1 ) ] /2 , (35) 
/«_,*= [,4,+ ifl, + M C i + iDi)]/2, (36) 

m_nk = A„ + lxkC„ = i(B„ + ixkDn)t n>2. (37) 

Since /xk are always complex, let \x.k = ak + $k, ak and Pk being 
real numbers, /3*>0. From (37), we have for n>2, 

akC„ + PkD„=-A„, 

k=l, 2, 3. 

pkCn-akD„=-B„, (38) 

Equations (38) are compatible only under two possible con­
ditions: 

(1) A„ = Bn = C„ = D„ = 0 f o r « > 2 , 

then m-nk = 0 for n>2. 

The contour is a family of ellipses. Furthermore, it is shown 
in the Appendix if A\D\ —BXC\ >0 , the exterior of the ellipse 
is mapped onto the exterior of the unit circle by (32) with the 
branch points located inside the unit circle. If A\DX -BXC\ <0 , 
the appropriate mapping functions are 

w(tk)=mok+m\ktkl + m-\ktk- (39) 

By prescribing appropriate parameters in the mapping func­
tions for the elliptic hole, the Green's functions for a circular 
hole, for a crack, can be readily obtained. 

(2) a i = a 2 = a3, 0i = 02 = 03. hence ^, = ^2 = ^3. 

This means that the characteristic Eq. (9) has repeated com­
plex roots. Note that the basic forms of complex potential 
representation of stresses and displacements are different from 
those given by Eqs. (l)-(8) in this case. The isotropy is a well-
known degenerate case of this kind with p,\ = /*2 = *'• 

Equations (38) contradict for any other situation. Conse­
quently, the mapping functions which is conformal and single-
valued everywhere outside the unit circle can not be found for 
a nonelliptic contour with distinct p.k. 

On the other hand, a mapping which is conformal and single-
valued within a local region containing the hole of arbitrary 
shape can be determined by using a complete Laurent's series 
representation 

CO 

zk = wk(tk)= 2 m»*tt- (40> 
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Comparing (40) with (31), we obtain 

mok = A0 + ixkC0, (41) 

mnk = [A„ - iB„ + nk (C„ - iD„)]/2, (42) 

m-„k=lA„ + iB„ + iik(Cn + iD„)]/2. (43) 

The mapping functions (40) are not single-valued in the entire 
region outside the unit circle because branch points where 
w'k(tk) = 0 in general exist outside the unit circle. 

In spite of the fact that the branch points of (40) are not 
always located inside the unit circle, the mapping functions 
are holomorphic and single-valued within a finite region be­
tween the interior contour and the branch cuts. The corre­
sponding Green's functions satisfying the boundary conditions 
at the interior contour are useful in the numerical solution of 
the pertinent problems. When using a numerical procedure 
such as the boundary element method to analyze a problem 
involving an interior contour of arbitrary shape, it is advan­
tageous to determine first the local region containing the hole 
or the inclusion in which (40) is holomorphic and single-valued. 
Then the problem region is divided into subregions, and the 
special Green's functions (28) can be employed in the subregion 
containing the hole or the inclusion, with its boundary not 
intersecting the branch cut. The Green's functions (24) for an 
unbounded region can be used for the remaining subregions 
of the problem. Thus, the boundary conditions on the interior 
contour are satisfied exactly and can be eliminated from the 
path of integration, and only the remote boundaries away from 
the hole or the inclusion are required to include in the boundary 
integral equation. The continuity between the interfaces of the 
subregions can be implemented easily according to the bound­
ary element method procedure (Brebbia, Telles, and Wrobel, 
1984). 

Examples 
To show the validity and generality of (22), (23) and the 

Green's functions derived herein, the following examples are 
presented: 

(1) An Infinite Plate With an Elliptic Hole Under Remote 
Loading. The load considered is a linearly varying normal 
force applied at infinity, which includes the cases of a uniform 
tension and a bending force. Solutions obtained by superpo­
sition and series expansions in these two cases for monoclinic 
materials were given in Lekhnitskii (1963). 

In the present solution, the prescribed condition at infinity 
is 

ax=ky+px, 

0 0 CO 0 0 OO / - i / A A \ 

oy =oXy = oxz = ayz = 0, (44) 
where k, px are the constants characterize the applied load. 

The complex potentials corresponding to the prescribed 
loading condition for the infinite plate without a hole are in 
the form of 

<j>c°(z)=az2 + bz. (45) 

The coefficients a and b can be determined by substituting 
(45) into (10), (11) and using the condition (44). 

According to (32), the mapping functions that map the ex­
terior of an elliptic hole with semi-axes a, b coincident with 
x, .y-axes onto the exterior of a unit circle are 

zk = mlk{k + m-.ikZk (46) 

where 

m\k = (a-ipkb)/2, m-\k= (a + ifxkb)/2. 

Substituting (47) into (45) gives *™ in the & plane, 

*™(f) = m\kakf + mlkbk{+2mlkm„]kak 

+ m-lkbkr
l + m2-ikakr

2-

In the presence of an elliptic hole in the medium, a modified 
term *"(f) holomorphic in I a I > 1 must be added to $" . Com­
paring with (19) and retaining only the terms in (47) which are 
single valued and holomorphic in l$l < 1, we obtain 

f(D = a Y + b*r 
where 

a*k=m}kak, bk=mlkbk. 

Thus, a direct application of (22) gives the required complex 
potentials for the problem: 

*(f) = flY + b * f - L - ' L ( b * r ' + a * r 2 ) . (48) 

The general solution is now examined by comparing with 
the available solution given in Lekhnitskii (1963) for the special 
case of monoclinic materials. When the material has one plane 
of elastic symmetry normal to x3-axis, then Xt = X2 = X3 = 0. a, 
b in (45) are determined as 

k k 
a\-

'ip'QuY 

6 l = ^ 7 
Mlfc 

P (.III) 

a2 = 

b2 = 

2p'(ft>)' 

M2Px 

p'd^y 

a3 = 0, 

63 = 0, 

where 

/>(M) = (M ~ MIXM -1"2)0* ~ MIXM - M2>-

Then from (48), 

* /s- \ *s-2 , u*>. , /M2~Ml -r* ft-fcr'l^i 
* i ( f i ) : = « i f i + * i f i + ( bt + b2 )f. Ml~M2 Ml —M2 

+ I «i + CK2 fi , (49) 
M1-M2 M1-M2 

Ml~M2 Ml~M2 / 

Ml-Ml _* Ml~M2 

^2(^2) = a2t 2 +b2t2 

fli+^^=«2 fc . (50) 
M1-M2 M1-M2 

*3(r3)=o. (si) 
Lekhnitskii's solution for the problem was obtained by a 

superposition of a modified stress field determined by Fourier 
series expansion upon the uniform stress field valid for the 
infinite plate without the hole. Corresponding to the present 
solution, the modified stresses are determined from the func­
tions 

* * = * * « * ) - * t « * ) -
A little algebra gives 

*r<w=-^(-^fr'+^rr2 

M1-M2 \ 2 8 

* 2 " ( r 2 ) = -
- 1 iPxb ,,-ikb1

 2 

' 2 f z + 8 t2 

(47) 

M1-M2 

which are exactly the solutions provided by Lekhnitskii. 

(2) A Plate With a Square-Like Hole Under Uniform Ten­
sion. The contour of the square-like hole (Fig. 1) is repre­
sented by 

x = a(cos d + e cos 36), (52) 

y = a(smd-e sin 3d). (53) 

An approximate solution using perturbation method was 
given by Lekhnitskii (1968) for the case of an orthotropic 
material and small values of the parameter e. To compare the 
present solution with the perturbation solution valid for small 
e we made the computation by selecting A =10, e = 1/9 and 
used the same material properties E\ = 1.2* 105kg/cm2, 
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Fig. 1 Geometry and loading of Example 2 
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Fig. 2 Branch cuts in the first quadrant of the physical plane (branch 
points are at z= ±31.22 and z= ±28.64/', heavy lines indicate branch 
cuts) 
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Fig. 3 Conformal mapping and branch cut in the ?, plane 
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Us 

Fig. 4 Conformal mapping and branch cut in the f2 plane 

£2 = 0.6*105kg/cm2, G12 = 0.07* 105kg/cm2, i>12 = 0.071. The 
corresponding complex parameters are found to be /^ =4.11/, 
\x,2 = 0.344;'. The mapping functions obtained according to (40)-
(43) are 

Zl = •1.73 rf+25.5 n - 1 5 . 5 r r 1 -2 .84 rr (54) 
z2 = 0.364 rI + 6.72 f2 + 3.28 ^ ' + 0.747 fr3. (55) 

The branch points are located at f, = ±2.33, t2= ±2.56/, 
which correspond to z= ±31.22 and z= ±28.64/ in the phys­
ical plane, respectively. Figure 2 shows the branch cuts and 
only the first-quadrant region is shown because of symmetry. 
Figures 3 and 4 show the region of conformal mapping in the 
t\ and f2 planes. Indeed, the contour described by (53) is 
mapped into a unit circle in the fo. planes by the mapping 
functions (54), (55). 

Numerical solution of the problem using the boundary ele­
ment method can be obtained by dividing the problem region 
into two subregions. In the subregion in between the hole and 
\x\ <20, \y\ < 20, the special Green's functions (28) with map­
ping functions (54), (55) were used. The Green's functions for 
the infinite region (Eq. (24)) were used in the remaining region. 
Sixteen quadratic boundary elements along the interface 
\x\ =20, \y\ =20 and four quadratic boundary elements in 
the remote boundary were used in the computation. Compar­
isons of the results with the Lekhnitskii's solution are given 
in Fig. 5, in which the cases of uniform tension in direction 
of E\ and in direction of E2 were calculated. The results are 
in excellent agreement. 
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PH 
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b 
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Y^ e 
~ 

Fig. 5 Comparisons of the present solution with the approximate so­
lution for Example 2 

In the case of isotropy, the solution form is different. In 
practice, nevertheless, isotropy may be considered as a special 
case of anisotropy by assuming /xj = /, and ix2 = i + e, e being a 
very small constant, here we use e = 10~6. Then the present 
Green's functions are still applicable. It is not difficult to show 
that the branch points generally are located at a distance far 
away from the hole. Hence, often there is no need to consider 
the branch cut. The boundary element method solutions for 
the problem shown in Fig. 1, using only four quadratic bound­
ary elements in the remote boundary in comparison with the 
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solution given in Lekhnitskii (1968), are shown in Fig. 5. Prac­
tically identical results were obtained. 
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A P P E N D I X 

Consider the contour given by 

x=A0 + Ax cos 6 + B, sin 6, (Al) 

y = C0 + C, cos 6 + A sin 0. (A2) 

Expressing cos0, sin0 in terms of x, y, we can represent the 
contour by the following quadratic equation: 

(C\ + D\)(x-A0)
1-2(A,C,+B,Di)(x-An)(y-Ca) 

+ (A] + B\)(y-C0)
2 = {AlDl-B,Ci)

1. (A3) 

The canonical form (Hildebrand, 1965) of (A3) is given by 

x,(jr-/io)2+x2(y-c0)2=(/i1A-JBiC1)2 (A4) 
where X,, X2 denote the eigenvalues of the matrix A, 

M,G, + fl,A) A\ + B] 
(A5) 

M , 2 - = (/l2 + JB
2 + C2 + i 3 2 ) ± ( [ ( ^ 1 -Z ) 1 ) 2 

+ (Bl + Cl)
2] [ M l + A ) 2 + ( 5 , - C , ) 2 ] ) 1 / 2 . (A6) 

Equation (A4) is an ellipse in a rotated plane with the center 
at {An, Cn) and the semi-axes are (A\D\ -B\C\f/\u 

(A[Dl-B[Ci)2/\2- Hence, (Al) and (A2) represent a family 
of elliptic contours. 

The mapping functions that map conformally the ellipse 
represented by (Al), (A2) in the physical plane into a unit circle 
in the & planes are 

zk = wMk) =m0k + m\k{k + w„,*f* ' (A7) 

where 

mok = An + iLkCn, 

mlk=[Al-iBl + nk(Ci-iDl)]/2, 

mik = [A i + iBi + ii.k (C, + / A )]/2. 

The branch points where wk(£k) = 0 are located at 

$k=±{m^k/mlk)
u\ (A8) 

and the requirement that the branch points be inside the unit 
circle produces the following condition: 

AiDi-BiQX). (A9) 

Let the origin be located at the center of the ellipse. Then 
at the point x = Xo>0, y = 0 on the ellipse, 

dy x0(Ci + DJ) 
dd AiD.-BtC, 

(A10) 

If AiDi -B\C\ >0 , as 6 increases counterclockwise in the £k 

plane, dy/dd>0, the point x0, y0 also travels counterclockwise 
in the z plane. Therefore, the exterior of the ellipse is mapped 
onto the exterior of the unit circle by (A7). On the contrary, 
if A{Di-BiC[<0, then dy/dd<0, the exterior of the ellipse 
is mapped into the interior of the unit circle by (A7), with 
branch points outside the unit circle. In this case, the mapping 
functions that map the exterior of the ellipse onto the exterior 
of the unit circle are 

f* = wk(£k) = mok + /n,ytft' + /w_i*&. (All) 

The branch points £k= ±(mik/m-iic)
l/2 of (All) then are 

located inside the unit circle. 
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Arbitrarily Oriented Crack Inside 
an Elliptical Inclusion 
The plane problem of an elastic elliptic inclusion containing a crack is solved. 
Complex potentials presented by Qaissaunee (1992) for an edge dislocation inside 
an elastic elliptical inclusion are used to obtain the Green's function for this problem. 
The problem is formulated in terms of systems of singular integral equations which 
are solved numerically. Some detailed results are given for various crack inclusion 
geometries and material combinations. 

1 Introduction 
Crack fiber interactions in short fiber composites have been 

a topic of considerable research. Experimental work has shown 
that, in some cases, overall material fracture doesn't occur 
until after the individual fibers begin to fracture, as shown by 
Clegg et al. (1988). In other words, in these cases, cracks first 
appear in the fibers. To gain insight into this and related 
problems, the solution for an arbitrarily oriented crack inside 
an elliptic inclusion is solved. The crack in the inclusion is 
formulated in terms of a distribution of dislocations. Resulting 
integral equations are solved to find the stress intensity factors. 

The problem of edge dislocation-circular inclusion inter­
action was first solved by Dundurs and Mura (1964). Dundurs 
and Sendeckyj (1965) solved the case where the edge dislocation 
was inside the circular inclusion. In both cases Airy's stress 
functions were used to formulate the problem. Atkinson (1972) 
used the results of Dundurs and Mura to analyze the interaction 
between a crack and a circular inclusion. He set up the problem 
in terms of a distribution of dislocations and solved the re­
sulting integral equations. Erdogan, Gupta, and Ratwani (1974) 
studied the interaction between a circular inclusion and an 
arbitrarily oriented crack. They used a method similar to that 
of Atkinson's. Erdogan and Gupta (1975) later solved the case 
where the crack crosses the interface. 

Elliptic inclusions were considered later than circular inclu­
sions. Warren (1983) used an infinite series to formulate the 
case where the edge dislocation was inside the elliptic inclusion. 
He later used the solution to study the crack at the tip of a 
craze (1984). Stagni and Lizzio (1983) solved the case where 
the edge dislocation was located outside an elliptic inclusion. 
Santare and Keer (1986) presented the solution for the inter­

action of an edge dislocation outside a rigid elliptic inclusion. 
Using that solution to formulate the Green's functions, Patton 
and Santare (1990) studied the effect of a rigid elliptic inclusion 
on a straight crack. Wu and Chen (1990) solved the case where 
the crack is inside an ellipse, extending from one focus to the 
other of the ellipse. In a more extensive survey, Mura (1988) 
reviews the studies on crack inclusion interaction problems in 
his paper on inclusion problems. 

2 The Stress Field for a Dislocation Inside the Elliptic 
Inclusion 

Consider an elastic matrix, denoted as region 1, with elastic 
constants JX\ and KX containing a perfectly bonded elastic elliptic 
inclusion, denoted as region 2, with elastic constants K2 and LI2 
where n, is the shear modulus, and K, = 3 - 4v, for plane strain 
and Kj = (3 - v,)/(l + VJ) for plane stress, where v-, is the Pois-
son's ratio. The elliptic elastic inclusion contains an edge dis­
location at point z0 (see Fig. 1). The stress field in the inclusion 
with the dislocation has been solved in terms of the complex 
potentials <t> and \j/ by Qaissaunee (1992). 

Stresses and displacements can be written in terms of the 
complex potential as defined by Muskhelishvili (1954). 

oxx=ayy = 2[4>' {z)+(t>' (z)], (1) 

oyy ~ axx + 2iaxy = 2\z<j> " (z) + ̂ ' (z)], (2) 

2LI(« + iv) = K</>(Z) -z<p'(z)-\p' (z). (3) 
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z - plane C - plane 

Fig. 1 Geometry of the problem; (a) physical; (b) mapped plane 
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The primes denote the derivatives with respect to z where z = 
x + iy and the overbar denotes the complex conjugate and i 
is the imaginary number. 

The geometry of the problem is simplified by mapping the 
ellipse into the unit circle as shown on Fig. 1, the function 
used is z = w(f) = i?( f+ w/ f ) , where m = {a — b)/(a + b) 
and R = (a + b)/2. The complex potentials 4>2 and \j/2 for 
region 2 are 

CT».V = 2 R e 

<fe(f) = 72ln 

(f-fo)U 

\Wf) = 72 In 

•5>r*. 

#2 

a-fo)(f--

f|-+wr-fo-w/f0 
+ 72" 

(f-ib)(f-/«/fo) •Srf*f* 

"T2 r2-™ r° 
r-mfi) 

f0r
3-(w+ro)f2+fowf 

S rf (4) 

In these expressions, y2 = fi2b/iTr (K2 + 1). where b = Z?x + 
/6y, and 6* and &_,, are the Cartesian components of the Burgers 
vector. 

The constants are 

, . ^Pkrk-(I3-I)qkrk 
<* = ( 1 - 0 ) 2 —0 .,2 2 (5) 

+ Re 
_ 2mf(t2 + m) 

72 r^(f-r0)2(for-w)2+ /?nr2-m)3 
(m+r2)fc.r2 

(P+/«)f4 °° -^sws^^--^-2-^ 
E c ^ k 

rr0 

:(r 
"72 

»)T 

(/*+r?Ror2 r2 

fo^(f-ro)2(ror-w)2 *(r2-w) 
, r2(fflr4-3m2r2-r2-w) f, .., 

r3a+^r2) 
^ ( r 2 - ^ ) 2 

(r-fo)(rro-w) 

Jc**(*-l)f* (9) 

= 2Re 72 
ffo f2 

^{r-fo)(rib-»i) ^ ( r - m ) 
S c**r A r - l 

-Re 72 
(m+r2)ror2 2mj-3(r2+ffl) 

r*(r-ro)2(r<,f-™)2 R$(?-m)2 E ^ 
(f2+^)r4 

S^S^'-'K* 
rr0 

^(f-foXffo-m) 

"72 
(w+ro2ror2 

r2 

^ ( f - f o J ^ r o f - w ) 2 R(r-m) E <w* 
^ ( ^ - B ^ 2 - ; 2 - ^ ^ 

*(r2-m)3 

r3(i+^r2) 
i?(f2-m)2 

Scjt( t- i )f* (10) 

where 

and 

c-k=nTck 

dk= -a(mkrk + Y2Ak) 

d-k = mkdk + qkck 

pk={p-a.)-{p-\)amlk 

qk={\-m2)km(k-X) 

rk= -amkAk + Bk 

Ak " • < f 

(6) 

(7) 

(8) 

Bk = 

A„k = y2Ak, 

£ -*-

9 

a 

P 

--y2Ak + y2Bk, 

= fo + w/fo 

rK!-K2 

r-Ki + i ' 

r(«, + i) 
r«, + i " 

r = /*2//*i 

= Im "72 
(mWnk2 

^( r - f 0 ) 2 ( ro- r -^ ) 2 

2wj-3(r2+w) 
' #f(r2-™)3 E rf 

(f2+^)f4 °° 
R(r-m) 

2= Y ! ctA:(A:-l)r'r"2 + 72 = ffo 

+ 72 = 

) ( f f o - « ) 

(w + fo2)fof2 r2 
j - * - l 

fo^(r-fo)/(for-w)z R(r-m) 

E c**f 
f2(wf4-3m2f2-f2-m) . * - l 

i?(f2-m)3 

r3d+mr2) 
^ ( r 2 - ^ ) 2 2c**(*-i)f* (ID 

These stresses can be separated into bounded and singular 
portions. The singular portion represents the dislocation and 
its image points and the bounded portion represent the inter­
action for the case where the crack is fully imbedded in the 
inclusion without touching the interface. The bounded parts 
of the stresses are calculated matching the tractions and dis­
placements along the elliptical contour which is mapped to the 
unit circle. The resulting terms are the series terms of the 
expressions above: 

Therefore, after some manipulations, one can write the stresses 
inside the inclusion 

r2 

°xxb~R(?-m) 
E r f - ' + Re 2mf(f + m) 

RHf-m)3 J]ckktk 
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(J-2 + m)f4 " 
~R(?-m)2$ r

J]ckk(k-l)t •k-2 f 
R(r-m 

rVr4-3ffl2r2-r2-^) ^ ,. 
+ --a ...73 2-LCkkS 

y S **?-
Jc-l 

R(f-mY 

R(?-~m)2 2 £•**(*-i)r .k-2 (12) 

r2 
°>)>A : 

' i ? ( r - w ) 
i-4 oo 

S rf -Re «f(f2-m)3 V f 

tf(f2-m)2f 2Ct*(*-i)^-2-—J3— Srf**r 

r2(mr4-3m2r2-r2-m) v , . ^ - i 

*(r-/«r f; 
(13) 

0*y6 = I m 
2mj-3(r2 + m) 
^r(f2-^)3 E c**r . * - i 

(r2+ )̂r"_ 
"/?(f2-w)2 f 

f2 

R(r-m) 

f]ckk{k-l)tk 

— 00 

00 

Erf"1 

r>r4-3m2r2-r2-ffl) 
i?( f2-w)2 

, r3(i+wf2) -

! > * * * • 

J f - 1 

"i?(r2-m)2 2 c,*(*-i)f* (14) 

The singular portions of the stresses are the remaining terms 
which are not represented in infinite series. 

3 Integral Equations 
A crack can be represented by a distribution of dislocations. 

In this case the distribution is unknown, but the resulting crack 
faces are assumed to be traction-free. This condition can be 
expressed by the following integral equations: 

Z2bn(zQ) r 2 . . . . . ^ 2 + 1 ) ^ 
dzo+ K„(z, Zo)b„(z0)dzo = F„, 

z. z-Zo J2, v-2 *i 

f - ^ c f e o + P K,(z, z0)b,(zQ)dzo = I ^ L ^ Ft. (16) 

n and t refer to the positive normal and tangential directions 
to the crack. b„ and b, are 

b„ = byCosd - bxSmd 

b, = b„smd + b^cosfl 

(17) 

(18) 

where 6 is the angle of crack as shown in Fig. 2. 
The first integrals contain the Cauchy singular portion of 

the stresses due to distribution of dislocations. In the second 
integrals, K„ and K, are the bounded kernels which represent 
the interaction between the crack and elliptical inclusion. They 
are in the n and t directions, respectively. Some portions of Kn 

Fig. 2 Problem geometry 

and K, become unbounded when the crack touches the interface 
between the inclusion and the matrix. This situation requires 
a separate analysis as discussed in Erdogan and Gupta (1975) 
and is not treated here. K„ and K, can be obtained from Eqs. 
(12)-(14) by calculating the normal and the tangential com­
ponents. 

The right-hand side of the equations are the constant stresses 
in the elliptic inclusion, in the absence of the crack, induced 
by the loading a0 at infinity. They are derived by using the 
solution given by Hardimann (1954). 

F„ = Fyycos2d + Fxxsm26 - 2rvsin0cos0 (19) 

F, = {FXX- Fyy) sinflcosfl + Fxy (sin20 - cos20) (20) 
where 

A,= 

i ? „=M, -5 , ) / 2 
Fyy=(A1+Bl)/2 

FXy= -B2/2 

ro0[r(a + b)2-2p(a2 + b2)]-2p(a2-b2)Glr 

r(a + b)2-4abp(l+2p-2r) 

B, 
ra0 (ciL-b2)(\+2p-r)+rG\(a + b)1(\ + 2p) 

r(a + b)-4abp(l+2p-2r) 

B2 

rG2(a + bf 

r(a + b)2-4abp 

(15) and 

a = R(l + m) 

b = R(\-m) 

G\ = - CT0COS2X 

G2 = <7osin2A 

r = El/E2 

p = E- 1/8(1/^1- I/V2). 

4 Solution 

The integration equations can be reduced to a standard form 
by the substitutions 

Z2-Z1 ,. Z2 + Z1 
Zo = —r— £0 + —r— (21) 
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Table 1 Stress intensity factors for a 
sion, m = 0.0, 0 = 30.0 deg, K, = K2 = 

crack located in a circular inclu-
= 1.8, X; = 90.0 deg 

a / d 
—> oo 

40 
20 
10 
5 
2 

1.25 
1.11 
1.05 

w / / ' i 
Ki/w1'* 

0.9458 
0.9462 
0.9475 
0.9528 
0.9735 
1.1067 
1.3585 
1.5312 
1.7132 

= 3.0 
Kn/voc1'2 

0.5683 
0.5685 
0.5690 
0.5709 
0.5784 
0.6273 
0.7337 
0.8195 
0.9140 

^//J-I 

Ki/cr0c
1'2 

0.4640 
0.4638 
0.4630 
0.4600 
0.4488 
0.3914 
0.3526 
0.2963 
0.2768 

= 1/3 
Kii/a0c^ 

0.2526 
. 0.2525 

0.2523 
0.2515 
0.2485 
0.2316 
0.2046 
0.1888 
0.1742 

Table 2 
sion, m 

Stress intensity factors for a crack located in an elliptic inclu-
= 0.5, $ = 0.0 deg, K, = K2 = 1.8, X = 90.0 deg 

a / c 

—> oo 

30 

15 

10 

5 
2 

1.50 

1.25 

1.154 

1.070 

1.034 

1.017 

H2/H1 = 3.0 

I<I/<T0C
1'2 

1.0794 

1.0856 

1.1037 

1.1317 

1.2507 

1.5812 

1.7046 

1.8023 

1.8678 

1.9846 

2.1172 

2.2315 

/̂ 2/Vi = V 3 

A'/yW1/2 

0.8057 

0.8005 

0.7861 

0.7649 

0.6907 

0.5640 
0.5246 

0.4905 

0.4669 

0.4294 

0.3982 

0.3771 

Z2-Zi y , Z2 + Zl 

Equations (15) and (16) can now be written in the form 

,1 

(22) 

7—^a£o+ A„(£, £o)o„(?o)a£o = F,„ 
J _ i k-ka J - i M2 

(23) 

f M £ o ) f M , , , , , t T T ( K 2 + 1 ) „ . . . . 
7 — ^ - ^ 0 + ^ / ( ? . £o )M£o) r f£o = ^V (24) 

J - l ? - ? 0 J - l M2 

To find a unique solution to the integral equations, it is nec­
essary to impose additional conditions such as the crack closure 
conditions 

J M*o)d*o = 0 (25) 

\ &,($o)#o = 0. 

The unknown functions can be defined as follows: 

bna0)=
g"ao) 

VT^I 

(26) 

(27) 

Table 3 
sion, m 

Stress intensity factors for a crack located in an elliptic inclu-
= -0 .2 , 6 = 0.0 deg, *, = K2 = 1.8, X = 90.0 deg 

a / c 

—v 00 

30 

20 

10 

5 
2 

1.60 

1.33 

1.14 

1.067 

1.01 

^ 2 / ^ 1 = 3.0 

10/^oc 1 ' 2 

1.4000 

1.4000 

1.4015 

1.4062 

1.4249 

1.5624 
1.6654 

1.8151 

2.0734 

2.3414 

2.9259 

V2/V1 = 1/3 

Ki/voc1/2 

0.5380 

0.5380 

0.5378 

0.5357 

0.5278 

0.4798 

0.4525 

0.4210 

0.3801 

0.3478 

0.2986 

b,tto)-
ft(5o) 

V i - £ 
(28) 

which gives the square root singularity for a crack tip sur­
rounding by a homogeneous medium. The system of singular 
integral equations can be solved by the method described by 
Gerasoulis (1982). The interval [ - 1 , 1] is divided into In equal 
parts with 2« collocation points and 2« + 1 integration points. 
Piecewise quadratic polynomial representation of the singular 
and nonsingular parts of the integral equation is used to dis-
cretize the integral equations into a set of algebraic equations. 
The strength of the stress singularity at the crack tips are 
characterized by the stress intensity factors. They are related 
to the dislocations density functions as follows: 

K,(z>)- TT^l im [2(z,-
1 + «2 Z-Zi 

z)]U2bn(z) (29) 

*}(*2)=-rr-l im I2(z-z2)]
1/2b„(z) (30) 

1 + K2 z~z2 

A>/Ui)=7^-l im [2(Zi-z)]l/2b,(z) (31) 
1 + «2 J-Zi 

Kn(z2) =~-Hm [2(z-z2)]'/2b,(z). (32) 
1 + K2 z-z2 

K, and Ku are mode I and mode II stress intensity factors, 
respectively. 

5 Results 
Numerical results are given for the stress intensity factor 

defined by (29)-(32). Stress intensity factors for cracks inside 
elliptical inclusions, at different inclinations with different as­
pect ratios m, can be solved by changing the required param­
eters in the solution outlined above. The problem can also be 
solved for stress applied at different angles at infinity. In the 
following results cracks inside elliptical inclusions are studied 
extensively for various crack angles and for various values of 
m. The results for m = 0, crack inside a circular inclusion 
with uniaxial stresses applied at infinity, are shown in Table 
6. To make a check the results for the circular inclusion are 
compared to the results presented by Erdogan and Gupta (1975) 
and they are shown in Table 7. The stress intensity factors are 
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Table 4 Stress intensity factors for a crack located in an elliptic inclu­
sion, m = 0.5, 0 = 30.0 deg, K, = K2 = 1.8, X = 90.0 deg 

a / d 
—> oo 
8.660 
4.330 
2.887 
2.165 
1.732 
1.443 
1.237 
1.083 

fr/Hi = 3.0 
Krfaoc1'3 

0.7523 
0.7690 
0.8158 
0.8846 
0.9670 
1.0575 
1.1546 
1.2655 
1.4274 

Knla0c^ 
0.5666 
0.5735 
0.5909 
0.6118 
0.6308 
0.6467 
0.6611 
0.6802 
0.7617 

1*2/Hi = I / 3 

Ki/ooc1'2 

0.6381 
0.6238 
0.5885 
0.5467 
0.5078 
0.4747 
0.4459 
0.4169 
0.3767 

I<n/*oc1/2 

0.2903 
0.2856 
0.2750 
0.2642 
0.2563 
0.2514 
0.2483 
0.2451 
0.2306 

Table 5 Stress intensity factors for a crack located in an elliptic inclu­
sion, m = 0.5, 6 - 0.0 deg, K, = K2 = 1.8, 15.0 deg < X < 150.0 deg 

A 
15 
30 
45 
60 
90 
120 
150 

fi2/fii = 3.0 

Ki/aoc1'2 

0.1745 
0.4997 
0.9438 
1.3880 
1.8321 
1.3880 
0.4997 

Kn/aoc1'* 
0.4162 
0.7209 
0.8324 
0.7209 
0.0000 
0.7209 
0.7209 

/W/*i = f/3 

K,/cr0<V2 

0.0214 
0.1113 
0.2341 
0.3569 
0.4797 
0.3569 
0.1113 

KnloocW 
0.1195 
0.2070 
0.2390 
0.2070 
0.0000 
0.2070 
0.2070 

2.0 -1 

normalized with respect to a0\fc, which is the stress intensity 
factor in a uniaxially stressed infinite plane containing a crack 
of length 2c perpendicular to the direction of loading. 

In Table 1, mode I and mode II stress intensity factors are 
given for a crack oriented at 30 deg inside a circular inclusion, 
m = 0.0. Results for different crack lengths are tabulated for 
M2//*i = 3.0, stiff inclusion and softer matrix, and ix2/^\ = 
1/3, soft inclusion and stiffer matrix, d is the distance from 
the origin to the elliptical boundary, when the crack angle, 6, 
= 0, a = d. In Table 2, a straight crack in a horizontal elliptic 
inclusion m = 0.5 is analyzed. The crack is perpendicular to 

Table 6 Stress intensity factors for crack located in a circular inclusion, 
m = -0 .0 , 9 = 0.0 deg, K, = K2 = 1.8, X = 90.0 deg 

a / c 
—* 0 0 

20 
10 
5 
4 
2 

1.25 
1.11 
1.05 

Hilux = 3.0 

Ki/aoc1'2 

1.2739 
1.2763 
1.2834 
1.3112 
1.3317 
1.4910 
1.8297 
2.0621 
2.3074 

/z2/Vi = I / 3 

KjjaocV* 
0.6098 
0.6085 
0.6046 
0.5898 
0.5796 
0.5144 
0.4279 
0.3894 
0.3140 

Table 7 Stress intensity factors for a crack located in a circular inclu­
sion, m = 0.0, 6 = 0.0 deg, K, = K2 = 1.8, X = 90.0 deg, comparison of 
results of Erdogan and Gupta (E&G) and Anlas and Santare (A&S) 

a / c 
10 
4 
2 

1.33 
1.11 

fi2 = 3.0 
E.kG. 
1.283 
1.332 
1.491 
1.752 
2.062 

A.kS. 
1.283 
1.332 
1.491 
1.753 
2.062 

H-ilHi = 1/3 
E.kG. 
0.6046 
0.5796 
0.5144 
0.4437 
0.3900 

A.kS. 
0.6046 
0.5796 
0.5144 
0.4435 
0.3894 

external loading a0. Stress intensity factors for different crack 
lengths are given. The results show that, as the crack ap­
proaches the interface, for soft matrix, the stress intensity 
factor increases rapidly. For a soft inclusion they decrease as 
the crack approaches the interface. 

Similar values are given for a vertical elliptical inclusion, m 
= -0.2, in Table 3. The crack is again perpendicular to the 
external loading. Stress intensity factors increase and decrease 
faster as the crack approaches the interface, compared to m 
= 0.5 case. 

In Table 4, the results for a 30 deg inclined crack are given. 

^ 

1.8 " 

1.6 " 

1.4 -

1.2 -

1.0 -

3 t X 

™»«™» m-0.5 

™»»™ m-o.o 

• • I . m».0.5 

— — m-0.2 

*»..»» m = -0.2 

•>\v \ ^ 
* - •*.*:?.".*• • - r„": r - —'—~~———---

1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 

a/c 

Fig. 3 Normalized stress intensity factor versus distance from inter­
face, for different values of m, /i2//*i = 3.0, K, = K2 = 1.8, X = 90.0 deg 

10 
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1.1 

1.0 

0.9 

0.8 

0.7 -

0.6 -

0.5 -

0.4 

10 

a/o 

Fig. 4 Normalized stress intensity factor versus distance from inter­
face, for different values of m, JJ2/H, = 1/3, *, = K2 = 1.8, A = 90.0 deg 

In this case, m is 0.5 and stress intensity factors for different 
crack lengths are tabulated. 

The solution used in this problem allows the usage of dif­
ferent angles for loading. In Table 5, the results for an elliptic 
inclusion, m = 0.5, embedded in an infinite region loaded by 
a o0 at an angle X, are given. Mode II stress intensity factor 
is symmetric w.r.t 45 deg as expected. The crack is straight 
and a/c ratio is 1.25. 

In Figs. 3 and 4, the stress intensity factors are normalized 
with respect to the constant stress value inside the elliptical 
inclusion. The results are plotted for different crack lengths 
and different ellipses. Since the normalization has been done 
using the stresses inside the inclusion, when the crack is small, 
values of the stress intensity factors go to 1 as expected. These 
plots agree with those of Atkinson (1972), for the case of a 
circular inclusion. 
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An Inverse Problem in Elasticity 
With Partially Overprescribed 
Boundary Conditions, Part 1: 
Theoretical Approach 
A Cauchy problem in linear elasticity is considered. This problem is governed by a 
Fredholm integral equation of the first kind and cannot be solved directly. The 
regularization method, which has been originally employed by Gao and Mura (1989), 
is formulated from a different perspective in order to address some of the difficulties 
experienced in their formulation. The theoretical details are discussed in this paper. 
Numerical examples are treated to Part II. 

Introduction 
Inverse problems in science and engineering have been at­

tracting more attention recently. Stanitz (1988) has studied the 
problem of designing a channel for arbitrarily prescribed ve­
locity distribution. Sobieczky (1988) has investigated the prob­
lem of determining the profile of an airfoil from the given 
surface pressure distribution. Gao and Mura (1989) have used 
the residual surface displacements to determine the residual 
stress field around the damaged area. The latest developments 
in inverse problems in structural mechanics have been sum­
marized by Kubo (1988). 

In this paper, we investigate a linear elasticity inverse prob­
lem which is in the form of the Cauchy (initial value) problem. 
The problem is ill-posed since the solution's existence, unique­
ness, and continuous dependence on the data are not neces­
sarily guaranteed. Therefore, such problems must be solved 
indirectly by means of transformation like the regularization 
method. 

First, we describe the type of problem in question along with 
the particular problem in which we are interested. Second, we 
examine the existence, uniqueness, and stability of solutions 
of such problems. Third, we briefly introduce the original 
formulation of the regularization method by Gao and Mura 
(1989). Fourth, we introduce our new one. Fifth, we give a 
simple demonstration of it. Finally, we conclude with remarks 
and discussions. 
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1 Problems 

1.1 Forward (Well-Posed) Problem. Let us consider a 
well-posed boundary value problem first. For example, sup­
pose as shown in Fig. 1, that the four edges of a thin rectangular 
plate are maintained at the following temperatures: 

r<p(0,y)=0, 

\<p(a,y)=0 

}<p(x,0) = 0, 

\tp(x, b)=f(x). 

The temperature is governed by the Laplace equation, 

(1) 

vV 
d <p d ip 

0, (2) 

for the steady-state problem. 
The solution of this problem can be readily obtained as 

nirx s'mh(niry/a) 
<p(x,y) = ^c„sk 

a sinh (n-wb/a)' 
(3) 

where 

<p = 0 

Journal of Applied Mechanics 

<p = 0 

Fig. 1 Steady-state temperature distribution in a rectangular plate 
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Fig. 2 A long cylinder under lateral compression 

Inverse problems in elasticity date back as far as 1907 to 
Almansi (1907) (and a more recent study to Gao and Mura 
(1989)). They are not restricted to the above problems. For 
instance, Dulikravich has employed it in the so-called inverse 
design to design the optimum turbine blade from the given 
temperature and heat flux on the surface (Dulikravich (1988)). 
More rigorous mathematical treatment of the inverse problem 
has been done by many mathematicians (Tikhonov (1963), 
etc.). 

2f" 
aJ0 

f(x) sin ax, 
a 

(4) 

assuming that the series is convergent. 

1.2 Inverse (Ill-Posed) Problem. Now, instead of (1), 
suppose the following boundary conditions are prescribed: 

<p{x, b)=f(x) 

\d<p(x,y) 

dy 
--g(x), 

y = b 

where 

g(x) = 
dy Sc» sin-

mrx sinh (mry/a) 

a sinh (tnb/a) 

(5) 

(6) 
y = b 

and the remaining boundaries are considered free (see Courant 
and Hilbert (1953)). We wish to know whether this problem 
is solvable, and if it is, whether the solution is unique and 
stable. If the solution indeed exists and is unique, (3) must be 
the solution and the boundary values along the free boundaries 
must be (1). A problem like (2) with (5) in which the boundary 
values are prescribed in the initial value problem manner is 
called a Cauchy problem (see Knops and Payne (1971)) which 
may be categorized as a type of inverse problem. 

1.3 Forward (Well-Posed) Problems. Consider the prob­
lem of a long circular cylinder under lateral loading as shown 
in Fig. 2. Suppose that the lateral loads are given by 

Cpx=p cos (6) 

\py =p sin (0) 
(7) 

for O < 0 < 2 T T . The corresponding lateral displacements from 
the linear theory of isotropic elasticity are 

1-
ux = — 

uv = 

-p a cos (0) 

~p a sin (6) 

(8) 

where E is Young's modulus and v is Poisson's ratio. 

1.4 Inverse Problem. Now, suppose that instead of (7), 
both the partial lateral displacements and loads are prescribed 
as 

(px=p cos (0) 

py=p sin (0) 

-p a cos (0) 

-p a sin (0) 

(9) 

along 0<#<7r. We wish to know whether the displacements 
and the loads along IT < 0 < 2ir can be uniquely characterized 
by assuming static equilibrium. If the characterization is pos­
sible, the solutions must be (7) and (8). 

2 Existence and Uniqueness of the Solution of the In­
verse Problem 

The fundamental requirements of the so-called well-posed 
problem have been established by Hadamard (1902), namely, 
existence, uniqueness, and continuous dependence on the given 
data. Therefore, any problem that violates even one of these 
conditions is called an ill-posed problem. Let us see how these 
conditions apply to the inverse problem. 

2.1 Uniqueness. Before the theorem of existence, let us 
look first at the theorem of uniqueness. The uniqueness theo­
rem for two-dimensional elasticity can be found in the book 
by Muskehelishvili (1963); a more general one, in Knops and 
Payne (1971). However, here we take a look at a simpler version 
by Gao and Mura (1989) instead. The assumption is that the 
system is in static equilibrium. 

Lemma: Let T\ and T2 compose the entire boundary of an 
elastic body D. If the boundary values along T, vanish iden­
tically, i. e., if the displacements and the tractions are identically 
equal to zero on Tu then the displacements and stresses over 
the entire domain D are zero. 

Proof: Let u, and o/j be the displacement and stress fields 
that give rise to the vanishing of the displacements and tractions 
along IY Similarly, let u* and afj be the displacements and 
stresses that cause the displacements along T2 to vanish but 
not the tractions. The Betti-Maxwell reciprocal relation (see 
Jaswon and Symm (1977)) yields 

•Ti+r-2 
o*jUjnjdT = 

ri+r2 

OijUfnjdY, (10) 

where «, are the components of the normal vector along Vt 

and T2. According to the definitions of o-y and uf, the right-
hand side of (10) and the T, integration on the right-hand side 
vanish, so that (10) is reduced to 

CT,7«/«/C/r = 0. (11) 
r2 

Equation (11) is valid for any arbitrary a*Jt and so the dis­
placements M,- must be identically zero along T2. From this 
result, the divergence theorem implies that the displacement 
field vanishes identically over the entire domain which in turn 
means the stress field is identically zero. 

The Fredholm alternative theorems (see Stakgold (1967)) 
states that the solution x of Ax = b is unique if the homogeneous 
solution xH of Ax// = 0 is nontrivial. By virtue of this theorem, 
the uniqueness theorem for two-dimensional elasticity is es­
tablished. 

2.2 Existence. According to Hadamard's definitions of 
the well-posedness, there is a class of inverse problem that does 
not have a solution at all. Here is an extreme case in linear 
elasticity. Suppose a set of displacements and tractions has 
been prescribed to Y\ and T2 independently, 
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Fig. 3 A linear elastic body 

W; = 0 

ti = 0 

Uj = 17,^0 

o n I \ 

on T2. 

(12) 

Clearly no linear elasticity solution exists satisfying (12) be­
cause of the lemma given in Section 2.1. Even though it is 
obvious at a glance that such a prescription is impossible, often 
the inverse solution has to rely on the values usually obtained 
from experimental measurements. Ideally, because the trac­
tions are proportional to the normal derivatives of the dis­
placements, we may be able to estimate roughly the 
compatibility of the data by 

';«-
-Ui,xy(s)+Uj,yx(s) 

I dtij 
~ds~~ 

V x2(s) + y2{s) 

uUxx(s) + uhyy{s) 

assuming the rectangular coordinates x and y are functions of 
the boundary parameter s. 

2.3 Continuous Dependence on the Given Data (Stabil­
ity). Consider the equation 

Ax = b, (13) 

where x is the solution; b, the given data; and A is a linear 
operator that may be a matrix, a differential operator, or 
integral operator. We introduce errors in the operator and the 
given data to observe the behavior of the solution 

(A + 5A)x = (b + 5b). (14) 

These errors may have resulted from the experimental meas­
urements. Bearing (13) in mind, (14) can be reduced to 

<5Ax = 5b. (15) 

Then the solution becomes 

x = (5A)-'5b. (16) 

Equation (16) means that the inverse solution is extremely 
sensitive to the arbitrary errors introduced in the operator and 
the given data. For this reason, the inverse solution cannot be 
approached directly. 

3 The Original Formulation of the Regularization 
Method 

A brief summary of the original formulation of the regu­
larization method employed by Gao and Mura is given. We 
leave the details to their paper (Gao and Mura (1989)). Our 

as shown in Fig. 3; therefore, some details may differ from 
those in their paper. 

We start from Somigliana's integral equation (see Brebbia 
et al. (1984)) derived from the Betti-Maxwell reciprocal theo­
rem, 

1 
Tij(x, x')Uj(x)dT(x)+--Uj{x') 

= Uu(x,x')tj(x)dY(x), (17) 

where 

Uij(x,x')- ^i^K2^'^ 
{\-2v){riinj-rJni) 

Xi~X[ 

Tu(x,x')- 1 
8 T T ( 1 - ! > ) / * 

\{l-4v)\n(r)b,]-r,ir,j) 

imY 
n= 

8jj - Kronecker delta 

/x = shear modulus 

y = Poisson's ratio. (18) 

Let us split the boundary T into two parts Tt and T2. Both 
displacements and tractions are prescribed along r 2 , but Ti 
remains as a free boundary (see Courant and Hilbert (1953)). 
Gao and Mura has written (17) as 

1 Tu(x,x')Uj(x)dT(x) 
J r i 

- ( Uij(x, x')tj(x)dT(x)=b{x'), (19) 

where 

b(x')=~ Tij(x,x')uj{x)dY(x)--ui{x') 
Jr2 2 

+ Uu(x, x')tj(x)dT(x). (20) 
Jr. •T i 

Equation (19) is a Fredholm integral equation of the first 
kind (see Stakgold (1967)), and it cannot be solved as it is. 
Gao and Mura have applied the regularization method by 
Tikhonov (1963) derivable from the constrained minimization 
problem 

inimize I 1 uf(x)dx+ \ 2(x)dx+ tj(x)dx (21) 

, subject to 

( ( Tij(x,x')uj{x)dT(x)-\ UiJ(x,x')tj(x)dY(x)-b(x') dx'<t, (22) 

derivation is for a static two-dimensional linearly elastic ho- where e is an arbitrary tolerance. The Euler equations for this 
mogeneous material Q, bounded by the smooth boundary T, problem are 
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^ r* 

Note: flcfl'. 

Fig. 4 A linear elastic body enclosed by the fictitious boundary 

[ ( 7},(£, X')7>(TJ, x')tfT(x') 

"I 

uk(v)dY(v) 

Tjia,x')UJk(n,x')dY(x') uk(v)dY(v) 

+ aUi(Z)= \ Tji(it,x')bj(x')dr(x') 
Jr2 

[ [ Uj,tt,x')Ujk(v,x')dr(x') 
•>rs I

 Jr2 

(23) 

tk(r,)dF(7,) 

J r , L Jr2 

x')UJk(V, x')dY(x') tk(v)dT(y) 

« / / ( * ) = ( Ujia,x')bj(x')dr(x' 
Jr2 

where a is the reciprocal of the Lagrange multiplier. In general, 
(23) is solved numerically on computer. 

The problem with (23) is that there are several double in­
tegrations involved, and the general consensus has that the 
implementation of multiple integrations on computer is dis­
couraged unless it is absolutely necessary (see Press et al. 
(1986)). In addition, because 7y and Utj are singular kernels, 

given in (18). By an application of Hooke's law and the trac­
tion-stress relation, 

°ij ~~ CijkMk,! (25) 

where C,-,w are the material constants; nn the normal vectors, -ijkl 
can be derived so that 

ti(x)= [ Tjdx,x')<l>j{x')dr{x' (26) 

Suppose that the boundary T is enclosed by another bound­
ary T* and that the gap between the two boundaries is filled 
by the same material that composes the domain Q as shown 
in Fig. 4, we can write the equations similar to (24) and (25) 
with T having been replaced by r*. We can compute the cor­
responding forces (potentials) <j>* that take the values of w,- and 
tj along T by 

«/(*) = J tUj,(x,x')4>j{x')dr(x') 

*/(*)={ Jji{x,x'Hf(x')dY(x') 

x€T, (27) 

and once we have the forces, we can compute displacements 
and tractions at any point in the domain fi* by moving x in 
(27) to the desired position. This type of indirect boundary 
element method is called the fictitious (imaginary) boundary 
indirect method because of the presence of V*. This indirect 
method effectively avoids singular integrations because x never 
coincides with x' in (27), but, on the other hand, the down 
side of this method may be that the judgement of the optimum 
location of F* requires some experiences. 

Let us formulate the regularization method based on the 
fictitious boundary indirect method. As before, we first set up 
the constrained problem 

minimize [<j>T(x)?dx (28) 

subject to 

m Uji(x, x')4>j(x' )dY(x') -Uj{x) :TJAx,x')<l>f{x')dr(x,)-t,{x) dY(x)<e, (29) 

extreme care must be taken to evaluate them. Moreover, be­
cause their singular natures have been convoluted in (23), im­
plementing such multiple singular integrations costs CPU time 
and accuracy; and, therefore, is not recommended. 

4 An Alternative Formulation of the Regularization 
Method 

The numerical solution of Somigliana's integral Eq. (17) is 
called the solution of the direct boundary element (or integral) 
method (BEM). Naturally, there is an alternative method called 
the indirect BEM. The indirect BEM is based on either the 
simple or double layer potential theory (Kinoshita and Mura 
(1956)). 

To put this method very simply, the displacement field «, 
of a static linear elastic body, free of body forces, subjected 
to the external forces <£,• along its boundary Y can be expressed 
as 

where Yy, Y2, and e are the same as the ones in the previous 
formulation. The Euler equation for this problem is 

Jr2 

L* f 1 lUik(X' m"{X' V)+Tik{x, k)Tjk{x, T,)]dY(x) \ 

[Uij(x, £)Uj{x) + Tu(x, H)tj(x)]dY(x). (30) 
Jr2 

Note that even though there are still some multiple integra­
tions in (30), we have effectively removed singular integrations. 
Numerically, (30) is much simpler to implement on computer 
than (23). After the forces 4>f are found, we can compute 
displacements and tractions at any point from (27) by moving 
x to the desired position. 

«,-(*)= \ Uji(x, x')<l>j(x')dr(x'), (24) 5 A Simple Example 
r Although Part II of this paper shows more numerical dis-

wheret/,; is the Green's function (fundamental solution) tensor cussions and results, here is a simple demonstration of (30) 

598 / Vol. 60, SEPTEMBER 1993 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.6 

0 .5 

0.4 

0.1 

0.5 

0 

- 0 . 5 

-1 

-1 .5 

-2 -

Exact 

Numerical 

Angle ( rad ians) 

Fig. 5 x-displacements 

Angle (radians) 
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using the inverse problem introduced in Section 1.4. This prob­
lem turns out to be very insensitive to the position of T*; 
therefore, we simply show the results of this problem with the 
radius a, Young's modulus E, Poisson's ratio v, and the pres­

sure p having been set to 2m, 5 MPa, 0.25, and 2 MPa, re­
spectively. Figures 5, 6, 7, and 8 respectively show how the 
computed ux, uy, tx, and ty, agree with the exact solutions (7) 
and (8). They are indeed in very good agreement. 
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Fig. 8 y-tractions 

6 Conclusions and Remarks 
In this paper, the difficulties in solving inverse problems 

have been discussed. Nonexistence, nonuniqueness, and insta­
bilities may occur. The inverse problem cannot be solved di­
rectly. 

An alternative formulation of the regularization based on 
the fictitious boundary indirect method has been investigated. 
This regularization has effectively overcome the most difficult 
part of the regularization method based on the direct method— 
the singular integration. It has been applied to a linear elasticity 
problem and performed very well. 
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An Inverse Problem in Elasticity 
With Partially Overprescribed 
Boundary Conditions, Part 11: 
Numerical Details 
In Part I we examined an alternative formulation to the one employed by Gao and 
Mura (1989). In this paper, we look into numerical details to facilitate computer 
implementation. This implementation is quite general in that it works for both Gao 
and Mura and us (Koya and Mura (1992)). 

Introduction 
We have overcome the problem of evaluating convoluted 

singular integrations by means of basing the regularization 
method formulation on the fictitious boundary indirect method. 
However, this new formulation has not yet removed the other 
problem—multiple integrations. Implementing multiple inte­
grations is not, in general, recommended (Press et al. (1986)), 
for the number of evaluations increases geometrically as the 
number of dimensions increases. 

In this paper, we first take a look at the general procedure 
of solving integral equations numerically. We then incorporate 
the procedure into our regularization method formulation and 
solve a few example problems. Finally, we conclude with some 
remarks. 

The General Procedure to Solve Integral Equations 
Consider the integral equation 

f1 1 
l x'xu(x)dx+- u(x') =cos (irx'), 0 < x ' < l . (1) 
J 0 2 

The exact solution is given by 

24x 
M M = —J + 2 cos (irx), 

Sir 
(2) 

and we would like to approximate (2) numerically at discrete 
points. 

Here we employ the three-point Gauss-Legendre quadrature 
to evaluate the integral on the left-hand side of (1). The three-
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point Gauss-Legendre quadrature is given by (see Hildebrand 
(1987)), 

p* 3 

f(x)dx=xrJ]f(xm + x^)wj, (3) 

where 

x (b + a) 
xm 2 

(b-a) 

£;=i,2,3= ( - V 3 7 5 , 0, V375) 

W/= 1,2,3 =15/9 , 8/9, 5/9) 

and therefore (1) becomes 

1 3 1 
-x' Y\xjU(Xj)Wj + - u(x') = cos (irx'), 
2 f~\ 2 

(4) 

(5) 

where 

Xj = -(1+S). (6) 

There are three unknowns—u(x\), u(x2), and u(x3)—in 
(5). Instinctively, we would like to choose three points for x' 
so that there will be three equations, 

1 / 3 1 
- Xi 2 ] xju (Xj) wj + -u (xi) = cos (jxi), / = 1,2,3, (7) 
z ; = i l 

and we can solve (7) for the unknown us by simple inversion. 
The question is where to choose x[. The most obvious choice 
seems to be the same points as Xj. When these points are 
substituted into (7) and solved, we obtain 

( u(xi) = 1.93053 
] u(x2) =0.242183, (8) 
( u(x3) = - 1.44617 
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Numerical 

Exact 

Fig, 1 Numerical and exact solutions of (1) 

where 

x\=-

* 2 = ( 

] 
x3 = -

= 0.112701665 

-sO.887298335 (9) 

which is in good agreement with the exact solution, 

( « ( * , ) = 1.93076 
| u(x2) =0.243171 (10) 
( w(x3) = -1.44447. 

It follows that as the order of the quadrature increases, the 
plot of the solution begins to look like the exact solution. 
Figure 1 shows the result of the 100th order quadrature and 
the exact solution. They almost match exactly. This solution 
method is called the Nystrom method (see Delves and Mo-
hamed (1985)). 

The Nystrom method allows us to replace the original in­
tegral equation into a system of simultaneous linear algebraic 
equations thereby treating the problem in terms of the linear 
algebra at which the computer truly excels. 

Let us employ the Nystrom method in our formulation of 
the regularization method. From Part I, the original integral 
equations are 

u,(x) = \ Uj,(xS)Mx')dT(x') 
| J r * 

t,{x)= \ T],{xjc')4>j(x')dr{x'), 

X € I Y (11) 

These are now converted into a system of simultaneous linear 
equations by means of the nth order quadrature, 

".•(*«) = 2 Uji(xa,Xp)<l>j(xp)WpJiZfj 

ti(Xa) = YJ Tji(Xa,x'i3 )4>j(Xff)W0J(^), 

x € r 1 , a = l , 2 , . . . ,m (12) 

where J is the Jacobian determinant which maps the natural 
coordinates £p over to the global coordinates x$ since most 
quadratures are defined in the natural coordinates. The type 
of quadrature used in (12) is not necessarily the Gauss-Le-
gendre. It may be any suitable one which facilitates integration. 
In general, the selection is based on the type of kernel in 
question. 

Notice that (12) forms an m x n system of simultaneous 
linear algebraic equations which may or may not be a square 

system. There is not much point in choosing n points for x to 
create a square system because unlike the previous example 
problem, the path of integration does not intersect*. Although 
we can form mechanically a square system, the coefficient 
matrix is usually singular and cannot be inverted. 

Let us rewrite (12) as follows: 

u) = [if 
t T i<A) (13) 

Now, the regularization formulation becomes 

minimize 

subject to 

'fy 

rw 
[{>}-

IT 
T t-M 

T rw Lw-
IT] 
T 

" 
l < A ) < £ . 

(14) 

Then the Euler equation for this constrained problem is 

(UrU + T r T + aI)<A = U7'u-rT7't. (15) 

Notice the resemblance between (15) here and (30) in Part 
I; they are numerically equivalent. Moreover, there are no 
multiple integrations involved in (15). They have been replaced 
by matrix multiplications at which the computer excels. After 
the parameter <j> has been computed with the appropriate value 
of a, we can proceed to calculate the displacements and trac­
tions at any point by (13) with x having been moved to the 
desired position. 

There still remains the problem of determining the appro­
priate value of a (Ribiere (1967) and Wahba (1977)). In general, 
there is no direct way to determine it; therefore, it must be 
done by iteration. Ideally, the solution should improve as the 
value of a approaches zero; consequently, it seems to be logical 
to set the initial value of a rather larger, and evaluate the 
inequality constraint in (14). If the test proves to be false, 
decrease the value of a and repeat the test. As to how much 
to decrease at each iteration is a difficult problem. Gao and 
Mura (1989) suggested the use of the bisection method, but to 
guess the initial two values of a may be difficult even though 
the convergence is absolute. In this paper, the secant method 
(see Hildebrand (1987)) is used because it requires only one 
initial guess, and the convergence, though conditional, is much 
faster than the bisection method. The procedure is as follows: 

Step 1: Choose the initial a and the step length h. Set the 
iteration counter n to 1 and the maximum iteration 
count N to an arbitrary number. 

Step 2: Evaluate the left-hand side of the inequality constraint 
in (14) at a and a + h; and label them /(a) and 
/ ( « + «) , respectively. 

Step 3: Test the inequality (14) for both values. 
Step 4: If either is true, stop. 
Step 5: The next guess is given by an+[ = a„ - hf(a)/ 

[/•(« + / ! ) - / («) ] . 
Step 6: Increment n. If n is larger than N step, or else scale 

the step length h by half. 
Step 7: Go to Step 2. 

The function/in this case is the left-hand side of the inequality 
in (14)/ 

So far we have examined integral equations with smooth 
paths of integration. However, when the paths take arbitrary 
and not necessarily smooth paths, we cannot expect to integrate 
numerically the entire path with sufficient accuracy. Moreover, 
as the size of the domain in question increases, its boundary 
increases accordingly, so does the order of quadrature. Because 
in reality we cannot afford to raise the order indefinitely just 
to keep up with the size of the domain, it is essential to econ­
omize without sacrificing accuracy. 
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Fig. 2 A long cylinder under lateral compression 

Exact 

Numerical 

Angle ( radians) 

Fig. 3 x displacements 

The simplest way to achieve this is to take advantage of the 
integration property 

[ f(x)dT(x) = J] \ f(x)dT(x), (16) 
Jr ; = 1 Jr,-

where N is the number of smaller components of the total 
boundary F. Thus, we can subdivide into smaller boundaries 
for which lower order quadratures prove to be accurate enough. 
At the same time, discretization allows us to integrate any 
arbitrary path shape. There is no major difference between 
the discretized and continuous methods as long as the path is 
smooth enough. Furthermore, as the size of each subboundary 
decreases, the behavior of the solution along it may be ap­
proximated by a simpler function such as a constant, linear, 
or quadratic function. This "discretization" of the integral 
equation is the basis of the boundary element method. 

In the next section, we examine the characteristics of the 
regularization method more closely by solving a couple of 
example problems. We would like to know whether this method 
always yields the solution we want. 

Example Problem No. 1 
As the first example, we repeat the problem discussed in 

Part I. As Fig. 2 shows, a long cylinder is under radial compres­
sion. The Cauchy data—displacements and tractions—along 
the upper half of the lateral surface, 0 < 6 < ir, is given and 
the lower surface, ir < 6 < 2TT, remains free. We would like 
to calculate the displacements and tractions along the lower 
surface. 

We know the analytical solutions are 
px = 2 cos 8 
px = 2 sin 6 
ux= -(14/25) cos 6 
Uy= -(14/25) sin 0. 

(17) 

Figures 3, 4, 5, and 6 show the x and y displacements and the 
x and y tractions, respectively. They all agree excellently well. 

Example Problem No. 2 
Consider a square plate under uniaxial load as shown in Fig. 

Exact 

Numerical 

S 0.5 

c ° 
o 

-H 

S - ° - 5 

U 

-1 

Angle ( radians) 

Fig. 4 y displacements 

Exact 

Numerical 

Angle ( radians) 

Fig. 5 x tractions 

Angle ( radians) 

Fig. 6 y tractions 

7. The Cauchy data—displacements and tractions—are pre­
scribed along the right edge x = 2.0 of the plate, and the 
remaining boundaries are free. We would like to solve this 
Cauchy problem. The constant boundary element method is 
employed to discretize the original equation into the Nystrom 
form. 

Unlike the previous problem, this problem poses some dif­
ficulties. Both displacements and tractions in the previous 
problem are smooth and continuous whereas the tractions in 
this problem are discontinuous at each corner. Because our 
formulation is based on the Euclidean L2 norm which has a 
form of the quadratic function, it is uncertain as to how the 
regularized solution behaves in the neighborhood of these 
points. 

Another concern is the applicability of the constant element 
discretization. We know the analytical solutions for the x and 
y displacements (m) are 
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Fig. 7 A square plate under uniaxial load 
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x displacements based on the analytical data 
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Fig. 10 x tractions based on the analytical data 
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Exact 

Mixed 
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Fig. 11 y tractions based on the analytical data 

9 10 11 12 13 14 15 16 17 18 19 

Node 

\ux = 0.004* 
\uy= -0.0012y. 

We are not certain whether the constant element approximation 

results when the analytical values are given along x = 2.0. 
(18) The errors in the displacements are still in the acceptable range, 

but those in the tractions are not. It seems that because the 
displacement is a continuous function, the regularization 

is suitable in this situation. Figures 8, 9, 10, and 11 show the method works well; however, the traction may be either con-
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Fig. 14 x tractions based on the numerical data 

tinuous or discontinuous so that the regularization cannot treat 
it reliably. 

Furthermore, because the input data is the analytical solu­
tions which are constant and linear, the constant element ap­
proximation is unable to fit the data completely. In other 
words, to the constant approximation these values are not the 
"exact" values. The values which can be approximated reliably 
by the constant element approximation are the "apparently" 
exact input data. 

In order to show this behavior, we use the mixed boundary 
value problem solutions by the constant element approxima-

T 
?-, - 3.0 MPa 

h H — 1 . 0 0 m — | 

Fig. 16 More complicate boundary conditions 

tion as the input data. In other words, for the x and y dis­
placement input data, we use the numerical solutions. Figures 
11, 12, 13, and 14 show the results. They are in better agree­
ment. 

Example Problem No. 3 
In this example, the geometry and the boundary conditions 

are slightly more complicated as shown in Fig. 16. This problem 
has been solved as the mixed boundary value problem first. 
Then these solutions have been used as the input data along 
the nodes #65 to #80, other boundaries are free. We would 
like to recover the remaining boundary conditions. 

Figures 17, 18, 19, and 20 show the regularized solutions 
and the mixed boundary value solutions. They are in very good 
agreement. However, the traction solutions as shown in Figs. 
15 and 16 are not as good as the displacement solutions due 
to the presence of discontinuities. Further studies are required 
to address the problem of discontinuity. 

Conclusions 
The numerical procedure based on the Nystrom method to 

solve the Cauchy (inverse) problem is discussed. As long as 
the input data is compatible, it can be solved with great ac­
curacy. However, unlike the ordinary boundary value problem, 
the sensitivity of the solution to the input data is more pro­
nounced. A very refined discretized model is required to solve 
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Fig. 18 y displacements 

with sufficient accuracy. Moreover, a special procedure may 
be required to handle discontinuities in the solutions. 
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Singular Stress Field Near the 
Corner of Jointed Dissimilar 
Materials 
In this paper, the characteristics of the stress field near a corner of jointed dissimilar 
materials are studied as a plane problem. It is found that the order of singularity 
is dependent not only on the elastic constants of materials and the local geometry 
of corner, but also on the deformation mode. The dependence of the order of 
singularity was established for the case of mode I and the case of mode II. An 
explicit closed-form expression is given for the singular stress field at the close vicinity 
of the corner, in which the stress field is expressed as a sum of the symmetric state 
with a stress singularity of l/r'~x' and the skew symmetric state with a stress 
singularity of l/r'~X2. When both \j and\2 are real the singular stress field around 
the point singularity is defined in terms of two constants K ^ , Kn, 

\̂ » ̂  in the case 
of crack problems. 

Introduction 
For a crack problem in a homogeneous plate, the singular 

stress field near the crack tip is expressed as 

\]r V (1) 

where r, d are the components of polar coordinates with the 
origin of the coordinate system at the crack tip and the func­
tions f'j(6) and f"{6) correspond to the mode I and mode II 
deformations, respectively. 

Since the order of the singularity (i.e., - 0.5) and the explicit 
form of functions//,(0) and f'/(d) in expression (1) are known, 
so based on the expression (1) the stress state at the crack tip 
is completely determined by the two parameters K, and Kn 
(i.e., the stress intensity factors for mode I and mode II). 

The study of stress singularities related to a wedge in plane 
elasticity was made by Williams (1952), Dempsey and Sinclair 
(1979, 1981), Bogy (1968, 1971), Bogy and Wang (1971), Hein 
and Erdogan (1971), and Theocaris (1974) et al. For the general 
case of TV-material composite wedge, the dependence of the 
order of singularity on the elastic constants of materials and 
on the local geometry of the composite plate has been estab­
lished already. However, few papers have been reported for 
the eigenfunction of displacement or stress (Bogy, 1970). In 
order to determine completely the local behavior of the dis-
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placement and the stress at the corner, the eigenfunctions cor­
responding to each eigenvalue are needed, simply as the 
functions//,<0) andf!'(&) are needed in Eq. (1). 

The present paper deals with the plane problem of a com­
posite body consisting of two dissimilar isotropic, homoge­
neous and elastic wedges, perfectly bonded along both of their 
common interfaces, as shown in Fig. 1. The problem was 
studied by Bogy and Wang and an eigen equation for deter­
mining the order of the singularity in the stress field at the 
corner was given (Bogy and Wang, 1971), while the associate 
eigenfunction has not, to the best of our knowledge, been 
considered before. In this paper, an explicit closed-form 
expression, similar to Eq. (1), is established for the singular 
stress field at the corner. The stress field is expressed as a sum 
of a symmetric state and a skew-symmetric state. Both the 
eigenvalues and associated eigenfunctions are analyzed for the 
symmetric mode and the skew-symmetric mode, respectively. 
The stress field around the singular point is defined in terms 
of several constants similarly as in Eq. (1) for the crack prob­
lem. 

Fig. 1 Corner of two bonded wedges 
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Formulation 
Consider a plane problem of two dissimilar wedges of angles 

7 and 2 i r - 7 , respectively, bonded perfectly at both of their 
interfaces (Fig. 1). The regions occupied by the two wedges 
are denoted by Q\ and Q2. The two wedges are made of different 
isotropic and homogeneous elastic materials. Denote the shear 
modulus and Poisson's ratios of the two materials by G,, vx 

and G2, v2, respectively. 
Take the vertex as the origin of coordinates and put the pr­

axis on the line which divides the region Qt and fl2 equally. In 
each of the regions Q,- (/= 1,2)', displacements in the radial and 
circumferential directions, «, and us., stresses in the plane polar 
components, ar., ae. and rrS., and resultant forces in the x and 
.y-directions, Pj.and.Py. (resultant forces of the stresses, exerted 
upon the left-hand side region by the right-hand side across 
an arbitrary path leading to the moving point from a definite 
point) are expressed in terms of two complex potentials $,- (z) 
and \p/(z) 

e-ie 

2(u,..+ ivBl) = — [K&iW-zM (z) - M z ) ) (2) 

as. + orr. = Re[<A/(z)], ae.- ar. + 2hre. = 2em{z<t>f (z) + W (z)} 

(3) 

- Py.+iPx. = Mz) + z<t>i (z) + JXzj (4) 

where 

_ j(3-vi)/{\ + c,) (plane stress) 
\p-Avi) (plane strain). 

In order to evaluate the singular behavior of stress at the 
corner tip we assume 4>-,{z) and i/-;(z) to be of the following 
form, as Theocaris (1974) did. 

4>t(z) =aliZ
x + a2iz

x, ti(z)=bliz
x + b2iz

K (5) 

where the exponent X and the coefficients au, a2h blh b2i are 
in general complex. 

On the interfaces at the vicinity of the vertex, the complex 
potentials 4>i (z) and <p, (z) must satisfy the boundary conditions 
that the displacement and the traction are continuous at the 
interfaces as 

{-Pn + iPXl)\e=y/2=(-Py2 + iPX2) Ie=7/2~) 
( (6) 

(Wr, + iV0l) U = 7/2= (Ur2+iVe2) l» = 7/2 J 

and 

{~Pyl + iPxl) I 9=-7/2= ( ~Py2 + 'Px2) U = 2w-y/l) 

(Uri + ivgi)\g=^y/2=(Ur2 + iVg2)\g = 27r^y/2. ) 

Although we can derive an eigen equation from Eqs. (6) and 
(7) for determining the eigenvalues, namely the order of the 
singular stress, as the others do. However, the equation would 
be complicated and it is too difficult to derive the eigenfunction 
in an explicit closed form. It can be overcome by noting that 
there exists a geometric symmetry in the given problem. This 
fact enables us to divide the elastic field considered here into 
a symmetric part and a skew-symmetric part, namely into a 
part due to the mode I deformation and a part due to the mode 
II deformation. 

For the part due to the mode I deformation, we can use the 
following symmetric condition instead of Eq. (7): 

^ , l»=o = 0, vei\e=0 = 0,PX2\g=T = 0, v„2\e=„ = 0. (8) 

For the part due to mode II deformation, we can use the 
following skew-symmetric condition instead of Eq. (7): 

PJ,1lfl_o = 0, «r ils=o = 0, Py2\e=r = 0, «^lfl = T = 0. (9) 

Eigen Equation 
From Eqs. (6) and (8) and from Eqs. (6) and (9), we obtain 

two sets of eight linear equations, corresponding to the sym­
metric and the skew-symmetric deformations, respectively. The 
equation^ are homogeneous^for the eight unknown coefficients 
flu. ^21. b2l, b\i, ai2, a22, b22, bi2. The nonvanishing stresses 
correspond to nontrivial solutions of the set of eight equations, 
so X is determined by the roots of the eigen equation derived 
by setting the determinant of the coefficient matrix equal to 
zero. After a little algebra the eigen equations are written as 

A(a>/5,7,X) = (a - B)2\\\ - cos27) + 2X(a - /3)sinY(sinX7 

+ sinX(2Tr - 7)) + 2X(a - /3)]8sin7 {sinX(2Tr - 7) - SU1X7 j 

+ (1 - a2) - (1 - (32)COS2XTT + (a2 - /32)cos j 2X(7 - TT) ) = 0 (10) 

for the mode I deformation and as 

D2(a,B,y,X) = (a - /3)2X2(1 - COS27) - 2X(a - ^)sin7 {sinX7 

+ sinX(27r - 7)) - 2X(a - B)/3smy {sinX(27r - 7) - sinX7 J 

+ ( l -a 2 ) - ( l - l8
2 )cos2X7r + (a2-i32)cos!2X(7-7r)j=0 (11) 

for the mode II deformation, where a and B are Dundurs' 
composite constants (Dundurs, 1967 and 1969), (Bogy, 1968) 
and are related to the elastic constants of each constituent by 

^ _ G 1 ( K 2 + 1 ) - G 2 ^ I + 1)>) 

G ^ + I H G J O O + I ) 
12) 

G , ( K 2 - 1 ) - G 2 ( K | - 1 ) 

G 1 ( K 2 + 1 ) + G2(K1 + 1 ) ' J 

One can verify that the product of Z>i(a,/3,7,X) and 
D2(a,B,y,\) coincides with the eigen equation given by Bogy 
and Wang (1971). 

-4xA(a,/3,7,X)xJD2(a,(3,7,A) 
= Eq. (19) in (Bogy and Wang, 1971). (13) 

Equation (13) means that the eigen equation in (Bogy and 
Wang, 1971) may be reduced to two factors; one factor de­
termines the eigenvalues corresponding to the mode I defor­
mation and another determines the eigenvalues corresponding 
to the mode II deformation. 

We now proceed to solve the eigen equations (10) and (11). 
Bogy and Wang (1971) gave the numerical results for the order 
of the singularity in the stress field at the corner. However, 
they did not distinguish the eigenvalues corresponding to the 
two different modes and only showed the eigenvalues with the 
smallest real part. The eigenvalues corresponding to the mode 
I and the mode II are both needed for analyzing the singular 
stress field at the corner. 

Denote the roots of Eqs. (10) and (11) by X, and X2, re­
spectively. Since only the singular stress fields are studied here, 
we only seek the roots X] and X2 in the ranges as 

0<Re(X,)<l , 0<Re(X2)<l . (14) 

Figures 2-4 show the values of X| and X2 for any material 
combinations and for the vertex angle of 7 = 210 deg, 270 deg, 
330 deg. The composite constants a and B are contained in 
the parallelograms in the (a,B) plane shown in Figs. 2-4, be­
cause under the restrictions 

0<vi,v2<0.5,0<Gi,G2<oo (15) 

all possible values of a and 8 defined by Eq. (12) are contained 
in the following range, as shown by Bogy (1971). 

- I < a < + 1 , ( a - l ) / 4 < / 3 < ( a + l ) / 4 (16) 

Figures 2-4 indicate that X! (namely, the roots of Eq. (10) 
corresponding to the symmetric deformation) may be real or 
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L - - 0 . 5 

Fig. 4(a) X, (corresponding to mode I deformation) 

Fig. 2(a) X, (corresponding to mode I deformation) 

Fig. 2(b) X2 (corresponding to mode II deformation) 

Fig. 2 X, and X2 for? = 210 deg 

Fig. 4(b) X2 (corresponding to mode II deformation) 

Fig. 4 X, and X2 for p = 330 deg 

Fig. 3(a) \i (corresponding to mode I deformation) 

Fig. 3(b) X2 (corresponding to mode II deformation) 

Fig. 3 X, and X2 for p = 270 deg 

complex, and the number of X! may be more than one. How­
ever, in the range of a, 13 where 

|8(a-/3)>0. (17) 
X| is real and the number is one. Equation (17) corresponds 
to 

G i ^ i - l 

G, /c, — 1 
G2

> k2-\ 

"I-
" ! > • 

(18) 

(19) 

Figures 2-4 also show that the number of X2 is one at the 
most and it is always real. There exists a region of no singular 
stresses due to the mode II deformation, for example, for a > 13 
when 7 = 210 deg and for a</3 when 7=330 deg. 

In Figs. 5 and 6 the values of Xi, X2 for the materials of 
P, = v2 = 0 are plotted against the angle y and the ratio G2/Gu 
respectively. These results indicate that there is no X) or X2 less 
than 0.5. For the case of 7 = 360 deg and G2/Gi=0 or =<x, 
the singularity becomes the strongest: X1 = X2 = 0.5. Figure 6 
also shows, as a function of G2/Git two distinct regions: the 
region of X) > X2 and the region of Xi < X2. 

In many studies about the singular stresses it is thought that 
only the eigenvalue Xmjn with the smallest real part is necessary 
to be taken into account and so the singular stress field is 
assumed to be of the form 

(TyOcr^min)-1. (20) 

However, it may be mistaken in some cases. Figure 7 shows 
one of the cases. In Fig. 7, a strip with a diamond-shaped 
inclusion is subjected to tension and the materials are such as 
Xi>X2. So from Eq. (20) the singular stresses would be as 
Ojjocfo' \ where X2 is the eigenvalue corresponding to the mode 
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Fig. 5(a) X, (corresponding to mode I deformation) 
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Fig. 6(a) y = 330 deg 

Fig. 5(b) X2 (corresponding to mode II deformation) 

Fig. 5 Variation of \, and X2 with vertex angle y for i>, = i>2 = 0 

II deformation, but there is no mode II deformation in the 
given problem. 

Eigenfunction 
We now derive an explicit closed form for the eigenfunction. 

The eigenfunctions corresponding to each eigenvalue are de­
termined straightforwardly. First, we consider the symmetric 
deformation. 

Substituting the eigenvalue X] into the coefficient matrix in 
the eight linear equations obtained from Eqs. (6) and (8) we 
obtain 

an = a2i, bn=~b2i (21) 

al2e --a22e-'^, bl2e
,Xl* = b22e- (22) 

o.o 

_ 

•G'2 ' 

v2=0-

__2x-^ 

:'-60%> 

\> i=0 

K 

' 

\ A \ x 2 

1 
000 

1 
100 

1 
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Fig. 6(b) 7 = 300 deg 
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Fig. 6(c) 7 = 270 deg 

Fig. 6 Variation of A-, and X2 with ratio G2IG, for i>, = v2 = 0 

and 

a[2e" 

£n = (g-/3)sin{X1(7-7r)j 
611 Xi(a- l8)sin{7-Xi(7-7r)j +(1 -/3)sin(X!ir) 

«12 = (a-/3)sin{Xi(7-7r)) 
bl2 Xi(a-/3)sin{7-X1(7-7r)) +(l+l8)sin(X17r) 

(1 - j3)siri(Xi7) + (1 - opsin {X^ir - 7) ] + Xi(a - /3)sinY 

H23) 

flu (l+/3)sin{X,(2ir-Y)) +(1 + opsin {Xifr- *)} + \i(a- f3)siny' 

Since X, j s of order 1, the eight unknowns «„, a2U b2U bn,
 w h e r e * ' - M a n d ***. a r e r e a l constants. 

an, «22. ^22. bl2 are only related by seven Eqs. (21), (22), and Substituting Eqs. (21)-(23) with the definition (24) into Eq. 
(23). It means that we can arbitrarily choose one of the eight, (5) we can derive the eigenfunction of stress and displacement 
for example, define au as without any difficulty. The size of the resulting expression is 

too large to print here. Therefore, we only indicate here that 
1 

2V2~7r 
s i n J XiC-y - -n-)} • {AT/, Xl + /*:/, x,) (24) the singular stress around the point of singularity is determined 

by two real constants KtyXl, i^/.x, and has the form as 
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, = /• 

X (cos(<5rlnr)cosh[0g]cos[(p- 1)0] 

+ sin((?ln/-)sinh[^]sin[(/7- 1)0] J + (m2K]jsx 

+ n2K/*x1)X !cos(^lnr)sinh[e<7]sin[0o- 1)0] 

- sin(9lnr)cosh[^]cos[(p - 1)6] ] + (mJC,, x, + n^l X]) 

x (cos(glnr)cosh[0<7]cos[(p + 1)0] 

+ sm{q\nr)sm\\[6q]sm[{p +1)6]}+ (m4K,, Xl + n^Kl x ,) 

X (cos(^ln/-)sinh[^]sin[(p+ 1)0] 

-sin(<7ln/-)cosh[0<7]cos[(/?+ 1)0]]] 

Tre = rp-1[(msK,,Xl + n5KtXl) 

X {cos(<7lnr)cosh[0<7]sin[(p- 1)0] 

-sin(<7lnr)sinh[0<y]cos[(/j- 1)0]] + (m6K,ixl 

+ n6KlXl) X {cosCgln/^sinh^JcosIGo- 1)0] 

+ sin(<5rlnr)cosh[0<5r]sin[Os - 1)0]) + (m7^/,x, + n7Kl x,) 

x (cos(glnr)cosh[0<7]sin[(p+ 1)0] 

- sintolnr)sinh[0g]cos[(/j + 1)0] ] + (m%Ku x, + n^Kf, x,) 

x (cos(<7lnr)sinh[0<7]cos[(/?+ 1)0] 

+ sin(ghv)cosh[0<7]sin[(p + 1)0])] J 

(25) 

for the material 1 ( ~ 7 / 2 < 0 < Y / 2 ) and as 

oe = r" ~' \m^Ku x, + n9K£ x,) 

X [cos(<7lnr)coshh7(-7r-0]cos[(p- 1)(TT-0)] 

+ sin(,5'ln/-)sinh[(5'(7r-0)]sin[(/7- l)(7r-0)] 

+ (OTI0A'/,X1 + «IO^/,X1) 

X (cos(gln/-)sinh[g(7r-0)]sin[(p- l)(-7r-0)] 

- sin(gln/-)cosh[<y(ir - 0)]cos[(p - 1)(TT - 0)]) 

{+nuKt 

X (cos(i?ln/-)cosh[(?(Tr-0)]cos[(/?+ l)(7r-0)] 

+ sin(^ln/-)sinh[g(ir - 0)]sin[(p + l)<7r - 0)]) 

+ (mi2^/,x,+«i2^/*,x1) 

x [ cos(^lnr)sinh[g(7r - 0)]sin[(p + l)(7r - 0)] 

- sin(gln/-)cosh[(?(7r - 0)]cos[(p + 1)(TT - 0)] j 

+ (mi]K,ih+nllKlh) 

TrO = 
, . / > - ' [(rr>nK,,x ,+«i3^/,x,) 

x {cos(^ln/-)cosh[<7(7r-0)]sin[(p- l)(7r-0)] 

+ sin(^ln/-)sinh[g(7r - 6)]cos[(p ~l)(ir- 0)] ] 

+ (Wl4/f/,X1+«14^*,X1 

X cos^ ln /^s inh^ i r - 6)]cos[(p- l)(7r - 0)] 

- sin(<7ln/-)cosh[g(7r - d)]sin[(p ~1)(%~ 0)] ] 

+ (w15A
r
7]Xl+«15A'/*Xl) 

X [cos(<7lnr)cosh[<3'(ir-0)]sin[(p+ l)(ir-0)] 

+ sin(^ln/-)sinh[^r(7r - 0)]cos[O + 1)(TT - 0)] ] 

+ (™16^7,X1+«16^/,X1) 

X {cos((?ln/-)smh[^(7r-0)]cos[(p+ 1)(TT-0)] 

- sin(^ln/-)cosh[g(7r - 6)]sin[(p + l)(7r - 0)] j ] J 

A . - l 

? 

Fig. 7 Strip with a diamond-shaped inclusion under tension 

for the material 2 (7 /2<0<27r -y /2 ) , where m-„ n-, (/= 1 - 16) 
are functions of a, /3 and y alone. 

SinceZ)i(Q;,i3,7,X)=Z)i(a,/3,7,X),if XisazeroofZ)i(a,^,7,X) 
so is X. It is thought that the stress state around the point of 
singularity is_expressed in terms of four real constants because 
both X and X are the eigenvalues (Hein and Erdogan, 1971). 
However, the eigenfunction corresponding to X should be the 
same as the eigenfunction corresponding to X, as can be under­
stood by considering the form of function in expression (5). 
It means that the eigenvalue X does not contribute to a new 
eigenfunction other than the eigenfunction corresponding to 
X. That is, in the general case the stress state around the point 
of singularity is expressed in terms of two real constants. 

When Xi is real, the associate eigenfunction becomes simple. 
By making use of the relations (21), (22) and Xi = Xi, the 

complex potential can be written as 

4>\(z) = (atl +au)z
h, h(z) = (blt + bn)z

x 

for the region Q{ and as 

Mz) = (ane^ + ane-ix^)e-i^1'z^, 

Mz) = (bne'hxlT + bne-'^)e - / X i x \ rt-/Xi 

(27) 

(28) 
for the region fi2- _ 

The coefficients au + an, bu + bu, ane
ix^+ 0 ^ ' ^ and 

bne'^+bne-'^ in Eqs. (27), (28) are real and are given by 
the following expressions after use of Eqs. (23) and definition 
(24). 

« i i + « n = 

bu + bu--

^ s i n f M Y - ^ i - ^ / . x , 

1 

2Tr(a-|8) 

X [X,(of - /3)sin!7- X,(7 - TT) ) + (1 - /3)sinX,ir] •#/, 

ane'^ + ane-^ 

bne^ + bne-'^ 

sinlX^-y- TT)} •C[-K,txl 

1 

2ic(a-P) 

x[X1(a^^)sin[7-X l(7-7r))+(l+/3)sinX,7r]-C,-^/,x1 J 

(26) (29) 
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where 

C,=-
(1 -|8)sin(X17) + (l-a)sin{X1(-7r-7)j + X1(a-|3)sin7 

(1 + /3)sin [ \i(2ir - 7)) + (1 + a)sin {X^y - ir)) + X,(a - /3)sin7 

Equation (29) means that when Xi is real, the singular stress 
due to the mode I deformation is expressed in terms of one 
real constant A7,x,. 

In a similar way, for the part due to the mode II deformation 

(30) 

f"m--

we have 

ane 

« n = -tf2i>, bn= -b2 

-an?-**, bne^=- o2ie - ^ 2 " (31) 

Since X2 is always real it follows that the complex potentials 
become 

Uz)=(an-an)z
x\ tl(z)=(bu-b[l)z

X2 (zeO,) 

4>2(z) = ( f l ^ J ' - B ^ - ^ l e ^ ' A (32) 

The coefficients an-an, bn-bu, a\2e'X2ir-ane~'Xl1' and 
bne'*2* - bi2e~'X2T in Eqs. (32) are pure imaginary and are given 
by the following expressions as in the case of mode I defor­
mation: 

Am= 

—— [[X2(a-0)sin(7-X2(7-ir)} 
2ir(a - /3) 

-(l-/3)sin(X27r)]xsin((X2+l)0) 

+ [(X2 + l)(a - |8)sin j \2(y - TT) ) ] x sin {(X2 -

X, 

1)0}] (39) 

[[Xi(a-/3)sin(7-X,(7-Tr)) 

f'UO) 

/2ir(«-(3) 

+ (1 - /3)sin(X,ir)] x sin ((X, + 1)0) 

+ [(X, - l)(a - |8)sin {X,(7 - TT) 1 ] X sin f (X, - 1)01 ] (40) 

= -1=^ [[X2(a - 0)sin f 7 - My ~ *) } 

V2Tr(a - j8) 

- (1 -/3)sin(X2ir)] X cos f (X2 + 1)0) 

+ [(X2- l)(a-0)sin(X2(7-7r))]Xcos{(X2- l)0)] (41) 

^\ 

an-au-

bu-bi 

ane^-ane-'^--

bue'^-bne-'^^ 

sin {A2(7-ir) )•#//, x2 

-; 
27r(a-/3) 

X [X2(a - /3)sin {7 - \2(y - ir)) - (1 - j8)sinX27r] »K„t H 

sm[\2{y- -K)} •C2'K,I% H 

- X [X2(a - /3)sin {7 - \2(y - TT) j - (1 + /3)sinX27r] • C2-K,h > 
2-w{a-$) 

onstant at 

(1 - j3)sin(X27) + (1 - opsin{ \2(ir - 7) j - X2(q - g)sin7 

(33) 

where Kn\2 is a real constant and 

C = J v " " v " — - - ' - — < < • - • — L U . — J ^ Z I — , - , - — , „ 4 , 

(1 + j8)sin { X2(2TT - 7)) + (l + a)sin (X2(y - IT) ) - X2(a - /3)siri7 ' 

The singular stress field is a sum of the stress field due to 
the symmetric deformation and the stress field due to the skew- a n c j for m aterial 2 (7/2< 0 < 2ir - 7/2): 
symmetric deformation. When X, is also real, an expression 
of the singular stress field is given by the following equation //2(0) = f[Xi(a-/3)sin{7-Xi(7-7r) 
in the same form as Eq. (1). ' nr~' 

K'M fl , m , A ' U > fll , 

oe,i 
K, Lhi fi K, 

27r(a-/3) 

+ (l+(3)sin(X,ir)]Xcos((X1+l)(7r-0)) 

+ [(X1-3)(a-fflsin{X1(7-7r))]Xcos((X1-l)(7r-0)j] (42) 
11, \i fii. 

, i = ^ A . - ( » ) + - r ^ W) ( ' = 1 . 2) (35) 
/"2(e) 

-C2X, 

K, K, 
[[\2(a - /3)sin j 7 - X2(7 - TT) ) 

Jre,i = -JJ^ fre,i(d)+ -^TT^ fre.i(d)-

where for material 1, ( ~ 7 / 2 < 0 < 7 / 2 ) : 

f!tl{8)= ,—"/ ' m [ [Xi(a- f f l s in(7-X 1 (7-T)} 
V2TT(O; - (3) 

+ (1 -j8)sin(X17r)] xcos{(X! + 1)0) 

+ [(X1-3)(a-(3)sin{X1(7-7r)j]Xcos{(X1-l)0)] (36) 

-X2 

27r(a-/3) 

- (1 + /3)sin(X27r)] x sin ((X2 + 1)(TT - 0)) 

+ [(X2 - 3)(or - fflsin f X2(7 - TT) J ] X sin {(X2 - 1)(TT - 0)) ] (43) 

//,2(0)= ^-CiXl^ [[X|(a-/3)sin[7-X1(7-7r)) 

/"w = 

Am= 

[[X2(a-/3)sin{7-X2(7-7r)l 
2ir(a - /S) 

- (1 -/3)sin(X27r)] X sin {(X2 + 1)0) 

+ [(X2 - 3)(a - 0)sin {X2(7 - TT) ) ] X sin j (X2 - 1)0) ] (37) 

= - * [[X1(a-(3)sin(7-X,(7-7r)} 
27r(a-/3) 

+ (l-j3)sin(X17r)]xcos((X1 + l)0 | 

2vr(a-(3) 

+ (l + (3)sin(Xi7r)]Xcos((X1+l)(ir-0)) 

+ [(X! + l)(a - |8)sin {X,(7 - *) ) ] X cos [ (X, - 1)(TT - 0)) ] (44) 

f%m = J ^ 2 „. [[M« " ^)sin [ 7 " My - *) 1 
27r(a - j3) 

- (1 + /?)sin(X2ir)] X sin | (X2 + 1)(TT - 0) j 

+ [(X2 + l)(a - |8)sin f X2(7 - TT) J ] X sin {(X2 - l)(x - 0)) ] (45) 

f!oM = 
c,x, [[X,(a-^)sin[7-X 1(7-7r)! 

2ir(a-|8) 

+ (l+/3)sin(X17r)]Xsm((X1 + l)Or-0)) 

+ [(X, + l ) (a - /3 )s in(X, (7- i r ) ) ]xcos( ( \ i - l )0 ) ] (38) + [(X, - l)(a-(3)sin(Xi(7-TT))] Xsin{(X! - 1 ) (TT-0) ) ] (46) 
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Fig. 8 Singular stress field a, for 7 = 270 deg and KU ) = 1 
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Fig. 9 Singular stress field T „ for y = 270 deg and K,,>2 = 1 

/ #20) = [[X2(a - 0)sin {7 - X2(7 - ir)) 
/2ir(a-/3) 

- (1 + (3)sin(X27r)] x cos ((X2 + l)(ir - 0)) 

+ [(X2-l)(a-(3)sin(X2(7-7r)]]Xcos{(X2-l)(7r-0) |] . (47) 

In Eqs. (42)-(47) the constants Cx and C2 are defined by Eq. 
(30) and (34), respectively. 

In Eq. (35) the stress field at the close vicinity of the corner 
is given as a sum of the symmetric state with a stress singularity 
of l / r ' " x ' and the skew-symmetric state with a stress singu­
larity of 1/V1_X2, and is expressed in terms of two constants 
K,^x and Ku,\2 as in the case of crack problem. 

For 7 = 2-7r and a= 1, the roots of eigen equations (10) and 
(11) become as Xi = X2 = 0.5 and Eq. (35) yields 
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A General Method for Data 
Averaging of Anisotropic Elastic 
Constants 
Redundant experimental data are usually required to determine the best value for 
the whole set of compliances of an anisotropic laminate. A method is presented 
here to optimize the compliance tensor values using the five invariants of fourth-
rank compliance tensors. A vectorial representation of those invariants is given. It 
provides a compact presentation of the data and reveals the experimental scatter. 
Experimental data obtained with bending tests on plates are used as an example to 
optimize theflexural compliance tensor of a laminate and to show the relevance of 
the method in practice. 

1 Introduction 
Several tests are required to assess the validity of a consti­

tutive law of anisotropic composite materials. When a material 
is isotropic, the number of independent constants is only 2 
within the framework of linear elasticity. For orthotropic plates, 
this number increases to 4. In the usual case of uncoupled 
multidirectional laminates, the independent stiffness or com­
pliance components are as many as 12 (Tsai and Hahn, 1980): 
six in-plane and six flexural stiffnesses or compliances. Char­
acterizing these 12 quantities is the challenge which must be 
faced before designing with composite materials; it will be all 
the more difficult because anisotropy induces particular par­
asitic effects (Pindera and Herakovich, 1982, for instance), 
which are to be taken into account through the use of suitable 
experimental tests and data treatments. For example, the in-
plane compliance tensor of an anisotropic composite material 
can be obtained by several tensile tests performed in different 
directions, which lead to more quantities than coefficients to 
be identified. The unknown compliances are then optimized 
by means of these redundant data. However, conventional 
methods of analysis do not always take full advantage of the 
tensorial nature of these quantities. 

In fact, the true goal is not really to assess and to optimize 
the compliances, but to optimize the fourth-rank compliance 
tensor itself, which is the mathematical tool describing the 
elastic behavior of the laminate. Rather than considering the 
compliances, which are extrinsic parameters for anisotropic 
materials, it is more relevant to use the invariants of the tensor 
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which do not depend on the choice of axes and can therefore 
be regarded as intrinsic parameters. Hence, the rigorous pro­
cedure for optimization of compliance measurements pre­
sented here is performed by relevant operations on the whole 
set of compliance tensor invariants. 

The polar representation of fourth-rank compliance tensors 
is first described. This representation is then used to define a 
norm and a deviation function involving the experimental data. 
Minimizing this function provides the optimized invariants. 
Finally, the method is used to average a set of experimental 
data. 

2 Theoretical Analysis 

2.1 Introduction. Only a few papers deal with the prac­
tical optimization of experimental anisotropic compliance data. 
In these, the tensorial nature of the Hooke's law relations of 
anisotropic materials is not strictly and completely taken into 
account. A first approach was given by Wu et al. (1973), but 
it can only be used for orthotropic materials. Vong and Ver­
chery (1980) proposed a simple procedure based on the least 
squares method that does not require all the components of 
the tensor in each test configuration. In this latter case, the 
tensorial nature of the compliances only appears in their trans­
formation equations and not in terms of invariants. 

The method presented here is a rigorous approach of op­
timization through the use of the whole set of five invariants 
of the fourth-rank compliance tensors. It uses a polar repre­
sentation of fourth-rank tensors, which clearly reveals the dis­
tance between experimental and optimized sets of data, and 
characterizes the type of anisotropy. 

2.2 The Polar Representation of Fourth Rank Ten­
sors. The theory of polar representation of tensors was de­
veloped and applied by Verchery and his co-workers, extending 
results for elasticity tensors obtained by Tsai in the 1960s and 
detailed by Tsai and Hahn (1980). The theory was presented 
by Verchery and Vong (1986). An English presentation of the 
essential points can be found in Kandil and Verchery (1989). 
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Reference coordinate system, 
or laminate axes 

. . Any coordinate 
system 

Fig. 1 Rotation of the coordinate system 

The general constitutive equations for uncoupled laminates 
between the in-plane strain components e°, the curvatures k, 
the in-plane stress resultants N, and the moment components 
Mean be written in the following form (Tsai and Hahn, 1980): 

(1) 

From an experimental point of view, the components of the 
two 3 x 3 stiffness matrices A and D are not directly measured. 
In fact, suitable tensile or bending tests provide their inverses 
which can be rewritten using the normalized form suggested 
by Tsai (1988): hA'[ and h3/l2 D \ h being the thickness 
of the laminate. Both of them are normalized compliance ma­
trices denoted S in the following. 

Because of the anisotropy of the laminates, compliances are 
tensor components and depend on the choice of axes. They 
can be expressed as a function of different invariant parameters 
and the angle 9 depicted in Fig. 1 between the chosen axes and 
the frame of reference (Kandil and Verchery, 1989). Using the 
contracted notation with two subscripts (Tsai, 1988): 

Sn= T0 + 2Tl+R0cos4a0 + 4Rlcos2al 

•S22= T,o + 27 ,
1+«0cos4o0-4i?1cos2ai 

Si2= - T0 + 2T, - R0cos4a0 

S66 = 4 ( r 0 -R0cos4a0) 

S16= 2(7?0sin4a0 + 2i?1sin2(7i) 

S26= 2(-«0sin4a0 + 2/?isin2a,) (2) 

T0, Tlt R0, and R] remain invariant under change of frame 
while a0 and a\ are changed into a0 + 6 and at + 6. T0, 7\, 
R0, R\, and a0 - «i are therefore the five independent invariants 
of a fourth-rank tensor of Hooke's law relations. They can be 
considered as intrinsic parameters that fully describe the tensor. 
A sixth parameter 6 must be given in order to compute six 
compliances that are extrinsic, i.e., dependent on the coor­
dinate system characterized by 6. 

Intrinsic and extrinsic parameters must be clearly distin­
guished here. In the common case of isotropic materials, the 
compliances are intrinsic parameters and it is not relevant to 
consider other parameters. On the other hand, compliances of 
anisotropic materials are dependent on the choice of axes. 
Hence, they do not characterize the intrinsic nature of the 
material, whereas the five invariants fully define the type of 
material anisotropy. For instance, a square symmetry induces 
Ri = 0, orthotropy is equivalent to a0 = a\ + k45 deg (where 
k is an integer) and isotropy to R0 = R\ = 0. As a result, one 
can detect whether a material is orthotropic and can easily find 
the orthotropy axes defined by angle a\. By contrast, a set of 
six compliances expressed in axes different from the orthotropy 
directions does not allow this determination. 

a- Vectors and generalized Mohr's circles 
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b- Generalized Mohr's circles 

Fig. 2 Vectors and generalized Mohr's circles for the compliances 

Equations (2) can easily be inverted to give the following 
quantities called "polar components": 

TQ = - {S\\ + S22 — 2S12 + S66) 

1 
isotropic components 

(Sn + S22 + 2Sl2) 

R0e ,4/'o0 (Sn + S22 — 2S12 — S66 + 2('(Si6 — S26)) 

1 
Rie^=- (Su-S22 + i(Sl6 + S26)) 

o 

anisotropic components. (3) 

Two of them are real, and characterize the isotropic part of 
the constitutive law, the other two are complex and define the 
anisotropic part, which reduces to zero when the material is 
isotropic. 

In the complex plane, the polar components can be fully 

and compactly represented by four vectors I0, Iu A0, and Au 

defined by: 

l(To 

Mo 

/2(T + T ) 
It ( ° ' ) for the isotropic part 

7 /R0cos4a0\ 7 /47?1cos2ffA . . 
A°Usin4«0j ' U.sh^,) fOT the amSOtr0plC Part 

In a rotation of the axes through 6,10, and 7\ remain constant 

while A0 and A\ rotate through 46 and 26, respectively. One 

can plot two circles with the tip of the two vectors AQ and 

Ax (Fig. 2(a)). They can be considered as Mohr's circles that 
generalize the familiar Mohr's circle of stress. In the present 
case, we have a second circle with an angular rotation four 
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times that of the coordinate axes. As for the stress components, 
the compliances are provided by graphical constructions plot­
ted in Fig. 2(b)). These graphical interpretation of the com­
pliances is directly related to Eqs. (2). Such generalized Mohr's 
circles are also used by other authors (Wu, Jerina, and Lav-
engood (1973), Tsai and Hahn (1980) for instance), but with 
different locations of the circle centers, because this choice is 
arbitrary. 

2.3 Distance Between Two Tensors. Comparison of the 
elastic properties of two laminates.is usually performed through 
a term-by-term comparison of the compliances or stiffnesses 
of both materials. However, this method cannot be considered 
as appropriate for anisotropic materials because those param­
eters depend on the choice of the coordinate system. For in­
stance, some of the compliances Sa/3 of two different materials 
can be equal in a particular frame and different in another 
one. The approach suggested below does not depend on the 
coordinate system where the calculations are performed. It is 
proposed to reduce the comparison of two sets of six com­
pliances referred to the same axes to a single scalar called 
distance. The characterization of the difference of two tensors 
will obviously allow a global comparison of any two materials. 

From the four polar components defined above, it is easy 
to compute a distance between two tensors S and S ' . First, a 
norm N(S) is defined as the square root of the sum of the 
squares of the norms of the four vectors: 

/V(S) = [ l / o l 2 + l / i l 2 + U 0 l 2 + U i l 2 ] 1 / 2 - (4) 

The norm is therefore related to the lengths of the four vectors. 
Introducing the polar components, 

2 N(S) = [(T0)
2 + 4(T0 + Tl)

2+\R0e
4ia< 

+ 16lfl1e2/"i| (5) 
The angular components have no influence, i.e., the norms 

are invariant under changes of the reference frame. iV(S) can 
therefore be considered as an intrinsic parameter characterizing 
S. 

Secondly, the distance between two tensors S and S' can be 
defined as the norm of the difference between the two tensors 
S and S ' . Obviously, S and S' components must be expressed 
in the same reference frame in order to define an intrinsic 
distance. 

Introducing the polar components, 

N(S-s') = [(r0-ro)2 + 4(r0+r,-To - TO2 

+ \R0e
Aia*-R'0e

Ai"°\2+\6\Rle
lia\-Rle2> l2]1/2. (6) 

Two tensors S and S' are equal if and only if 7V(S - S') 
is equal to zero. In this case, the two sets of four vectors are 
the same. In the complex plane (Fig. 2), this means that the 
generalized Mohr's circles representing S and S' are the same 
and that the angular components a0 and a0' as well as at and 
a[ are equal. 

One can define the relative deviation between two tensors 
as the ratio: 

N ( S - S ' ) 

N(S) 
(7) 

This nondimensional quantity is well suited to quantify the 
difference between the two tensors. In particular, if e is small, 
the two tensors S and S' can be considered as close to one 
another and the two materials will therefore have approxi­
mately the same global mechanical response. This quantity can 
therefore be used to assess the global scatter of experimental 
results, S' being the tensor determined from a set of six ex­
perimental compliances in a particular coordinate system and 
S being the optimized tensor. 

2.4 Optimization. Within the framework of data opti­
mization, one can define a deviation function between an op­

timized tensor soptinlized and n tensors Sj (J = 1 ... n) called 
measured tensors, whose components are determined through 
mechanical tests carried out on coupons cut in the same lam­
inate. The deviation function is the sum of the squares of the 
distances between the optimized tensor and the different meas­
ured tensors. As specified previously, all tensor components 
must be provided in the same frame to avoid any material 
rotation from one configuration to another. SJ must therefore 
be expressed in the reference frame rotated through 6J from 
the coordinate system,/' where the experiments were performed. 

Each measured tensor expressed in frame j is defined by IJ
0, 

l{, A{ and A\. In the reference frame, it is defined by l{, l{, 

Aoj and A['. As specified above, A'a' and Ay' are rotated, 

respectively, through -46' and -2dj from A{ and A\. The 
deviation function can be expressed as follows: 

E=Yi [7V(Soptimized-Sy)]2 

In terms of vectors, the deviation function becomes 

E=j][\I0-li\
2+\Il-li\

2+\A0-AoJi2 

(8) 

y = i 

V|2 , + \Al~Al
J\% (9) 

All those sets of four vectors characterizing the same an­
isotropic laminate must be approximately the same after ro­
tation of the tensor components through - 8j. 

Using the polar components, 
n 

E=J][{TQ-TJ
0)

2 + 4(T0+Tl-Ti-Ti)2 

y'=i 

+ \Rae^~Riemai-ei)\2+\6\R,e2i^-R{e2i{a\-eJ)\2}. (10) 

Each set of six components TJ
0, T\, RJ

0, R\, aJ
0, a{ is obtained 

through Eq. (3) from a set of six experimental compliances 
SJ

a0 measured with appropriate mechanical tests in the axes j . 
The best fit of n measurements can then be obtained by 

finding the minimum of E, which gives the optimized tensor 
defined by T0, T\, i?o. R\, «o and ax, i.e., 

dE dE dE dE dE dE 

dTa~~ dT,~ dR0~ dR,~ da0~ da{~ 

Differentiation of Eq. (10) provides the optimized components. 

R0 = - V. RJ
0cos[4(a0-a

J
0 + dJ)] 

nf=i 

R\=-Y,R\zos[2(ai-ai + 6J)] 

te(4ao) = j i , Rism[4(ai-dj)]\ / j J] «icos[4(ai-&)] j J = I J '= I 

tg{2a{) = g R{sm[2{a{ -dj)] / g R{cos[2(ai -0>)\ . 

(12) 

It can be noted that T0 and T\ are the direct averages of the 

corresponding experimental values. I0 and Ix are therefore di­
rectly the average of the corresponding experimental vectors 

l{ and l{, j = 1 ... n. On the other hand, R0 and R] are, 
respectively, weighted by cos[4(a0 — ah + 6J)] and cos[2(a! -
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TPa"1 A 

A,1 

- > 
A'" 

Table 1 Experimental compliances 

4(a„ - 9") 

[ 4 (8 , -6 ' ) 

->-TPa 

Fig. 3 Optimized vector nA0 

a{ + dJ)]. This distinguishes the present treatment from that 
of Wu et al. (1973) who did not take into account the angles. 
In fact, the present procedure reduces to two averages of real 
numbers (the isotropic parts) and two averages of complex 
numbers (the anisotropic parts). Angular quantities are there­
fore involved in these two latter averages. 

The average of the complex numbers is geometrically inter­
preted as an average of their associated vectors in the complex 
plane. This procedure is depicted in Fig. 3. The n vectors 

A0
j are plotted in sequence: the tip of one is joined to the 

tail of the other. The optimized vector A0 is the average of the 

n experimental vectors AQ
J. Ax is also obtained through a 

similar construction. 
In conclusion, it can be written 

/0=-i;n I=L±H 

A0 = ±±A^ i, =£!>>. 
; = i j=[ 

(13) 

The two vectorial averages of To and It are obviously equiv­
alent to two scalar averages of T0 and Tt, as the imaginary 
part of the isotropic components in Eq. (3) is zero. Such a 

simplification cannot be performed for A0 and Ax. 

3 Application to the Averaging of Experimental Data 

Bending tests have been carried out on a 16-ply [02, 902]2s 
symmetric glass/epoxy laminate. The experimental procedure 
is not described here. More details can be found in Grediac 
and Vautrin (1990a) and (1990b). The tests were performed in 
different directions to measure the six flexural compliances in 
ten coordinate systems defined by the angle 6J (j = 1 to 10). 
The increment from one configuration to another is - 10 deg. 
The 0 direction coincides with the direction of the fibers of 
the external ply. Hence, the (0,90) frame is expected to coincide 
with the orthotropy directions. Tables 1 and 2 respectively 
show the experimental values of the normalized flexural com­
pliances of the plate specimen, and the invariants computed 
using Eq. (3). 

It is apparent that aj
0 and a{ decreases as - 8j increases. As 

expected, Tj
0, T\, Rjo, R\ remain approximately constant. The 

difference aj
0 - a\ should be constant. However, it shows a 

large scatter due to the poor accuracy of a\, the vector l{ being 

shorter than IJ
0. Nevertheless, one can consider that the average 

value of this difference is realistic. The optimized components 
are shown in Table 3. The fifth invariant a0 - a, is equal to 
-42 .2 deg. Hence, the material can be regarded as "nearly 
orthotopic." This is due to the fact that a0 " «i = k 45 deg 

-e1 
" 1 1 

TPa -1 

a 2 2 
TPa'1 

" 1 2 

TPa"1 
' 6 6 '16 
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50.4 

50.4 

58.0 

70.3 

79.9 

• 91.5 

86.9 

72.0 

57.4 

37.6 

31.1 

-9.7 

-17.1 

-30.9 

-52.0 

-62.4 

-60.8 

-41.9 

-27.3 

-19.0 

-10.4 

292.8 

274.6 

222.6 

150.9 

108.0 

109.2 

153.9 

232.7 

280.4 

300.0 

4.6 

30.7 

47.2 

46.8 

24.2 

-7.5 

-33.5 

-42.9 

-35.4 

0.0 

-5.1 

-30.0 

-42.6 

-28.0 

-8.9 

23.6 

44.4 

45.7 

29.8 

-11.9 

Table 2 Invariants 

-«' n TJ
( «Jo RJ, 

deg . TPa - 1 TPa"1 TPa"1 TPa - 1 deg. 

"1 

deg-

a 0 " ' 
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0 
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50.4 
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50.8 

51.1 

50.4 
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51.2 

52.7 

50.3 

7.92 

7.58 

7.65 

5.94 

6.40 

6.32 

9.56 

8.48 

8.17 

7.62 

23.9 

23.8 

22.9 

23.1 

25.5 

24.3 

22.5 

23.2 

23.8 

24.8 

2.25 

2.66 

2.29 

2.73 

2.10 

2.02 

2.46 

1.04 

3.59 

2.83 

43.5 

35.0 

25.5 

13.9 

4.73 

-4.67 

-15.0 

-26.9 

-34.2 

-46.7 

90.7 

89.1 

82.3 

52.0 

57.2 

47.9 

16.8 

10.1 

-5.63 

-15.8 

-47.1 

-54.0 

-57.2 

-42.0 

-52.5 

-52.6 

-31.8 

-37.0 

-28.6 

-30.9 

present method 

method of Wu et al 

To 

TPa 

50.7 

50.7 

Table 3 

T, 

1 TPa" 

7.57 

7.57 

Optimized 

Ro 

TPa-1 

23.8 

23.8 

com 

R. 
TPa" 

2.22 

2.35 

ponents 

1 deg. 

44.5 

n. p. 

a l 

deg. 

87.1 

n.p. 

a„ - a, 
deg. 

-42.2 

n.p. 

n. p . : not provided 

(where k is an integer) is the relation characterizing orthotropic 
materials. The directions of orthotropy are given by a,. In the 
present case, the "best" directions of orthotropy are rotated 
through 90 - 87.1 = 2.9 deg from the reference frame. 

The experimental data are plotted in Figs. 4 and 5. Each set 
of six experimental results is illustrated by the four vectors 

IJo, I\, AJ
0, A[. For convenience, only Aj

0 and A\ have been 
plotted in Fig. 4, but note that the origins of the vectors are 
not located at the same point because of the scatter in the 

length of li, l{. The scatter of experimental results is clearly 
illustrated in this figure. Regularly orientated and constant-
length vectors would show a very accurate experimental pro­
cedure. The left-hand set of vectors in Fig. 4 is more regular 
than the right-hand one. It is suggested that the main reason 
is the small value of Rt (2.22 TPa" ' ) , which is therefore not 
identified with the same accuracy as Ro (23.8 TPa"1). 

Figure 5 provides the four optimized vectors as well as the 

optimized Mohr's circles. The tips of the vectors A{, and A\ 
are plotted. One can see the good agreement between exper­
imental data and optimized Mohr's circles. 

The scatter between the experimental sets of vectors and the 
optimized ones is assessed using the relative deviation e given 
by Eq. (7). Figure 6 provides e as a function of the angle - 6j. 
The relative deviation remains less than ten percent, and the 
magnitude of e can easily be related to Figs. 4 and 5. For 

instance, A\ at 6J = - 80 deg is not really in agreement with 
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Fig. 6 Relative deviation of experimental data 

the right-hand circle and one can observe that e is highest for 
this angle. One could improve this procedure by selecting the 
most relevant experimental configurations that provide a low 
value of the relative deviation e, and removing the experimental 
data characterized by a high value of e (Babut and Brandt, 
1977). 

Optimized components computed using the present method 
and the method given by Wu et al. (1973) are compared in 
Table 3. As may be seen, this latter method provides a good 
assessment of the radii R0 and R{ even if the angular scatter 
is ignored. However, the angular components a0 and at cannot 
be computed. Finally, one can calculate the optimized com­
pliances using Eq. (2). These values are provided in the ref-

Table 4 Opti 

S l l S22 
TPa"1 TPa"1 

33.2 50.9 

mized 

s 1 2 
TPa" 

-11.7 

compliances 

S66 
1 T P a - l 

297.9 

in the reference frame 

Sl6 
TPa"1 

2.6 

S26 
TPa"1 

-0.7 

erence frame (Table 4). The shear coupling compliances S16 
and 526 are close to zero. Hence, it is verified that the plate is 
approximately orthotropic. 

4 Conclusion 
In this paper, a rigorous process for averaging experimental 

compliances of composite materials has been presented. It is 
based on the use of the polar representation of fourth-rank 
compliance tensors and consists in minimizing a deviation 
function. 

Strictly speaking, an anisotropic elastic law is completely 
characterized by five independent invariants that are here used 
to optimize the anisotropic elastic constitutive law. Because of 
their intrinsic nature, these quantities should certainly be more 
often used to represent and to characterize composite mate­
rials. 
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Finite Deformation Constitutive 
Relations for Elastic-Plastic 
Fibrous Metal Matrix Composites 
This paper presents a finite strain formulation of a plasticity theory of fibrous 
composite materials. An additive decomposition is adopted to describe the kinematics 
of large deformations; a lattice is defined by the current fiber direction. Elastic and 
plastic constitutive relations are developed from the proposition that distortions 
take place relative to the fiber direction. A numerical method is proposed for 
integrating the constitutive equations. Finally, an illustrative example of the for­
mulation indicates that when axial loads along the fiber direction are comparable 
to the instantaneous shear stiffness, the finite deformation formulation is needed 
even with small strains. 

Introduction 
Elastic-plastic behavior of metal-matrix composites rein­

forced by continuous fibers has been investigated in many 
theoretical and experimental studies in recent years (Dvorak 
and Bahei-El-Din, 1979, 1982, 1987; Dvorak and Teply, 1985; 
Teply and Dvorak, 1988; Dvorak et al., 1988). These studies 
considered infinitesimal deformation formulations in view of 
the high stiffness and relatively low ductility of fibrous metal 
matrix composites as, for example, compared to ductile poly-
crystalline metals. However, due to the anisotropy of fibrous 
composites and the existence of preferential modes of low 
hardening plastic flow, a finite deformation formulation may 
be needed. This is due to the possible pronounced geometric 
hardening or softening that may occur with the reorientation 
of these modes under deformation-induced rotations. This is 
consistent with observations made in the literature concerning 
the need for finite deformation formulations in constitutive 
studies (Rice, 1970), finite element studies (McMeeking and 
Rice, 1974) and in localization studies (Rudnicki and Rice, 
1975; Asaro and Rice, 1977; Rice, 1976). These observations 
are especially pertinent when strains are magnified by such 
stress concentrators as notches and cracks. For example, the 
Moire patterns of Post et al. (1988) show experimental evidence 
of large strains and the localization at and away from notch 
tips in boron-aluminum fibrous composite plates. 

Finite deformation elastic-plastic constitutive relations have 
recently received considerable attention in the literature. Spen-
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cer (1984) and Fares and Dvorak (1989) studied the behavior 
of metal matrix fibrous composites. Christoffersenetal. (1981) 
and Nemat-Nasser (1983) studied plastic flow of granular and 
geomaterials. Hill and Rice (1972), Asaro and Rice (1977), and 
Pierce et al. (1982) considered the finite deformation of single 
crystals, while Lee (1969), Agah-Tehrani et al. (1987) and Lee 
and Agah-Tehrani (1988), Iwakuma and Nemat-Nasser (1984), 
among others, studied such deformations in polycrystalline 
metals. The single crystal studies were particularly influential 
in clarifying the structure of constitutive relations at finite 
deformations. Especially important was the concept of a lattice 
capable of rotating by an elastic spin which may be different 
from the spin derived from the antisymmetric part of the ve­
locity gradient. The specific manner in which the lattice rotates 
effectively leads to a distinct constitutive relation (Asaro and 
Rice, 1977). In polycrystalline metals, this concept has led to 
a discussion of the constitutive specification of the plastic spin 
(Dafalias, 1984). The particular choice of lattice deformation 
has to be physically motivated by the microstructure (and ex­
perimentally verified) and cannot be fully determined by fun­
damental postulates such as the principle of material frame 
indifference (objectivity) or by conservation laws. 

Fares and Dvorak (1989) considered a multiplicative decom­
position (Lee, 1969) of the deformation gradient in formulating 
constitutive relations for fibrous metal matrix composites. The 
multiplicative decomposition facilitates the visualization of the 
deformation by introducing a relaxed, intermediate configu­
ration represented by the plastic part of the deformation gra­
dient. However, there are theoretical as well as practical reasons 
why an additive decomposition of the velocity gradient is pre­
ferred (Nemat-Nasser, 1981). Thus, we use an additive decom­
position in the present formulation. We note, however, that 
both decompositions lead to approximately the same results 
when the elastic strains are small. As in the multiplicative 
decomposition, the choice of stress rates have to be carefully 
chosen (Dienes, 1979; Nagtegaal and deJong, 1982; Lee et al., 
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1983; Dafalias, 1983) but they follow from the physical as­
sumptions. 

The present work is concerned with the constitutive frame­
work of finite elastic-plastic deformations of fibrous, metal 
matrix composites. A plane stress formulation is adopted which 
is appropriate to single or multiple (usually around 7) ply 
unidirectional materials. Laminated plate response may then 
be deduced from ply behavior and suitable lamination theories. 
The physical assumptions on which the constitutive framework 
is based is first discussed. These assumptions are motivated 
by analytical and experimental studies of the matrix-dominated 
mode (MDM) of plastic deformation of fibrous composites 
(Dvorak and Bahei-El-Din, 1987; Dvorak et al., 1988). We 
then describe the kinematics with emphasis on the fiber rotation 
and the elastic and plastic strain measures, the appropriate 
rates of field variables such as stress, and the specification of 
elastic and plastic constitutive relations. Next, we discuss the 
manner in which these constitutive relations may be integrated 
when given a deformation gradient history. We then present 
the elastic-plastic stiffness in a form suitable for implemen­
tation in a large deformation finite element program. Finally, 
we present some simulations under specific loading histories 
emphasizing the role of the finite deformation formulation in 
comparison with an infinitesimal deformation formulation. 

Formulation 

(i) Notation. In our discussions we will use the same fixed 
Cartesian frame to locate points in both the reference and 
deformed configurations. Vectors and tensors will be written 
in boldface letters and components of those will be written in 
normal type and indexed. The position vector to a material 
point in the reference and current configurations will be de­
noted by X and x, respectively. We will also use the summation 
convention for repeated indices, comma notation for partial 
differentiation with respect to position, an overhead dot to 
denote a material time derivative, and a superscript "T" on 
a second-order tensor to mean a transpose. 

(ii) Physical Assumptions. An additive decomposition of 
the velocity gradient will be adopted. Thus we have 

L = I / + L". (1) 

Implicit in such a decomposition is that the elastic part of 
the velocity gradient contributes to an elastic constitutive re­
lation. In particular, we will assume that the stress power 
formed between Cauchy stress and the elastic part of the ve­
locity gradient contributes to an elastic potential. Thus a Green 
elastic or hyperelastic constitutive relation is assumed. Spe­
cifically, 

fa: lf = fo: De = faijDlj 

e = i ( F e r . F e - I ) 
2 

r = det(Fe) 

Fe = I / . F e 

Fel,=o = I. 

(2) 

(3) 

(4) 

(5«) 
{5b) 

Equations (5) define an evolution equation from which Fe 

may be determined from I / . Fe coincides with the deformation 
gradient F if the material is purely elastic. We follow common 
terminology in referring to Fe as an elastic deformation gra­
dient although it is understood that ¥€ is in general not the 
gradient of a vector field. Unlike the multiplicative decom­
position, Fe is not to be associated with an intermediate relaxed 
configuration whereby an unloading of the material by Fc leads 
to a stress-free state. This is because the evolution of ¥e is path 
dependent so that any finite unloading path may be accom­
panied by plastic flow. 

There are two assumptions concerning the plastic defor-

Fig. 1 The deformation gradient rotates the fiber direction 6*11 with its 
associated normal D12' 

mation. The first is that plastic deformation does not deform 
the fibers in either shear or normal strain. This hypothesis is 
consistent with the matrix-dominated mode of plastic defor­
mation. The work by Dvorak et al. (1988) provides extensive 
experimental support for the existence of this mode. The sec­
ond assumption is that plastic deformation follows a flow rule, 
hence the rate of plastic deformation, relative to current con­
figuration, is related to the rate of increase in stress. In addition 
to these physical assumptions, the elastic Green-Lagrange strain 
will be taken as a linear function of the second Piolla-Kirchoff 
stress based on the elastic deformation gradient, and kinematic 
hardening will be admitted in the plastic range. 

(iii) Kinematics. Let the initial and current fiber direc­
tions and the vectors perpendicular (counterclockwise) to them 
be represented by a"5, bll\ a(2), and b(2), respectively (see Fig. 
1). Note that due to the deformation, b(2) may not be along 
the material element initially along a(2). We will refer to the 
coordinate systems defined by (a(1), a(2)) and (b(1), b(2)) as the 
initial and current fiber coordinate systems, respectively. We 
will conveniently assume that the fixed Cartesian system chosen 
is aligned with the initial fiber coordinate system. If these two 
systems are unaligned, then all tensor relations given in the 
direct form remain valid and formulas for tensor components 
may be converted to the required Cartesian system by a simple 
rotation. The kinematical part of the spin of any material 
element currently along the unit direction c is given by 

Wc = We + D e . c ® c - c ® c D c (6) 

where (x) denotes a tensor product. Note that the elastic spin 
Wc and rate of deformation tensor De have been used in Eq. 
(6) in order to exclude the spin associated with plastic defor­
mation. The total spin of the material element along the fiber 
direction coincides with the kinematical part of the spin due 
to the first physical assumption in the previous section. Thus, 

W / = W + D'".b<1)<g>b(1)-b(1)<x)b(1).D'p {la) 

W / = W + D.b (1 )(g)b (1 )-b<1)®b (".D. {lb) 

Therefore, by knowing the velocity gradient history, the 
rotation of the fiber may be kinematically determined without 
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resort to any further constitutive relations. The total fiber 
rotation Rf is obtained as 

R / = W / . R / (8a) 

R/l,=o = I (86) 

where W^ is calculated using Eq. (7). The initial and current 
fiber direction vectors are then related by 

b<" = R / . ,e> (9) 

where "i" is 1 or 2. In single crystal plasticity, the rotation of 
the lattice may not be obtained kinematically without resort 
to constitutive relations when there is more than one active 
slip mode. This is so because shearing across, as well as parallel 
to any given slip plane, may cause rotation of the material 
element and atomic realignment, but it does not affect the 
lattice orientation. 

(iv) Stress and Stress Rate Measures. Plastic flow is as­
sumed to occur relative to the current fiber direction, hence it 
is natural to consider the "driving forces" to be the Cauchy 
stress components relative to the current fiber coordinate sys­
tem. Therefore, we define 

ff = R / T - f f ' R / «• a,i = bli)-a-b U) 

o: = R / ' . f f 0 . R / T «• ff,7 = b < ; : ,U> 

(10) 

,„-» -„ -„ (11) 

where a is the Cauchy stress and a" will be referred to as the 
fiber stress rate of Cauchy's stress. Using Eqs. (8) and (10) we 
can show that 

o°=b-W'o + o'W. (12) 

In addition, a" can be related to the Jaumann stress rate a v 

by 

= a° + P:D (13) 

Puk^oiAWSu-oufiPW + apjb?)b?Sik~aljbM) (14) 

where <5y is the Kronecker delta, the "rs" components of P:D 
are given by PrskiDkh and P is a fourth-order tensor whose 
components with respect to the fixed Cartesian system are given 
by Eq. (14). 

Elastic Constitutive Relations 
As expressed in Eq. (2), we assume that the energy associated 

with the stress power formed using the elastic velocity gradient 
is conserved. Thus we obtain a hyperelastic constitutive relation 
based on the elastic deformation gradient defined by Eq. (5). 
This may be given as 

J'K'-fY°-Ka.TF-T (156) 

where <fKe is the second Piolla-Kirchoff stress based on the 
elastic deformation gradient. This hyperelastic constitutive re­
lation is path independent for any region in deformation space 
in which there is no plastic flow. A complete representation 
of WiE") for an anisotropic medium may be specified (Onat, 
1990). However, an adequate realization of Eq. (15«) for small 
elastic strain but arbitrarily large rotation and plastic defor­
mation may be given by 

<r™ = K:Ee (16) 

where K is a symmetric fourth-order tensor which does not 
depend on the elastic strain Ee. (fKe, Ee, and K are all defined 
with respect to a configuration pulled back from the current 
one by F e _ ' . In general, the components of K are not constant 
with respect to a fixed Cartesian coordinate system because 
the intermediate configuration may evolve as the deformation 
progresses. This is analogous to a change in the choice of the 
reference configuration in purely elastic constitutive frame­
works. The configuration pulled back from the current one 

by F e~' will be referred to as the intermediate configuration. 
If we now assume that the tensor K may at most take into 
account the orientation of the fibers in the intermediate con­
figuration, then the components of K are constant. This follows 
from (7) which shows that there is no relative rotation of the 
fiber direction between the intermediate and the reference con­
figuration. We now adopt a transversely isotropic elastic con­
stitutive model for the unidirectional fibrous composite. In a 
Cartesian coordinate system having the A^-direction along the 
fibers in the intermediate configuration, Eq. (16) may then be 
written as 

PKe 
"12 

c„EA C„!MET- 0 

c„vAET c„Er 0 
0 0 2GA 

E72 

£!2 

(17) 

where EA, ET, GA, and vA are constants and c„= 1/(1 — vAET/ 
EA). We also note that the coordinate system in which (17) is 
described does not rotate with the deformation. In numerical 
implementations the rate form of the elastic constitutive re­
lation will be needed. Assuming that the elastic strains are 
small, this is given as 

aA e«K:D e (18a) 

o*e=b + tr(De)o-lfo-o''UT (186) 

where aAe is the Oldroyd stress rate based on the elastic velocity 
gradient. Therefore we note that when elastic strains are small 
and practical considerations require a hypoelastic constitutive 
relation, it is appropriate to use the Oldroyd rate of Cauchy 
stress rather than the commonly used Jaumann or corrotational 
rate. Even though the elastic strains are small, such a distinction 
may be important when low hardening conditions apply. 

Plastic Constitutive Relations 

(i) Yield Condition. We adopt a phenomenological but 
micromechanically motivated yield function of a fibrous layer 
in plane stress. This yield function is associated with the Matrix 
Dominated Mode (MDM) discussed by Dvorak and Bahei-El-
Din (1987). Note that the normal stress component along the 
fiber direction (i.e., the axial stress) does not influence yielding. 
Using the components of the stress and backstress relative to 
the current fiber coordinate system, the yield function is de­
fined by 

/ _ _ \ 2 / _ — \ 2 
IOl2-Ol[2\ , 022-<X22 

f{aij-a^ = 
To 

< 7 i 2 - a i 2 

TO 

TO 

±1 - 1 if q<\ 

if q>\ 

(19) 

where q=[(d\2-ci\2)/(022-^22)], and T0 is the initial yield 
strength of the material in shear. We note that although <T12 

and <T2I are equal, they are to be considered as separate variables 
in Eq. (19). This distinction is related to the assumption of no 
plastic shearing across fibers and will be clarified in the dis­
cussion of the flow rule. The yield function defined in Eq. 
(19) allows for kinematic hardening and may be extended to 
allow for isotropic hardening. We note that the resolved stress 
and backstress components <j,y and a,y are independent of the 
particular Cartesian coordinate system used or to superposed 
rotations and hence these components are objective scalars. 
Thus the yield function is an objective scalar function of the 
stress and backstress. The infinitesimal deformation formu­
lation does not distinguish between the initial and current fiber 
coordinate systems and hence its direct application to finite 
deformations is not objective. Therefore, an important dif­
ference between the infinitesimal and finite deformation for­
mulation is that the latter updates the current fiber coordinate 
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system using Eqs. (8) and (9). Using Eq. (10) and an equivalent 
one for the backstress a, we may rewrite the yield function as 

fGu-au) = / ( b ( / ) r . ( < 7 - a ) . b w ) = / ( * - « ) . (20) 

Using the yield function defined by Eq. (20) and a plastic 
scalar loading variable X to be used in the flow and hardening 
rules, the Kuhn-Tucker form of the yield condition for rate-
independent plastic flow is given by 

(21) 

In this form, the yield condition has a form identical to that 
used in infinitesimal deformation formulations. However, the 
classical form of expressing the yield condition is different due 
to the fiber rotation and is given by 

r 
^-:a°>0 a n d / = 0 
da 

yielding occurs 

df. 
da 

:<r°<0 a n d / = 0 =» neutral loading (22) 

/ < 0 => no yielding. 

The difference of conditions (22) with those of an infini­
tesimal deformation formulation is manifested in the use of 
a" instead of a. This difference is also necessary for the ob­
jectivity of the yield conditions (22). 

(il) Flow Rule. The plasticity velocity gradient is given 
by V and its components with respect to the current fiber 
coordinate system are given by 

7 = R / T .L".R / «• 7J/ = b < " .L p .b U ) . (23) 

The tensor 'y describes the plastic deformation relative to 
the fiber direction and must therefore be constitutively related 
to ~a the stress components relative to the fiber direction using 
a flow rule. An associated flow rule (satisfying normality) is 
given by 

7y=X 
df_ 

San 
«. I / = X 

df 
da' 

(24) 

Note that -y2i and "yu must be zero by the physical assump­
tion of no plastic flow across fibers. This physical assumption 
is enforced by requiring / to be independent of <T2i and ~au 

which, in Eq. (24), leads to 721 and ~yn being zero. Note that 
similar to the single crystal studies, If and not Tf alone is 
constitutively prescribed in Eq. (24). 

(Hi) Hardening. We will only describe kinematic hard­
ening although the present model can be easily extended to 
account for isotropic hardening if sufficient experimental data 
is available. The hardening is related to the evolution of the 
backstress a which can be given as 

Hjj = c\vij & a° = c\v (25) 

where 

V<j=h(pn-an). (26) 

Equation (26) allows the direction of a,y to vary along the 
yield surface and it is motivated by experimental evidence 
(Dvorak et al., 1988). For example, experiments suggest that 
when q>\ then a,y follow Prager's rule 

'da 

da df 
'dl.Vda 
da da 

(27) 

while when q < 1 Phillips hardening rule is more appropriate, 
i.e., 

df.V 
da da 

v = ~rz— a (28) 

In Eqs. (27) and (28), the second result is implied by the 
consistency condition discussed below. In order to avoid a 
discontinuity in the specification of v when q = 1, we specify 

df.df 
da da 

when q < 1 

"=< (29) 

df.df 
1 da da 

\qV" df 0 
'.(7 

da 

-a°+ 1 
\a\ 

df 
— when q > 1, 
da 

where m is a suitably large exponent and "m" is taken to be 
6 in the simulations presented in a later section. We will assume 
that the hardening is linear so that c is a constant. A loading 
history-dependent c is more appropriate and can be accom­
modated by the use of further internal variables. For example, 
in two surface plasticity models (Dafalias and Popov, 1975; 
Krieg, 1975) the modulus c is a function of the plastic work 
and the distance between the yield surface and a second surface 
whose motion has to be described using additional internal 
variables. Such a specification of the modulus c in a manner 
consistent with experimental data is currently being developed 
for an infinitesimal deformation formulation and may be sub­
sequently implemented in the finite deformation formulation. 
The yield function (19), yield condition (21), flow rule (24), 
and hardening rule (25.) and (29) fully specify the finite de­
formation rate independent plastic constitutive relations. We 
conclude this section with an expression for the consistency 
condition required to main ta in /=0 during plastic yielding. It 
is given by 

df - df - n a df 0 df 0 T=r Oij-^r a(/ = 0 «• —:a -—:a 
dan dOjj da da 

= 0. (30) 

Integration of Constitutive Relations 
In this section we will discuss a method of integrating the 

finite deformation constitutive relations when given a defor­
mation gradient history. The method is an adaptation of the 
projection method of Ortiz and Simo (1986) to the present 
constitutive relation. In discussing this integration method, we 
will assume small elastic strains so that Eq. (18) applies. How­
ever, we will allow a more general form of the yield function 
of Eq. (19) and (20) in the form 

. f=f(5A) (31) 

where q is a vector containing internal state variables. For 
example, q could be associated with the backstress a as well 
as isotropic hardening parameters. The plastic constitutive re­
lations also involve flow and hardening rules as in (24) and 
(25) in the general form 

L / ,= XR / .r(5,q).R / r=Xr(R / ,a,q) (32) 

(33) 

The main idea of the integration method is as follows: The 
method starts with a specification of a deformation gradient 
increment. If the predicted stress a based on the elastic con­
stitutive relation at fixed internal state lies within the yield 
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Table 1 Stress update algorithm 

(i) Kinematic update: F„ = F„_i + AFn 

b^" = F„-a»> / II F„-a(D II 

Rn obtained from components of bj,' 

(ii) Elastic Predictor: F*0 = F^.j + AFn 

qJJ = qa-l 
(iii) Check for Yielding: f ° £ 0 ? 

YES: Fe
n = Fe

n° ; a„ = o5| ; q„ = q ° EXIT 

NO: 

(iv) Plastic Correctors: 

do 1 

E = - K : r ' + t r ( r ' ) < j ' - r ' - c j ' + a ' - r T ' 
J"I s n v n' n n n a n 

AXi: 
f '„ 

Of '„/3a) : (da J/dX) + Of 'n/3q) • h 'n 

AFe„i = (AF„.Fn
1-AX'nri,).F,:

n
i 

pei+1 = F « + A F « 

o j , + ' = R ^ ( K : E f l ) R f
n 

(v) Convergence Check: I f J,, I < TOLERANCE ? 

YES: F„ = F„ On = cr[,+ ; q n = Q J, EXIT 

NO: i<-i + l ; GOTO(iv) 

EA (GPa) 

237 

Table 2 

ET (GPa) 

158.29 

Sample material properties 

GA(GPa) 

63.48 

VA 

0.182 

ro(MPa) 

30.0 

c (GPa) 

0.5 (fig 2a-c) 

surface, then the increment is wholly elastic. If the predicted 
elastic state lies outside the yield surface, then plastic flow is 
allowed at a constant level of the total deformation gradient 
until consistency is restored. When plastic flow occurs, two 
critical results are required: The first is an expression for the 
evolution of stress with plastic flow at fixed total deformation 
gradient. The second is a good estimate of the increment in 
plastic loading variable AX at the current deformation incre­
ment required to restore consistency. The first result is essential 
to the method, whereas the second has an important impact 
on efficiency. Using Eq. (18) and the additive decomposition 
(1), we may express the stress rate as 

a = K:(D-D") - r/-(D - i y > 
+ ( L - I / > < r + f f . ( L 7 ' - I / 7 ) . (34) 

Using the flow rule (32) and noting that the velocity gradient 
does not evolve with X, since the deformation gradient incre­
ment is held fixed at a given time increment, we obtain 

da T 
—-= -K:rs + tr(r)o-r'o+o-r' (35) 
dX 

where rs is the symmetric part of r. The plastic loading pa­
rameter increment AX at any current state is estimated by 
linearizing the yield condition around the current values of 
stress and internal variables and extrapolating to the consistent 
state at a fixed level of the total deformation gradient. Thus, 
an estimate of AX is obtained as 

AX = - - / 
df da df -
•~:— + ~ - h 
off aX dq 

(36) 

where do/dh is given by Eq. (35) and all functions on the right-
hand side of Eq. (36) are evaluated at the current values of 

stress a and internal state q. Having an estimate AX from Eq. 
(36), the stress a and state q may be integrated as a coupled 
system of ordinary differential equations in X using relations 
(33) and (35). If at the end of the increment AX, the yield 
condition is still violated, a new estimate of AX based on the 
updated stress and internal state is calculated and the stress 
and internal state are further evolved. This process is repeated 
until consistency is restored to a certain tolerance. If the es­
timate AX is accurate, only a few iterations are needed. The 
integration of the ordinary differential equations in X of the 
stress and internal state may be conveniently accomplished 
using any explicit numerical integration scheme. Since only a 
few (typically one) increments of AX are needed per defor­
mation increment, a forward Euler formula may be used (Ortiz 
and Simo, 1986). A flowchart for the overall procedure is listed 
in Table 1. 

Elastic-Plastic Stiffness 
In this section we will outline the derivation of the "con­

tinuum" elastic-plastic stiffness for a specific pair of stress 
rate/deformation rate measure. This stiffness relates the Jau-
mann or corrotational stress rate to the rate of deformation, 
namely, 

av = Kep:0. (37) 

The stiffness Kep is useful in some finite element implemen­
tations such as in the program ABAQUS. Using Eqs. (18), 
(13), and the flow rule (32), we may express the Jaumann and 
the fiber stress rates as 

(jv=K (1):D + XK(2):r (38) 

ff°=[K(1)-P]:D+XK(2):r (39) 

where 

tfjli=Kjjkl - a,jbk, + a,j8ik + aikbu (40) 

K$i= ~ 0-5KjJrs(5rk8si + 8rl8sk) + aijOki- aij8ik- Ojiojk. (41) 

Substituting Eq. (39) into the consistency condition (30) with 
generalized internal variables q and solving for the plastic 
loading parameter rate X, we obtain 

X = K(3):D (42) 

where 

K (3)_ 1 df 

l^ :K< 2 >:r + 
[do dq 

:[K ( 1 )-P] . (43) 

Finally, substituting Eq. (42) into (38) we obtain the elastic-
plastic stiffness as: 

Ke^ = K(1) + [K(2):r] (g)K(3). (44) 

We note that the elastic-plastic stiffness Kep is a function of 
K,ff,q,R^ and whether elastic or elastoplastic deformation is 
involved. If the material is currently deforming purely elas-
tically then the stiffness Kep is given by K(1). Note that the 
elastic-plastic stiffness does not directly involve W, except 
implicitly when R^ is updated. We note that in general 
Ksu^tfSrs- The components of D and Kep, with respect to a 
specific coordinate system, may be written as a column vector 
(i.e., [Du, D22, 2'Dl2]

T) and a 3 X 3, matrix respectively. This 
matrix representation of Kep is in general nonsymmetric, but 
is in a form suitable for implementation in a large deformation 
finite element code which has an option for a nonsymmetric 
stiffness matrix (e.g., ABAQUS). 

Example Problem 
We will consider the deformation of a 0-deg ply tube spec­

imen with the fibers being aligned with the cylinder axis. Due 
to boundary constraints, the material elements perpendicular 
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Fig. 2(a-c) The axial shear stress versus axial shear strain response 
of a O-deg ply fibrous composite specimen under proportional transverse 
normal stress/axial shear stress and a fixed axial normal stress of either 
0, -300, or 300 MPa (solid lines). Compression softens and tension 
stiffens the plastic response of a O-deg ply fibrous composite tube spec­
imen under shear. The dashed lines represents the calculated "small" 
strain predictions. The small strain predictions are not affected by the 
axial stress so, for the same case, they all have the same response. The 
proportionality constant during loading is 0.0,1.0, and 1.73 for Figs. 2(a), 
2(b), and 2(c), respectively. The plastic modulus c is 0.5 GPa. 

to the cylinder axis are assumed not to rotate. The elastic 
response is assumed to be transversely anisotropic with con­

stitutive model given by Eq. (17). For the plastic response, 
kinematic linear hardening is adopted with the evolution of 
the kinematic stress being defined by Eqs. (25) and (29). Fi­
nally, normality is assumed and Eq. (24) is used for the flow 
rule. The relevant material properties are given in Table 2. The 
elastic properties are representative of 6061 Al/B composites 
with a volume fraction of around 0.45. The plastic tangent 
modulus approximates the instantaneous plastic tangent mod­
ulus of 6061 Al/B at a volume fraction of 0.45 under a mod­
erate strain of 1-2 percent. The chosen initial yield strength is 
slightly higher than that of 6061 Al/B at a volume fraction of 
0.45 and is chosen to partially account for initial nonlinear 
plastic straining. 

Three cases of proportional loading between the transverse 
normal stress and axial shear stress with a fixed axial load of 
either 0, - 300 or 300 MPa are considered. The ratio of trans­
verse normal to axial shear stress in the cases a, b, and c are 
0.0, 1.0, and 1.73, respectively. Shear stress and strain are 
numerically obtained for cases a, b, and c, under the various 
conditions of fixed axial stress and are plotted in Fig. 2(a-c). 
The dashed lines in the figures are results obtained using a 
corresponding "small" strain formulation using the same ma­
terial properties. The small strain predictions are not affected 
by the axial stress so, for the same case, they all have the same 
response and only one dashed line per case appears. The results 
show that axial tension stiffens, whereas axial compression 
softens the response of the specimen under shear loading with 
the given kinematic constraints. In contrast, the small strain 
shear response is not affected by superposed axial stresses. A 
simple rigid-plastic analysis of the same problem indicates that 
the instantaneous shear stiffness is approximately the sum of 
the material instantaneous stiffness without the axial load and 
the superposed axial stress. These results indicate a need for 
the finite deformation formulation when the applied loads in 
the fiber direction are comparable to the instantaneous shear 
stiffness. Due to the high stiffness and strength of fibrous 
composites when loaded in the direction of the fibers, such 
conditions may occur even at small to moderate strains. 
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On the Anisotropic Elastic 
Inclusions in Plane Elastostatics 
By combining the method of Stroh's formalism, the concept of perturbation, the 
technique of conformal mapping and the method of analytical continuation, a general 
analytical solution for the elliptical anisotropic elastic inclusions embedded in an 
infinite anisotropic matrix subjected to an arbitrary loading has been obtained in 
this paper. The inclusion as well as the matrix are of general anisotropic elastic 
materials which do not imply any material symmetry. The special cases when the 
inclusion is rigid or a hole are also studied. The arbitrary loadings include in-plane 
and antiplane loadings. The shapes of ellipses cover the lines or circles when the 
minor axis is taken to be zero or equal to the major axis. The solutions of the stresses 
and deformations in the entire domain are expressed in complex matrix notation. 
Simplified results are provided for the interfacial stresses along the inclusion bound­
ary. Some interesting examples are solved explicitly, such as point forces or dislo­
cations in the matrix and uniform loadings at infinity. Since the general solutions 
have not been found in the literature, comparison is made with some special cases 
of which the analytical solutions exist, which shows that our results are exact and 
universal. 

1 Introduction 
Determination of the stress fields induced by general elastic 

inclusions has aroused considerable interest for almost half a 
century. However, the analytical solutions presented in the lit­
erature are always restricted to some special loading conditions 
such as uniform loading or a concentrated couple (Chen, 1967; 
Yang and Chou, 1976; Hwu and Ting, 1989), special matrices 
such as isotropic matrix (Eshelby, 1957; Jaswon and Bhargave, 
1961; Sendeckyi, 1970; Stagni, 1982), special inclusions such 
as rigid inclusions or holes (Santare and Keer, 1986; Hwu and 
Yen, 1991), special shapes such as lines or circles (Wang et al., 
1985; Honein and Herrmann, 1990), or the uncoupling of in-
plane and antiplane deformations. To the authors' knowledge, 
there is no general analytical solution for the elliptical aniso­
tropic elastic inclusions imbedded in an infinite anisotropic 
matrix subjected to an arbitrary loading. 

In this paper, the Stroh's formalism (Stroh, 1958; Hwu and 
Ting, 1989) for anisotropic elasticity combined with the method 
of analytical continuation (Muskhelishvili, 1954), which is sim­
ilar to the one proposed by Suo (1990), is developed to solve 
the present problem. Moreover, the concept of perturbation 
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given by Stagni (1982) is applied to formulate the general 
solutions. A transformation function which maps the ellipse 
onto a unit circle is introduced. However, a discontinuity prob­
lem occurs when the transformation is required to be single-
valued and conformal in the entire domain including the matrix 
and inclusion. This is remedied by the way similar to those 
proposed by Stagni (1982) for isotropic materials, i.e., a re­
stricted condition is introduced to force the continuity. The 
general loading conditions considered include the cases of point 
singularities such as point forces or dislocations. The analytical 
closed-form solutions presented in this paper are universal in 
the sense of materials (anisotropic elastic), loadings (arbitrary), 
and geometries (elliptic). The solutions for stresses and de­
formations in the entire domain are expressed in complex ma­
trix notation. Simplified results are provided for the interfacial 
stresses along the inclusion boundary through the use of ident­
ities developed in the literature. 

Some special and interesting examples are solved explicitly 
and are compared with existing analytical solutions such as 
point forces in the matrix (Hwu and Yen, 1991), uniform 
loadings at infinity (Hwu and Ting, 1989), and dislocations in 
the matrix (Dundurs and Mura, 1964; Stagni and Lizzio, 1983; 
Santare and Keer, 1986). Moreover, several new results about 
the anisotropic elastic inclusions are given. The cases of point 
singularities are important for practical application. The so­
lutions of dislocations are frequently used as kernel functions 
of integral equations to consider the interactions between in­
clusions and cracks (Erdogan et al., 1974). The solutions of 
point forces can be employed as the fundamental solutions for 
the boundary element method (Ang and Clements, 1986; Hwu 
and Yen, 1991). 
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2 Preliminary Formulations 

2.1 General Solutions. The basic equations for two-di­
mensional anisotropic elasticity are the strain-displacement 
equations, the stress-strain laws, and the equations of equilib­
rium. To get solutions satisfying these equations there are two 
different formulations in the literature. One is the Lekhnitskii's 
approach (1968) which starts with the equilibrated stress func­
tions then compatibility equations, the other is Stroh's for­
malism (1958) which starts with the displacements then 
equilibrium equations. The equivalency of these two formu­
lations has been discussed in Suo (1990). In this paper, we 
follow Stroh's formalism due to its elegancy and simplicity. 
Using the notation employed in Hwu and Ting (1989), the 
general solutions for the displacements and stresses have been 
obtained as 

u = 2 R e j 2 > c X U a ) | , * = 2 R e j 2 b „ / « U « ) J , 

<7ii=-0;,2> ff(2 = #i,i. ' = 1 , 2 , 3 , 

za = xl+pax2. (1) 

(xit x2) is a fixed rectangular coordinate system. Re denotes 
the real parts and a comma stands for differentiation, u, <r,7, 
and (j> represent, respectively, the displacements, stresses, and 
stress functions. pa, (aa, ba), a= 1, 2, 3, are the eigenvalues 
and eigenvectors of the materials./„ ( z j are arbitrary functions 
with complex arguments za. Note that in Eq. (1), pa are the 
eigenvalues whose imaginary parts are positive. 

With similar reason as Suo (1990), that whether a function 
is analytic is not affected by different arguments za = xt +pax2, 
a= 1, 2, 3, another solution form appropriate for the method 
of analytic continuation is written as 

u = A f ( z ) + A f U y , 0 = Bf(z)+Bf(zy, (2a) 

where 

A=[a i , a2, a3], B= [bb b2, b3], 
r (2&) 

f(z) = [fdz)f2(z)f3(z)f. 
The superscript T denotes the transpose and the overbar rep­
resents the conjugate of a complex number. Note that the 
argument of each component function of f (z) is written as 
z=Xi +px2 without referring to the associated eigenvalues pa. 
Once the solution of f (z) is obtained for a given boundary 
value problem, a replacement of Z\, z2, or z3 should be made 
for each component function to calculate field quantities from 
(1). 

2.2 Conformal Mapping. Consider an elliptical aniso­
tropic inclusion imbedded in an infinite matrix. The contour 
of the interface is represented by x{ = a cos \j/,x2 = b sin \p, where 
2a, 2b are the major and minor axes of the ellipse and \p is a 
real parameter. It is known that the transformation function 

za = -\(a-ibpa)ta+(a + ibpa)y{ (3) 

will map the region outside the elliptic inclusion onto the ex­
terior of a unit circle. 

The roots of the equation, dza/d^a = 0, are at 

£=±J^=±V^e<\ (4) 
Sja-ibpa 

where \fm^ and 8a denote, respectively, the modulus and ar­
gument of the critical points fa. Since \fm^<\, which can 
easily be proved if the imaginary part of pa has been set to be 
positive, the transformation is single-valued and conformal 

Journal of Applied Mechanics 

outside the elliptic inclusion. However, the inside region is 
double-valued and nonconformal. Figure 1 shows the trans­
formation among the z-plane, za-plane, and fa-plane. It can 
be seen that there are two different fa inside the unit circle 
corresponding to one za inside the elliptic inclusion. To have 
a one-to-one transformation, we designate the point nearest 
the unit circle to be the mapped point. For this choice, a 
discontinuity problem may happen when two originally con­
tinuous points {za)\ and (za)i are mapped onto ( f j . and ( f j 2 

shown in Fig.- 1. Actually the points {\;a)\='4rn~ao and 

(L)2 = \ /m^eM"/(j correspond to the same point in the za-
plane, where a = e"i' denotes the points located on the unit 
circle. Hence, the transformation function (3) now maps the 
whole za-plane, cut along a slit, into the fa-plane deprived of 
the circle of radius V ^ v To remedy this discontinuity, i.e., 
eliminating the slit which does not exist in our problem, the 
following restriction should be satisfied: 

z -plane 

Fig. 1(a) z-plane (b/a = 0.6, p„ = 0.3 + 1.5/) 

za -plane 

Fig. 1(b) z„-plane (b/a = 0.6, p„ = 0.3 + 1.5/) 
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<-a-plane 

Fig. 1(c) jvplane(b/a = 0.6, p„ = 0.3 + 1.5/) 

VCT). (5) f(y/mao) =f{\lmae 
By applying the conformal mapping technique described 

above and the perturbation concept given in Stagni (1982), the 
general solutions for the inclusion problems can now be written 
in terms of the variables fa, i.e., 

iii=Ai[fo(fl+fi(n]+A|[fo(n+fi(ni 
*i=B,[fo(0 + fi(O]+B,[fo(0 + fi(n] 

and 

u2=A2f2(n+A2f2(n 
«A2 = B2f2(r) + B^f2(f*) 

f*es2 

f€Si (6a) 

(6b) 

where the subscripts 1 and 2 denote, respectively, the matrix 
and inclusion. £* is the mapped point of z& =X\ +Pa*x2 where 
Pa is the material eigenvalue of the inclusion. f0 represents the 
function associated with the unperturbed elastic field which is 
related to the solutions of homogeneous media and is holo-
morphic in the entire domain except some singular points such 
as the points under concentrated forces or dislocations, and 
the points at zero or infinity, fi (or f2) is the function corre­
sponding to the perturbed field of matrix (or inclusion) and 
is holomorphic in region Si (or S2) except some singular points. 
Si and S2 denote, respectively, the regions occupied by the 
matrix and inclusion. Hence, in the fa-plane, Si is the region 
outside the unit circle while S2 is the region of the annular ring 
between the unit circle and the circle of radius \fm^. Since f2 
is holomorphic in the annular ring, it can be represented by 
Laurent's expansion, 

uf)= £; c*r* 
Satisfaction of (5) gives 

c.k = Tkck, Tk=« 
a + ibpi 
a - ibpi » , 

0 a) 

(7 b) 

where the angular bracket stands for the diagonal matrix, i.e., 
«fu » = diag (/i /2 fi) which will be used throughout this 
paper. 

Note that the general solutions of (2) and (6) require that 

each component of the column vector f have different argu­
ment za or f„, a=\, 2, 3. Hence, Eq. (la) has the implicit 
meaning that 

f2^*)= S (fat)iff*. (<*h8*. (c*)3E J*)7". 

where (ck)a, a= 1, 2, 3, are the components of c .̂ 

2.3 General Loading Conditions. For a given loading 
condition, f0 can be obtained immediately since it is related to 
the solutions of homogeneous media. However, it is not nec­
essary to be exactly the same as the solutions of homogeneous 
media. The choices of f0 depend on the convenience in cal­
culation. The final solutions for the stresses and deformations 
in the entire domain will not be influenced by the choices of 
f0. To have a better understanding about the choices, two 
special examples are discussed in the following. 

(a) A Dislocation b or Point Force i at za = za. Consider 
a dislocation line in the direction perpendicular to the X\X2 
plane with Burger vector b, and a point force uniformly dis­
tributed along a line parallel to the x3-axis with force per unit 
length t. Both singularities are at the point (x\, x2). If fo is 
chosen to represent exactly the solutions of homogeneous me­
dia, it may be written as (Suo, 1990; Hwu and Yen, 1991) 

fo(f) = «Iogfc* ~za)» q, (8a) 
where 

q = B7b/27r; or q = Art/27r/. (8b) 
However, it is inconvenient in calculation when our general 
solution is expressed in terms of the variable f„ not za. An 
alternative choice for f0 is 

f0(n=«iog(r«-?„)»q. (9) 
where q is the same as (8&). This expression is more convenient 
than the one given in (8a). Moreover, it also reflects the sin­
gularity characteristics of the original problems. 

(b) Uniform Loading Applied at Infinity. The exact so­
lution corresponding to the homogeneous media is (Ting, 1988) 

f 0 ( f ) = « z a » q 

= -«a-ibpa»«tc + a + '.,Pata'»(l, (10a) 
2 a — wpa 

where 

q = A t2 +B e, , 00b) 

a°ij, efj are the constant stresses and strains induced by the 
uniform loading applied at infinity. An alternative choice may 
be provided by 

fo ( f )=«f«»qo . qo = ••-«a-ibpa»q, (11) 

where q is the same as (10b). The infinity loading conditions 
are satisfied for both choices. The one given in (11) is not a 
solution for uniform stress distribution, which can be seen 
from the transformation function (3). However, in calculation, 
(11) is more convenient than (10a), because the singular points 
of (11) are at infinity while singularities occur at zero and 
infinity for (10a). 

Based upon the above discussion, we know that if all the 
singular points of the physical domain za are considered to be 
located in the matrix, for different choices the complex func­
tion f0 associated with the general loading conditions may be 
expressed as follows: 
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(i) By Taylor's expansion, 

f m V^ y* fo"(0) 1 f f0(f) 
(12) 

f belongs to a bounded region where f0 is holomorphic. The 
cases of f0 = « l o g ( r a - L ) » Q and f0 = « f„ » q0 belong to 
this category, 

(ii) By Laurent's expansion, 

W ) = | ] e ^ , e^ . = r , e „ e, = - U ^ # . (13) 
*=-<» 27r ;J c r 

f belongs to an annular ring where f0 is holomorphic. The 
cases of fo = « \ o g ( z a - 4 ) » q and f„ = « za » q belong to 
this category. 

For the case that all the singular points of the physical 
domain za are located in the inclusions, similar approaches as 
those described in Sections 2.2 and 2.3 can be applied. 

3 Elastic Inclusions 

If the inclusion and the matrix are assumed to be perfectly 
bonded along the interface, the displacements and surface trac­
tions at the interface should be continuous. That is 

U! = u2, <£i = <A2> along the interface $=o=e"l/, (14) 

where the second equation of (14) comes from the relation 
i = d<j>/ds in which t is the surface traction and s is the arc 
length measured along the curved boundary. By using the 
general solution given in (6) and the expression given in (7), 
the traction continuity condition of (14) leads to 

B,f,(a) + B,f0(a) - JTJ {B2c* + B 2 r ; c , ) ff-

•B,f,(ff)-B,fo(ff)+J {B2ck + B2T*kck\o
k. (15) 

One of the important properties of holomorphic functions used 
in the method of analytic continuation is that if f(f) is holo­
morphic in Si (or S2 + So). then f(l/f) is holomorphic in S2 + S0 

(or Si). Here, S0 denotes the region inside the circle of radius 
\fm~a. From this property and Eq. (15), we may introduce a 
function which is holomorphic in the entire domain including 
the interface boundary, i.e., 

B,f,(f) + B , f o ( l / r ) ) - 2 ] {BzCt + B z T ^ i r * . f€S, 

0(f) = 
•B 1 f , ( l / n -B , fo (0+ Yi |B2c, + B2I\*c,)^, feS2 + S0 

k=\ 
(16) 

In the above, the singular points of f0 is assumed to be located 
in the matrix only, i.e., the case (i) given in (12). Since 0(f) is 
now holomorphic and single-valued in the whole plane in­
cluding the point at infinity, by Liouville's theorem we have 
0(f) = constant. However, constant function f corresponds to 
rigid-body motion which may be neglected. Therefore, 0(f) = 0. 
With this result, Eq. (16) leads to 

f ] !B2c, + B 2 r ; C , ) r A : = B,f1(f) + B1f0(l/f), feS,, 
k=\ 

OO 

2 |B2c* + B2Tifo]{* = B 1 f , ( l /0 + B,fo(fl, f€S2 + S0. 

(17) 

2 SA2c, + A 2 r ; C , ) r ' r = A1f1(f) +A,f0(l /f) , f€S„ 

CO 

2 (A2c, + A 2 f ; c , ) r " = A j K l / f l + A M f l . f€S2 + S0. 

(18) 

Cancellation of f,(f) between (17) and (18) leads to 
oo 

fo(f) = 2 'Aft (Mi + M2)A2c, + (M, - M2)A2Tkik) f* 

(19) 

where Mk is the impedance matrix (Ingebrigtsen and Tonning, 
1969) defined as 

Mk = - fBkAk ' = Hk '(I + iSk) = (I + iSjy ]Lk, (20a) 

where 

Sk = i(2AkBl-l), 

Hk = 2iAkA
T

k, Lk=-2iBkBl, k=l,2. (20b) 

The second and third equalities of (20a) have been given by 
Ting (1988) and Sk, H*., Lk are real matrices which depend on 
the material constants. Moreover, Hk and Lk are positive def­
inite if the strain energy is positive (Chadwick and Smith, 1977). 
Hence, the inverses of HA. and Lk exist. By substituting (12) 
into (19) and comparing the coefficients of corresponding 
terms, the unknown constants c^ are determined as 

I ^ - G A G O " 1 ! * } , £ = 1 , 2 , •••oo 

(21a) 

c* — f G0 - G^G0 Gk j 

where 

Go=(M1 +M2)A2 , G, --(Ml~M2)A2Tk, 

/Ai Ttk. (2\b) 

Note that the solutions associated with c0 are ignored because 
the constant stress function does not produce stress, which 
represents a rigid-body motion. Having the solution of ck, 
function f^f) can now be obtained from (17)j or (18)i with 
the understanding that the subscripts of f in (17) or (18) are 
dropped. Once the solution of f,(f) is obtained from (17)! or 
(18)i, a replacement of fb f2,

 o r h should be made for each 
component function. This calculation procedure will be applied 
throughout this paper. The whole field solution can then be 
found by using Eq. (6). 

If one is interested in the interfacial stresses along the in­
clusion boundary, calculation may be performed by using the 
field solution of the matrix or inclusion. The stress components 
based upon the coordinate system (n, m) which are, respec­
tively, the unit vectors tangent and normal to the interface 
boundary, are obtained as (Hwu and Ting, 1989) 

c»™ = m (0)(j>,„, <7m„ = n (#)<>,„, ff,„3 = (<l>,„h, 

Onn= - n (0)f, - m (d)<j>,m = omn, ff„3= - ((/),„,)}, 
(22) 

Similarly, the continuity condition U] = u2 provides for 

where the angle 8 is directed counterclockwise from the positive 
Xj-axis to the direction of n. The derivative of <j> along the 
interface, 4>,n< should be continuous across the interface since 
<£i = <fe along the interface boundary. However, <j>t,„ may be 
discontinuous. The evaluation of </>,,„ and <t><n can be performed 
by using chain rule as shown in Hwu and Yen (1991). If the 
field solution of the inclusion given in (6b) with f2(f*) obtained 
in (7) and (21) is used, we have 

oo JI_ 

<h.m= - 2 - I m { B 2 P * ( 0 ) [ e - ' ^ r ; -elk*l\ck), 
k=l p 

00 2k 

tip 

(23a) 
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where 

P*(0) = « / ? * « ? ) » , p*(6) 

p = V a 2 sin2 \j/ + b2 cos2 \p, 

Pa cos d - sin 6 

p„ sin 0 +cos 0' 

If f0 belongs to Case (ii), similar approach can be applied 
and the results are 

(23b) 

and Im stands for the imaginary parts. Similarly, <j>Um is ob­
tained by applying the field solution of the matrix given in 
(6a), or by (Ting and Yan, 1991) 

The expression for the hoop stress is the same as (28/?). 

(29) 

Ul 
=.N(0) 

\,mj (jP,n 
(24) 

in which u„ and <£,„ can be obtained by using the field solution 
of the inclusion or matrix since they are continuous across the 
interface. N(0) is the fundamental matrix of Stroh's formalism, 
and is a 6 x 6 real matrix composed of the material constants 
of the matrix. 

We now consider the function f0 corresponding to the un­
perturbed elastic field is chosen to be the Case (ii) given in 
(13). By the method of analytic continuation shown previously 
for Case (i), one may find that the solution of zk for this case 
has exactly the same expression as Eq. (21), and function f j(f) 
is obtained as 

CO . 

m)=-J]B{1{Blek + Blrkek-B2ck-B2rUk}rk, (25a) 

or 

fi(f)= -J]A:l{Alek + A1rkek-A2ck-A2T*kck}r''- (25b) 
k=i 

Notice again that fk, k = 0, 1, 2, are required to have the form 
of (/i (ft) f2 (ft) h ( f t ) ! I- The expressions for the interfacial 
stresses are also the same as in Case (i). 

4 Holes and Rigid Inclusions 
In this section, the subscripts 1 and 2 used to distinguish the 

matrix and inclusion are omitted for simplicity since only the 
matrix is considered for the problems containing holes or rigid 
inclusions. 

4.1 Holes. When the inclusion is a traction-free hole, 
<t> = 0 along the hole boundary which leads to 

4.2 Rigid Inclusions. Holes are extreme cases of elastic 
inclusions for which the inclusion is extraordinary soft relative 
to the matrix. The other extreme case is rigid inclusion which 
means that the inclusion is absolutely rigid and can not be 
deformed. However, a rigid-body rotation o> relative to the 
matrix may occur. Hence, the boundary conditions for the 
cases of rigid inclusions are 

u = :r(k(T + kff '), k = I. a } . 

' 0 

(30) 

Substituting (6) into (30), we have 

Af(ff) + A ^ ) - | k f f - ' = - A f W - A f 0 ( a ) + |kff (31) 

if f o belongs to Case (i). By the method of analytic continuation, 
we find that 

f ( 0 = - A - ' A f 0 ( - l + - A - ' k . 
1\ w 

(32) 

To determine w we use the condition that the total moment 
about the origin due to the traction t„, on the surface of rigid 
inclusion vanishes (Hwu and Ting, 1989) and the solutions 
given in (6a)2 and (32). The result is 

(.27T 

2 y ' R e ( A - ' f 0 ( e ' v ' ) ) ^ 

(33a) 

Bf(a) + Bfo(ff) = - Bf(o-) - Bf0(<7), (26) 

if f0 belongs to Case (i). By the method of analytic continuation 
we find that 

f ( f ) = - B - ' B f 0 (27) 

By a way similar to those shown in (22)-(24), the hoop stress 
<7„„ along the hole boundary is obtained as a„„= - n (0)<A,,„, 
where 

or 

* . « = — Nj^L-'RejaBfo'Or)), 
P 

0,m= — N a W L - ' y i R e l t e ' ^ B e * ) P t\ 

(28a) 

(286) 

where 

yT=(-bsm\l/ acos\p 0), (23b) 

and the prime (') denotes differentiation with respect to its 
argument. Similar to the problems of elastic inclusions, the 
interfacial stresses can be determined by <j>:„, and <j>t„, which 
are 

<*>,«= --N[(0)Hr1Re{e'',/'Afo((7)) +-Re{;e- ' '*BP(0)A-'k), 
P P 

<£„= - -H- 1 Re(e ' v 'Afo( f f ) j+-Re( /e -^BA- 1 k) , (34a) 
P P 

or 
A °° 

<Am= - - N f ( 6 9 H - i y > e f Are'^Ae^) +-Re(/<T'v 'BP(0)A-1kl ) 

P £i P 
A °° 

4,,,= — H - ' V R e [ f e * * A e t ) +-Re(/e- ' v 'BA~ 1k) ) 
p k^x p 

(346) 
in which the identities provided by Ting (1988) have been used. 
Similarly, if f0 belongs to Case (ii), we have 

00 

f (0= - A - ' X J {Ae* + A r * e t } r * + ^:A- 1k> (35«) 

when f0 is expressed by the Taylor's expansion as (12). During 
the derivation of Eq. (28), one should be very careful about 
the f(f) given in (27), whose argument of each component 
function should be replaced by f1( f2» and ft. respectively. 
Moreover, the identities provided by Ting (1988) have been 
used, which are useful for the separation of a complex matrix 
into its real and imaginary parts. 

2f 

and 

- 2 I m ( k 7 A " r e i ] 

Imtk^BA- 'k) 
(25b) 

The expressions of the derivatives 0,,„ and <j>t„ are exactly the 
same as (34b). 
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5 Examples 

5.1 Point Force in the Matrix. Consider an infinite an­
isotropic medium containing an elastic inclusion, subjected to 
a concentrated force applied on (xu x2) located in the matrix. 
The elasticity solution of this problem can be used as a Green's 
function for boundary element methods. For the case that the 
inclusion is replaced by a hole, the complex function f(f) can 
be written explicitly by substituting (9) into (27) with the un­
derstanding that the subscript of f are dropped before the 
multiplication of matrices.and a replacement of fK should be 
made for each component function of f(f) after the multipli­
cation of matrices. The result is 

3 _ _ _ 

f(f)= 2 « l o g ( f « ' " ? * ) » B ^ ' B I , A r t / 2 ^ (36a) 
* = i 

where 

" 1 0 0 " 

0 0 0 

0 0 0 
, h= 

"o o o" 
0 1 0 

0 0 0 
, h= 

"o o o" 
0 0 0 

0 0 1 

This explicit expression is exactly the same as that shown in 
Hwu and Yen (1991). The derivative 4>,m shown in (28a) used 
to calculate the hoop stress can be reduced to 

*.» = — N 3 ( 0 ) L - 1 R e j B « / e ^ ( e ' ' * - f J - 1 » A r ) t . (37) 
irp 

Similar to (36), the explicit solution of f(f) given in (32) for 
the rigid inclusions subjected to a concentrated force applied 
on (x\, x2) is obtained as 

3 

f«") = E « l o g ( f « ' - ?^)»A-1AI,A7 t /27r/ 

+ ^ « f a " ' » A - ' k (38) 

where the relative rotation co can be evaluated by (33) with f0 

given in (9). With the aid of residue theorem, we obtain 

R e { k r A - r « L ' » A r ] t 

7rIm{k rBA-'kj 

If the. load is applied on the interface boundary, i.e., 
fa — e"1', we ha v e 

a) = T 1=^" (40) 
7rIm{krBA_1k) 

where (xit x2) = (acos$, ft sin \j/) is the location of the applied 
force t = (i\,i2,h)- This solution is equivalent to the one given 
by Ting and Yan (1991). 

For general elastic inclusion, no analytical solution has been 
presented in the literature. To verify the present results, one 
may consider (1) the simplest condition that the matrix and 
inclusion are composed of the same material; and (2) the cases 
that the inclusions are very soft or hard, which can be checked 
by the results of holes or rigid inclusions. By setting A! = A2 = A, 
Mi = M2 = M in Eq. (21), and evaluating e* from (9) and (12), 
one may obtain ck, fi(f) and f2(D by (21), (17), and (7), re­
spectively. The infinite series representations of f i and f2 can 
then be shown to be a Taylor's expansion of logarithmic func­
tion. Combining the results, one may prove that 
fo(f) + fi(f) = f2(f)= «log(za-za)»q which is the solution 
for a homogeneous medium under concentrated forces. 

In the case that the inclusion is elastic, numerical calculation 
has been performed (Yen, 1991) and the results show that the 
solutions for holes or rigid inclusions are really approximated 
by very soft or hard inclusions. To see the effect of elliptic 
shape and the singular behavior near the crack tips or the tips 

of rigid line inclusions, a series of numerical data for the hoop 
stress have been plotted (Yen, 1991) by using Eqs. (23), (28), 
and (34). A nearly constant value of the hoop stress for ft—0 
has been observed when the inclusion is not a hole or rigid 
medium, which means that no singular behavior occurs for 
the general elastic inclusions. For elliptic holes or rigid inclu­
sions, singular behavior occurs when ft —0 which is expected 
for the cracks and rigid line inclusions. 

5.2 Uniform Load at Infinity. In the case when the elastic 
inclusion in an infinite matrix is subjected to a uniform load 
at infinity, detail analysis has been given in Hwu and Ting 
(1989) by using the semi-inverse method, i.e., the function 
form of f(f) is chosen before calculation. In this paper without 
any prior choices, general solutions of f(f) are obtained for 
arbitrary loading conditions. In order to verify this solution, 
we reduce our results to uniform loading condition since it is 
the only analytical solution available for the general elastic 
inclusion problems. If the complex function f0(f) associated 
with the unperturbed elastic field is chosen as those shown in 
(10a), it belongs to the Case (ii). For hole problems, the func­
tion f(f) corresponding to the perturbative field of matrix is 
then obtained from (29) with 

e1=-«a-ibpa»q, e ^ O , k = 2, 3, • • -oo. (41) 

The final simplified result is 

f(f)= - | « f « ' »B- ' ( f l r t ? - i f t tD , (42) 

which can be proved to be identical to those given in Hwu and 
Ting (1989). 

As stated in Section 2.3, f0 can also be chosen as 

h(t)= « f a » q o , 1o = ^«a-ibpa»q. 

For this choice, function f(f) should be found by using (27) 
instead of (29) since f0(f) now belongs to Case (i). By careful 
derivation, one can prove that the final results of f0 + fi are 
the same for different choices of f0. A real form solution for 
the hoop stress along the hole boundary can be obtained by 
substituting (41) into (28ft). 

Similar to the hole problems, substitution of (41) into (35) 
provides the solutions for the rigid inclusions as 

f(D= - | « f J 1 » A - , ( a t r + »*2" + «k), 

^ _ a 2 ( H - ' e D 2 - ^ [ ( H - ' S tDi + ffl-'S e?)2] - f t 2 ( H - ' t f ) , 
a2(H-1)2 2 + 2aft(H"'S)21 + ft2(H-1),i 

(43) 

which can be proved to be equivalent to the one given in Hwu 
and Ting (1989). 

For the case of elastic inclusions, we first check the condition 
when the matrix and inclusion are composed of the same ma­
terial. If Ai = A2, B, = B2, Mi = M2, we have, by (21), (25), and 
(41), f!(f) = 0. The zero perturbed solution means that there is 
no inclusion effect for the homogeneous medium which is 
expected, since the f0 chosen represents the exact solution of 
homogeneous medium subjected to uniform loading at infinity. 

For general elastic inclusions, the functions fi and f2 cor­
responding to the perturbed fields of matrix and inclusion are 
obtained from (21), (25), and (7) as 

fi(f)= - « r« ' » B , - ' (B,e, +B,rie, -B 2 c , - B ^ c , ) , 

f 2 ( 0 = « - ^ » c i , (44a) 

where 

c 1 = - / ( G 0 - G i G 0 - 1 G 1 r 1 f A r 7 ' e 1 + G,G (r
1Ar7 'e1], (44ft) 
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and References 

e1=^«a-ibpa» (Aft? + Bfen. (44c) 

Note that f2 obtained in (44ff)2 represents a state of uniform 
stress which has been observed by Eshelby (1957). By numerical 
calculation (Yen, 1991), the solutions presented here have been 
proved to be identical to those given in the literature (Lekh-
nitskii, 1968; Hwu and Ting, 1989). 

5.3 Interactions Between Dislocations and Inclusions. In­
teractions between dislocations and inclusions have been a 
topic of considerable research. Greater understanding of ma­
terial defects can be gained through the solution of suitable 
elasticity problems. For the dislocation with Burgers vector 
b located on x, the total stress field can be obtained in a 
straightforward manner from the known solution for a point 
force by using a certain analogy between dislocations and point 
forces. The only difference is that q = A7t/2iri is now replaced 
by q = Brb/2ir/. 

The interactions are usually shown by the contour of the 
glide component of the image force (Hirth and Lothe, 1982). 
For the purpose of verification, comparison has been made 
for the case of isotropic materials. The results show that the 
analytical solutions presented in this paper are exactly the same 
as those given by Stagni and Lizzio (1983) for the holes in­
teracted with dislocations, and by Santare and Keer (1986) for 
the interactions between rigid inclusions and dislocations. For 
the general cases that both the inclusions and matrices are 
elastically anisotropic, the detailed calculation and physical 
explanation can be found in (Yen and Hwu, 1993). 

6 Conclusions 
A general analytical solution for the elliptical anisotropic 

elastic inclusions embedded in an infinite anisotropic matrix 
subjected to an arbitrary loading has been obtained in this 
paper by combining the Stroh's formalism with the method 
of analytical continuation. The special cases when the elastic 
inclusion is replaced by a hole or a rigid inclusion are also 
studied. Some interesting and important examples such as point 
forces or dislocations in the matrix, and uniform loadings at 
infinity are solved explicitly. 
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Frictionless Contact of Layered 
HaIf-PIanes3 Part I: Analysis 

A method is presented for the solution of frictionless contact problems on multi-
layered half-planes consisting of an arbitrary number of isotropic, orthotropic, or 
monoclinic layers arranged in any sequence. A displacement formulation is employed 
and the resulting Navier equations that govern the distribution of displacements in 
the individual layers are solved using Fourier transforms. A local stiffness matrix 
in the transform domain is formulated for each layer which is then assembled into 
a global stiffness matrix for the entire multilayered half-plane by enforcing continuity 
conditions along the interfaces. Application of the mixed boundary condition on 
the top surface of the medium subjected to the force of the indenter results in an 
integral equation for the unknown pressure in the contact region. The integral 
possesses a divergent kernel which is decomposed into Cauchy type and regular parts 
using the asymptotic properties of the local stiffness matrix and the ensuing relation 
between Fourier and finite Hilbert transform of the contact pressure. For homo­
geneous half-planes, the kernel consists only of the Cauchy-type singularity which 
results in a closed-form solution for the contact stress. For multilayered half-planes, 
the solution of the resulting singular integral equation is obtained using a collocation 
technique based on the properties of orthogonal polynomials. Part I of this paper 
outlines the analytical development of the technique. In Part II a number of numerical 
examples is presented addressing the effect of off-axis plies on contact stress dis­
tribution and load versus contact length in layered composite half-planes. 

Introduction 
The solution to the frictionless contact problem of a rigid 

punch indenting an isotropic half-plane has been long known 
(Gladwell, 1980). The problem is typically formulated as a 
singular integral equation for the unknown normal stress dis­
tribution in the contact area using the constraint on the surface 
displacement due to the punch's profile. For homogeneous 
half-planes the solution to the singular integral equation is 
obtained in closed form for a parabolic or flat punch. For a 
parabolic punch, the normal stress distribution in the contact 
region is elliptical and the applied load varies parabolically 
with the contact length in direct proportion to the Young's 
modulus of the material. For transversely isotropic or ortho-
tropic half-planes, the contact stress profile is also elliptical 
and the applied load is a quadratic function of the contact 
length (Conway, 1953; Chen, 1969). The dependence of the 
applied load on the elastic constants, however, is more com­
plicated than for isotropic case and involves all the in-plane 
moduli. Similar results have been obtained for monoclinic half-
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planes within the framework of plane stress or plane strain 
(Chen, 1969; Conway, 1967). Recently, a closed-form solution 
to the contact problem of monoclinic half-planes within the 
framework of generalized plane deformation has been pro­
vided by the second author (Lane, 1991). The generalized plane 
deformation formulation allows us to model the response of 
composite materials with off-axis laminae. 

Available solutions to layered media contact problems in­
clude Chen and Engel's (1972) solution for one and two layers 
bonded to a half-space based on an approximate treatment of 
the pressure distribution in the contact region, Ratwani and 
Erdogan's (1973) solution of an elastic strip supported by a 
half-plane indented by curved and flat rigid punches, Gupta 
and Walowit's (1974) Green's function solution for a layer 
bonded to a half-plane, and Shield and Bogy's (1988) solution 
to a flat punch contact problem of a layered half-plane using 
the transfer matrix approach. Only isotropic strips, layers, and 

' half-planes were considered by the cited authors. The authors 
are not aware of an analytical solution to the contact problem 
of a multilayered half-plane consisting of orthotropic and mon­
oclinic laminae. A summary of the different approaches for 
the contact problem of layered media has been given by Chen 
and Engel (1972) and most recently by Lane (1991). 

The solution to the frictionless contact problem of a layered 
half-plane requires separation of the integral equation for the 
unknown pressure distribution in the contact region into sin­
gular and regular parts. The regular contribution to the integral 
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equation results from the finite geometry effects (i.e., layer 
thickness) and typically requires numerical solution techniques. 
As discussed by Shield and Bogy (1988), this can be accom­
plished using the transfer matrix technique. 

In this paper, we present an alternative method for solving 
the frictionless contact problem of arbitrarily layered half-
planes that are indented by rigid punches with parabolic or 
flat profiles, and present results for half-planes laminated with 
differently oriented composite plies. The technique is based 
on the local/global flexibility matrix approach outlined by 
Bufler (1971) for isotropic layered media with constant elastic 
properties, that was later reformulated in terms of the local 
stiffness matrix by Rowe and Booker (1982) and applied to 
nonhomogeneous isotropic layered media. Chatterjee et al. 
(1982) and Chatterjee (1987) extended the method to aniso­
tropic layered media for the interlaminar crack problem, and 
most recently Pindera (1991) gave an outline of the applications 
of the method to plane and axisymmetric problems in com­
posite mechanics. The local/global stiffness matrix approach 
naturally facilitates decomposition of the integral equation for 
the contact stress distribution on the top surface of an arbi­
trarily laminated half-plane into singular and regular parts 
that, in turn, can be numerically solved using the collocation 
technique outlined by Erdogan (1969) and Erdogan and Gupta 
(1972). This decomposition uses the asymptotic properties of 
the local stiffness matrix and a relation between Fourier and 
finite Hilbert transforms of the contact pressure. Despite the 
fact that there is some similarity between the transfer matrix 
and the local/global stiffness matrix formulation of contact 
problems, the authors are of the opinion that the present ap­
proach offers a more natural way of separating the integral 
equation for the contact pressure into singular and regular 
parts. 

Problem Formulation 
We consider a laminated medium comprising a number of 

layers bonded to each other that, in turn, are bonded to a half-
plane, Fig. 1. The assemblage is indented by a rigid punch of 
a parabolic profile. The individual layers and the half-plane 
can be isotropic (or transversely isotropic), orthotropic, or 
monoclinic. A local x-y-z coordinate system is placed in the 
center of each layer such that the x and .y-axes lie in the plane 
of lamination and the z-axis is perpendicular to the lamination 
plane. The layered medium is infinite in the x-y plane and the 
loading is such that the problem is plane in the x-z coordinate 
system. For the bottom half-plane, the local coordinate system 
is placed at the bounding surface of the plane. 

The stress-strain equations for a given layer are, in con­
tracted notation, 

a^Qjej for i, j=l, . . . , 6. (1) 

Each type of layer, monoclinic, orthotropic, or isotropic, 
has a unique stiffness matrix C. Monoclinic materials have 
elastic symmetry about one plane. In this study, the plane of 
symmetry is orthogonal to the z-axis. The stiffness matrix for 
a monoclinic layer has 13 independent constants. Its structure 
for the specified plane of symmetry is 

cn 
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0 

c« 
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Orthotropic materials have elastic symmetry about three 
orthogonal axes. The stiffness matrix for an orthotropic layer 
has nine independent constants referred to the coordinate sys-
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Fig. 1 Geometry of the layered half-plane 

tern coincident with the three axes of material symmetry. In 
this coordinate system, the coupling stiffness elements C16, 
C26. C36. and C45 vanish in Eq. (2). 

Unidirectional fiber-reinforced composite laminae are typ­
ically transversely isotropic, with one of the planes of material 
symmetry being isotropic. For example, if the y-z plane is 
isotropic, then CB = C12, C33 = C22, C66 = C55, and C44 = 
1/2(C22 - C23) in Eq. (2). There are only five independent 
elastic constants for transversely isotropic materials. A trans­
versely isotropic material rotated through an angle about the 
z-axis behaves as a monoclinic material in the original coor­
dinate system. As is well known, the stiffness matrix for an 
isotropic layer has only two independent constants, Cu and 
C12, with C44 = C55 = C66 = 1/2(C„ - C12). 

In the present investigation, a displacement formulation will 
be employed. In this formulation, the equilibrium equations 

%> = 0 (3) 

are expressed in terms of displacements using the strain-dis­
placement relations, 

iij= j (UiJ+Ujj), (4) 

and trie stress-strain equations, Eq. (1), in conjunction with 
the appropriate form of Eq. (2), depending on the ply material 
type. Due to the presence of monoclinic plies, generalized plane 
deformation formulation is employed with the displacement 
components given by 

u = u(x, z), v=v(x, z), w= w(x, z). (5) 
Using the above assumption for the displacement field in 

each ply, the governing differential equations for a generic 
monoclinic ply become 

CnutXX + C55u,zz + Cl6v:XX + C45viZZ + (C13 + CS5) wiXZ = 0 

C\<M,xx+ C4iU:ZZ + C66v,xx+ C44u]K+ (C36 + C45) wiA.z = 0 
(Cl3 + C55)u,xz+(Ci6 + C45)v,xz + CS5w,xx+CxWtZZ = 0. 

(6) 
We note that coupling exists between all the displacement com­
ponents for a monoclinic layer. The above equations can be 
specialized for an orthotropic, transversely isotropic, or iso­
tropic layer by noting that for these layers the stiffness matrix 
elements C,6, C36, and C45 vanish. In this case, the out-of-
plane displacement component v (x, z) becomes uncoupled from 
the in-plane displacement components u(x, z) and w(x, z). 

The solution of the equilibrium equations for each layer 
must satisfy the external surface mixed boundary conditions 
as well as the interfacial traction and displacement continuity 
conditions. The external surface mixed boundary conditions 
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ensure that the normal traction component azz is zero outside 
the contact area \x\ > c, while inside the contact area the 
vertical displacement w(x, z) conforms to the profile of the 
punch. The condition on the vertical displacement is expressed 
in terms of the slope of the punch's profile to avoid logarithmic 
singularity at infinity. Thus the external surface mixed bound­
ary conditions are given in the form 

w, x(x, +h\/2)=f(x) for \x\ <c and azz = 0 for Ixl > c 
(7a) 

axz=ayz = 0 for - o o < x < +00. (lb) 

The continuity requirement for interfacial tractions and dis­
placements in generalized plane deformation imposes six ad­
ditional conditions at each interface. These conditions are 

uk{x, -h k /2 ) = uk+l(x, hk+[/2) 

vk(x, -hk/2) = vk+l(x, hk+l/2) 

wk(x, -hk/2) = wk+1(x, hk+1/2) (8a) 

4 ( x , -hk/2) = ak
zz

+,(x,hk+l/2) 

Orthotropic Layers: 

ak
xz(x, -hk/2) = ok

xz
+\x,hk+{/2) 

4 ( x , -hk/2) = ak
z
+\x,hk+l/2). (8b) 

Method of Solution 
The solution to Eqs. (6) subject to the boundary and con­

tinuity conditions specified by Eqs. (7) and (8) is facilitated 
through the use of Fourier transforms. Defining the displace­
ment vector for the kth ply as u* = (wk, uk, vk), its Fourier 
transform uk(s, z) along with the inverse transform is given by 

1 f + °° 
uk(s, z) =—— uk(x, z)e'sxdx, 

V27T J-oo 

»k(x, z)=-
•K J-

uk(s, z)e ,sxds. (9) 

Application of the Fourier transform reduces the system of 
partial differential equations, Eqs. (6), to a system of ordinary 
differential equations in z with the transform variable 5 ap­
pearing as a parameter. For a monoclinic layer the transformed 
equilibrium equations are 

Css",K - ?CX {u + CA5vtZZ - s2Cl6v - is(Cj3 + C55 )wiZ = 0 

C45",« - ^C16I7 + C44vtZZ - s2C(,6v - is(C36 + C45) wtZ = 0 

- is(C,3 + C55)uiZ - is(C36 + C45) vtZ + C33vvK -s2C5 5w = 0. 
(10) 

As indicated previously, the corresponding equations for or­
thotropic or transversely isotropic layers are obtained by setting 
Ci6, C36, and C45 to zero. 

The solutions to the preceding equations are sought in the 
form w(s,z) = w0e

f:Xz,Ti(sJ z) = u0e
s'Kz, and v(s, z) = v ^ . 

If the thicknesses of the layers comprising the half-plane are 
finite, the exponential terms in the transform domain solutions 
are expressed in terms of hyperbolic functions to facilitate 
construction of the local stiffness matrix for a given layer. The 
solutions of Navier's equations in the transform domain for 
monoclinic, orthotropic (or transversely isotropic), and iso­
tropic layers are presented as follows. 

Monoclinic Layers: 
3 

u(s, z) = 2 [Fj(s)cosh(s\jZ) +Gj(s)smh(s\jz)] 

3 

v(s, z) = 2 [Fj(s)cosh(s\jZ) + Gj(s)smh(sXjZ)]Lj(s) 

3 

w(s, * ) = / ] > ] [Gj(s)cosh(s\jZ)+Fj(s)smh(s\jZ)]Rj(s) 

(ID 

u(s, z) = 2 lFj(s)cosh(s\jz) + Gj(s)smh(s\jz)] 

2 

w(s, z) =i J ] [Gj(s)cosh(s\jz) + Fj(s)smh(s\jZ)]Rj(s) 

v(s, z) = Hl(s)cosh(s\iz) +/1(5)sinh(sX3z) (12) 

Isotropic Layers in the x-z Plane: 
17(5, z) = [Fi(s) + zF2(s)]cosh(sz) + [Gi(s) + zG2(s)]sinh(sz) 

w(s, z)=i G{(s)+ ^ ^ - F2(s)+zG2(s)\ cosh(sz) 

+ (F{(S) + ^ ^ - G2(s) + zF2(s))sinh(sz) 

v(s, z)=Hi(s)cosh(sz)+Ii(s)sinh(sz) (13) 

In the above, A/s are the eigenvalues of the characteristic 
equation that ensures that Eqs. (11)—(13) satisfy Navier's equa­
t i o n s ^ . Pagano, 1970, for explicit expressions), Fj(s), Gj(s), 
H{ (s),It (s), are the unknown Fourier coefficients, and Lj(s), 
Rj(s) are given in terms of the material properties of a given 
layer in the Appendix. 

For homogeneous monoclinic, orthotropic, or transversely 
isotropic half-planes, the corresponding solutions are as fol­
lows. 

Monoclinic Half-Plane: 
3 

u(s,z) = J]Fj(s)eisixJz 

j=i 

3 

v(s, z) = ^lLJ(5)Fj(s)e]'],>J' 

w(s, z) = sgn(s)i 2 Rj(s)Fj(s)el: 

Orthotropic Half-Plane: 
2 

u(s, z) = J]Fj(s)elsixJz 

2 

w(s, z) = sgn(s)i 2 Rj(s)Fj(s)eu 

j=i 

v(s,z)=Hl(s)e^^z 

Isotropic Half-Plane in the x-z Plane: 

u(s,z) = [Fl(s)+zF2(s)]e,sh 

Ri(s) 

(14) 

(15) 

w(s, z)=sgn(s)i Fds)+-
j \ 

F2(s)+zF2(s) Js\z 

v(s, z)=Hi(s)e \s\z (16) 

The displacements given by Eqs. (11)—(16) are substituted 
back into the constitutive equations in order to determine in­
terfacial tractions needed in applying the continuity conditions 
given by Eqs. (8) in the transform domain. For a monoclinic 
layer or half-plane, the continuous interfacial stresses given in 
terms of displacements in the transform domain are 

ozz(s, z) = - isC\{u + C33 wiZ - isCi6V 

Oxz(s, z) = C45v,z + C55(u tZ-isw) 

oyz(s, z) = CMviZ + C4S(uiZ- isw). (17) 

For an orthotropic layer or half-plane, these stresses are given 
as follows: 
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ozz(s, Z)=- isC13u + C}iwiZ 

axz(s, z)=Css(utZ-isw) 
ayz(s, z) = C44v:Z, (18) 

and for an isotropic layer or half-plane we have 
ozz(s, z)= -isC|j« + C||W!? 

0xz(s, z) = 1/2(CU - C13) («,z- ww) 

a^(j,z) = l /2(C,1-C,3)^. (19) 
To determine the unknown Fourier coefficients Fj(s), Gj(s), 

Hi(s), and I\(s) in the solutions for the displacements, in-
terfacial continuity conditions in the transform domain are 
imposed and the external traction in the contact area is an 
unknown. The resulting system of simultaneous equations 
yields solutions for the unknown coefficients in terms of the 
single unknown normal contact stress distribution. Application 
of the remaining surface mixed boundary condition on the 
slope of the vertical displacement in the contact area yields an 
integral equation for the determination of the contact stress 
distribution. 

Reduction of the Contact Problem to a Singular Integral 
Equation 

In this section, the multilayered half-plane contact problem 
is reformulated using the local/global stiffness matrix ap­
proach. The local/global stiffness matrix approach eliminates 
the necessity of explicitly finding the unknown Fourier coef­
ficients and directly leads to a singular integral equation for 
the unknown contact pressure which, as previously mentioned, 
is solvable by Erdogan's collocation technique. 

The problem is reformulated in terms of interfacial dis­
placements along the common interfaces separating the indi­
vidual layers in place of the unknown Fourier coefficients. 
This is accomplished by formulating a local stiffness matrix 
for the klh layer that relates the traction components on top 
and bottom surfaces of the layer, azz, dxZ, ~dyZ and azz, <Ĵ ., 
~5yZ obtained from Eqs. (17)—(19), to the corresponding dis­
placement components M+ , D+, w+ and W, V~, vP~ obtained 
from Eqs. (11)—(13). For monoclinic layers we have 

kn 

kn 

kn 

ku 

*1J 

k\(, 

kn 

k22 

kn 

- * 1 5 

kn 

kit 

kn 

kn 

k}3 

-ki6 

k26 

kx, 

ku 

-kl5 

-ki6 

kn 

-kn 

-kn 

k\s 

k2i 

k26 

-ki2 

k22 

k2i 

kie~ 

k26 

k3e 

-kn 

k2i 

kn. 

fw+/i\ 
u + 

I v+ 1 

J w'/i ( 
1 " 1 
V V J 

( ozz/is > 

i ff«/s 

at/s 

-ozz/is 

~ ~5xZ/s 

(20) 

. - OyZ/sJ 

The above equation is expressed symbolically in the form 

Kf, Kf 
K21 K. 

(21) 

In the case of orthotropic and transversely isotropic layers, 
the elements kn, k23, ki6, and k26 vanish since there is no 
coupling between the in-plane and out-of-plane displacements. 
The elements ky for monoclinic, orthotropic, and transversely 
isotropic layers in terms of the transform variable, material 
constants, and geometry of the layer are given in the Appendix. 

An important feature of the transformed local stiffness ma­

trix of a layer is its asymptotic behavior at large values of the 
transform variable. Examination of the local stiffness matrix 
reveals that as the transform variable S approaches positive or 
negative infinity, the coupling submatrices Kn and K2l in Eq. 
(21) vanish, yielding 

K, 0 

0 K 22 

(22) 

The elements kJ- of the asymptotic stiffness matrices Kn* and 
K22*, for monoclinic, orthotropic, and transversely isotropic 
layers are also given in the Appendix. They are functions of 
the material properties of the given layer but not functions of 
the transform variable s or geometry. 

If, instead of a finite height layer, a homogeneous half-plane 
is considered, it can be shown, using Eqs. (14)—(16) and Eqs. 
(17)-(19), that the relationship between the tractions and dis­
placements on the top surface of the half-plane is given by 

!T„+)=[K,V]|U„+). (23) 

We note that the elements of the local stiffness matrix for a 
homogeneous half-plane, K,", are precisely the same as the 
corresponding elements of the asymptotic stiffness matrix given 
for a finite height layer in Eq. (22). 

Imposition of continuity of displacements and tractions along 
the common interfaces together with the external boundary 
conditions (Eqs. (7)-(8)) gives rise to a system of equations in 
the unknown interfacial displacement components. The con­
tinuity of interfacial stresses is guaranteed by requiring that 
the resultant traction on the kth interface be zero, 

f*+Tif+1 = 0,A:=l, . . . , n - l , (24) 
whereas the continuity of interfacial displacements is directly 
enforced by requiring the common interfacial displacements 
XJk in the expressions for the tractions given by Eq. (21) to be 

U t + 1 = U* =U*+
+1, * = 1 , . . . , « - 1 . (25) 

The system of equations is constructed by applying Eq. (24) 
to each interface, starting with the top surface where the 
boundary conditions are prescribed in terms of the unknown 
contact pressure, and using the common interfacial displace­
ments defined by Eq. (25). In the case of layered medium of 
finite height, this process yields 

T,+ KhU,+K!2U2 

K5,U* + (KL + Kf,+ 1)U*+1+K' 

K?,U„ 

for the top layer 
U*+2 = 0 

for the kth interface 
for the bottom layer (26) _. .i + K22U„+i — T„ 

where n is the number of layers. The above system of equations 
can be represented in the matrix form shown in (27). It is 
observed that the assembly of the global stiffness matrix for 
the entire layered medium is carried out by superposing local 
stiffness matrices of the individual layers along the main di­
agonal of the global matrix in an overlapping fashion. 

Ki, 
K2i 

0 

0 

0 

K12 

K22 + K11 

K21 

0 

0 

0 

K12 

K22 + K11 

K21 

0 K? 

U2 

<u„+1 

0 

0 

.T,7 

(27) 

If the bottom layer is a half-plane, T„" in Eq. (27) is zero, the 
last submatrix in the global stiffness matrix of Eq. (27) is 
replaced by K^-1 + Kf", and the jast subvector of the global 
interfacial displacement vector is U„. 

By inverting the global stiffness matrix given in Eq. (27), 
the top surface displacements may be related to the top surface 
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tractions alone when the multilayered medium is a half-plane, 
i.e., when TJ vanishes 

!U,) = [H!1]jT1
+i (28) 

where Hi, is the first 3 x 3 submatrix of the inverse of the 
global stiffness matrix. Defining the first element of the matrix 
Hu by Hn(s), the transform of the normal displacement on 
the surface of the layered half-plane can be expressed in terms 
of the normal contact stress al

zz in the absence of friction (i.e., 
oL = o\z = 0), 

wl=Hn(s)a'zz(s)/s 

with azz(s)=p(s)-
1 

p(x)eisxdx. 

Imposing the top surface mixed boundary condition on the 
slope of the normal displacement, wliX = f(x) in the interval 
— c < x < c, an integral equation for the unknown contact 
stress distribution p(x) is obtained in the form 

; 
2T 

sw,e 
xds = -

2TT J_ 
Hn(s)p(s)e~'sxds. 

(29) 

The above is a singular integral equation because as s ap­
proaches ±oo, the kernelHu{s) does not vanish, making the 
integral unbounded. The limiting value of Hn (s) for large .? 
is readily identified by observing that the asymptotic behavior 
of the local stiffness matrix given by Eq. (22) ensures that in 
the limit as s approaches ±oo, the resulting global stiffness 
matrix has only diagonal elements, so that there is no coupling 
between top and bottom surfaces of each lamina of the layered 
half-plane for this limiting case. Consequently, for .? ap­
proaching ±00 

( U , ) = lim [H!1]fT1
+} = [K„1]-1fTr; (30) 

and so limi_±00H11(.5') = sgn{s)H*n, where s g n ^ ) ^ ] is the 
first element of the inverse of the asymptotic stiffness matrix 
of the top layer. Thus, the first element of the inverse of the 
global stiffness matrix as.? goes to ± oo is just the first element 
of the asymptotic stiffness matrix of the top layer (or the 
corresponding half-plane). This result is used to separate the 
divergent integral in Eq. (29) into singular and regular parts 
by first rewriting it as 

wx •* 2TT J_ 
sgn(s)Hnp(s)e lsxds 

i 

~2* 
(Hu(s) -sgn(s)Hn)p(s)e-'sxds. (31) 

In view of Eq. (30), a relation between the Fourier and finite 
Hilbert transforms of the contact pressure can be derived in 
the following form by considering limz^.0w:X(x, z) of the ho­
mogeneous half-plane problem (cf., Gladwell, 1980, p. 210), 

~ \ -isgn(s)p(s)e~isxds = -[ ^ - ^ dx' (32) 
V27T J-oo V J -c X -X 

reducing the dominant part of the singular integral to an in­
tegral containing a Cauchy kernel 

Hu rc
P(x') ., 

wix = — 1 — dx 
ir J_r x -x 

i 

" l - K 
- \ \ H°u(s)p(x')eHx'-x)sdx'ds, (33) 
7T J_„, J_, . 

where//?i (•?) = Hn (5) - sgn(s)Hu is the regular kernel. Using 
the odd-even properties of the integrand, limits may be changed 
and the following form obtained: 

Wl,.v = 
Hn [ + cp(x') , 

x = — — dx 
IT J_r X —X 

1 
+ - H\\(s)p(x')sm(x' -x)sdx'ds. (34) 

A singular integral equation of the same form is given by Shield 
and Bogy (1988) for a layered isotropic half-plane indented by 
a flat punch using the transfer matrix approach and arguments 
based on the short wavelength limit of the Fourier transform 
of the Green's function for the considered problem. The pres­
ent approach clearly reveals that the asymptotic relation be­
tween the transformed displacements and tractions on the 
surface of the layered half-plane is the same as that obtained 
for a homogeneous half-plane having the properties of the 
surface layer, naturally facilitating separation of the integral 
equation into singular and regular parts. 

Solution of the Singular Integral Equation 

Erdogan and Gupta (1969,1972) have developed a numerical 
solution technique for singular integral equations such as Eq. 
(34) using orthogonal properties of Chebyshev polynomials in 
a Gaussian integration approach. To apply Erdogan and Gup­
ta's solution technique, the interval [ — c, +c] is transformed 
to [ - 1, +1] using x = ct. For the case where the unknown 
function is bounded on the interval [ - 1 , + 1], as is the case 
for the rigid punch of a parabolic profile, the solution for the 
contact stress p{t) is given by the product 

I p 

p(t)=F{t) yjl+t2 v/ithF(t) = J]AiUi(t) (35) 

o 

where (7,(0 is the Chebyshev polynomial of the second kind 
and V l-t2 is the weight function associated with the Che­
byshev polynomial of the second kind. 

Erdogan and Gupta's method results in a linear system of 
collocation equations where the function F(tk) is found at 
discrete points by matching discrete values of the integral equa­
tion's nonhomogeneous term. The system of collocation equa­
tions is given by 

for A: 
by 

= 1, 

\-tk' 
fl+1 

F(tk) 
1 

tk-t, 
+ icK0(t„ tk) =fUr) (36) 

n and r = ! , . . . , « + 1, with t[ and tr given 

2/- -1 
tk = COS IT 

n+l 2n + 2) 

where, for a rounded indenter of radius R, the inhomogeneous 
term is 

AO 
Hn 

1 ct_ 

~~HTIR 

while the regular kernel is given by 

H°n(.s) 
KQ ( tn tk ) : 

•K J 0 Hu 
sm[c(tk -tr)s]ds. 

There are n + 1 possible points to determine F(tk). Only n 
collocation points are required. For n even, the point r = 1 
+ n/2 is ignored. The function F(tk) obtained from the system 
of collocation equations is multiplied by the weight function 
to give the contact stress profile. In establishing the system of 
collocation equations, the regular kernel K0 must be found by 
numerical integration for each combination of t'k and tr in the 
linear system. 

Discussion and Closing Comments 
The outlined method of solution for the contact problem of 
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an arbitrarily laminated half-plane is the first step in investi­
gating the response of advanced composite materials under 
concentrated loading. The layered half-plane solution can be 
employed to study local distribution of stresses as a function 
of layer thickness, off-axis layer orientation, and degree of 
composite material's orthotropy for laminates for which global 
bending effects can be neglected. 

It is possible to use this method to analyse a finite thickness, 
multilayered laminate of infinite extent in the longitudinal 
direction by modifying the formulation. Consider the possi­
bility of support by resultant 'reactions P distributed over the 
distance e centered at points + XQ and -x0 along the bottom 
surface of the terminal layer. In this case, the bottom traction 
T~ of Eq. (27) assumes the value of the Fourier transform of 
the expression for the concentrated reactions and U„ + i is re­
tained. Consideration of support tractions results in an ad­
ditional term in the singular integral equation that has the form 

P [" Hin^{s) sin{es/2) . 
— \ * cos(Ar0s')sm(xs)<zs. 
7r J0 Hu es/2 

An iterative procedure may be applied to solve the modified 
singular integral equation. For a prescribed contact length, a 
value of P can be assumed and the singular integral equation 
solved. The resulting integrated contact traction is compared 
to the assumed reactions. This is repeated until 2P is found 
to equal \tc

c p(x)dx. 
In Part II of this paper, we present numerical results for 

layered half-spaces that address the effect of ply orientation, 
surface layer thickness, and the properties of supporting half-
planes on the applied load versus contact length response and 
the resulting contact stress distribution. The contact problem 
of composite laminates of finite thickness using the outlined 
local/global stiffness matrix approach will be addressed in, 
future investigations. 
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A P P E N D I X 
Elements of Local Stiffness Matrix 

The elements of local stiffness matrices for monoclinic, or­
thotropic, and transversely isotropic layers in the Fourier trans­
form domain for generalized plane deformation are given below 
as 

Monoclinic Layers. 

kn(kl,)^At[Pl(L^L2)+P2(Ll-L3)+P3(L2-Ll)} 

kn(k{5) =H+. (P1L2-P2Li)R, + E+. (P3L^PXL3)R2 

+ Ft(P2L3-P3L2)Ri 

kl3(kl6)=Ht(P2-Pl)R3+E+_(Pl-P3)R2 + F+.(P3-P2)Rl 

k22(k25)=B+(T2Rx-TlR2)L3 + C+(TxR3-T3Rx)L2 

+ JD^(r3^2-r27?3) JL1 

k23{k26) =B- (TiR2- T2RX) + Cl(TiRl - TXR3) 

+ Dt(T2R3-T3R2) 

k33(kK)=Bt(R2Qx-RlQ2)+Ct(RlQl-R3Ql) 

+ Dt(R3Q2-R2Q3) 

where the minus sign in the notation At, etc., refers to the 
elements ky in the parentheses, and 

, (Cii - C55X/) (C36 + C45) - (C16 - C4SX/) (C l3 + C55) 
(C45X/ - C[6) (C36+ C45) — (C44A; — C66) (C13 + C55) 

Ri = 

(C45X; - Cl6) (C45X; — Cl6) — (C44X; — C66) (C55X/ - L?n) J_ 

(C45X; — Cl6) (C36+ C45) — (C44X/ — C66) (C13 + C55) X; 

Pi= - Cl3 <+• C3i\jRi - C36Lh Qj=C44kjLj+Ctf(\j + Ri), 

7-,= C45\Z.,+ C55(X1- + /?,) 

1 / CXC2C3 | SXS2S3\ 1 (c3SxS2 , CXC2S3\ 

c + = i /£2£l£3±£lC3S2\ + 1 ZciSjSj C2C3Si\ 

- 2 \ A, A2 / " 2 V A, A2 / ' 

+ 1 (cxC3S2 C W J A 1 /c2C3Sx CXS2S3\ 
h ~ - 2 \ A, ± A2 ) ' * — 2 \ A, ± A2) 

ZJ+ l / C 1 C 2 S 3 , C 3 S i S 2 \ 
H-=2[-A7±^2-) 
C/ = cosh(s\jh/2), s, = s'mh(s\jh/2), h = ply thickness 

&i=CiC1s-i(L2-Li)Ri + clc3!51(Ll-Li)R1 + c2c$i{Ll-L1)Rx 

A2 = c3sxs2(L2- Li)R3 + c2SiS3(Li- L3)R2 + CiS2s3(L3- L2)Ri. 

Orthotropic Layers. 

ku(ku)=A+AP2-Px) 

kl2(kl5)=DtPlR2-ElLP2R1 

k22(k25)=BHTiR2-T2Rl) 

k33(k36) = CtQ3 
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where 

(C55X/ -Cu) 

(c,3 + c5S)V 
Q3 = C44X3, Ti=Cs5(\j + Rj) 

Cu + C33XiRh 

1 
2 \ A, A2 2 \ A , A2 

2 \c3 53 

D + = I /£i£2±£i£2 
" 2 V A, A2 2 4 , ' A , 

A, = c,52^2 - <W?i. A2 = c2SiR2 - CiS2Ri 

Isotropic Layers. 

kn(klA)=AtP2 

kn(kxi)=D+.Px~EtP2 

k22(k25)=Bt(TlRl~T2) 

k33(k36) = CtQ3 

where 

R,= 
(3C3 3-C1 2) 

(C„ + C,2) 

A = C „ - C 1 2 ; P2 = C 1 1 ( l+i? 1 ) , Tl = 2C55, 

T2=C55{l+Ri), Qi = Cu 

. 1 (c\S\ C\s\ 1 A , , , R, 

2 yA| A2y s 2 s 

A2 = - (s f -c?)+—c,5 , . 
2 5 

The elements of asymptotic local stiffness matrices as s — 
±00 for monoclinic, ortho tropic, and transversely isotropic 
layers and the corresponding half-planes are given as follows. 

Monoclinic Layers and Half-Planes. 

±k*u=±-{Pi(L3-L2)+P2(Ll~-L3)+P3(.L2-Lt)] 

ku = -[Pi(L2Ri-LiR2)-P2(LlR3-L3Rl) 

+ P3(LiR2-L2Rl)] 

kn = -[Pi(R2~R3)+P2{R3-Ri)+P3{Ri-R2)] 

±k22= ± - [Tl(L2Ri-L3R2)-T2(L1R3-LiRi) 

+ T3(LlR2-L2R1)] 

±k*23=±^[T1(R2-R3) + T2(R3-Rl) + T3(Rl-R2)] 

±k3
,3=±-lQi(R2-R3) + Qi(Ri-Ri) + Q3(Ri-R2)] 

where 

A = (L2R3-L3R2) - (Lfo-LiRrf + (LlR2-L2Rl) 

and the notation ±k*j denotes limiting behavior of ky as s goes 
to ±00. 

Orthotropic Layers and Half-Planes. 

* P2 ~ P\ 

Isotropic 

=t/t 

kn •• 

±k*22-

R2-Rt 

R2PX-RXP2 

R2-R1 

R2T}-RiT2 

R2-R{ 

±k33=±Q3 

Layers and Half-Planes. 

, * 
£12 

±ku = 

= (C'„-

±£22 = 

±fc33 = 

0+* , ) 
-±Cu *, 

„ , „ (1+R\) 
- C - 1 2 ) _ ( - l l „ 

" 1 

(l+Ri) 

= ± c " R/ 

•±l-{Cu-Cn) 
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Frictionless Contact of Layered 
Half-Planes, Part II: Numerical 
Results 
In Part I of this paper, analytical development of a method was presented for the 
solution of frictionless contact problems of multilayered half-planes consisting of 
an arbitrary number of isotropic, orthotropic, or monoclinic layers arranged in any 
sequence. The local/global stiffness matrix approach similar to the one proposed 
by Bufler (1971) was employed in formulating the surface mixed boundary condition 
for the unknown stress in the contact region. This approach naturally facilitates 
decomposition of the integral equation for the contact stress distribution on the top 
surface of an arbitrarily laminated half-plane into singular and regular parts that, 
in turn, can be solved using a numerical collocation technique. In Part II of this 
paper, a number of numerical examples is presented addressing the effect of off-
axis plies on contact stress distribution and load versus contact length in layered 
half-planes laminated with unidirectionally reinforced composite plies. The results 
indicate that for the considered unidirectional composite, the load versus contact 
length response is significantly influenced by the orientation of the surface layer 
and the underlying half-plane, while the corresponding contact stress profiles are 
considerably less affected. 

Introduction 
Part I of this paper outlines the analytical development of 

a method for the solution of frictionless contact problems of 
multilayered half-planes consisting of an arbitrary number of 
isotropic, orthotropic, or monoclinic layers arranged in any 
sequence, indented by a rigid punch of parabolic profile. The 
problem is formulated in terms of displacements and the re­
sulting Navier equations that govern the distribution of dis­
placements in the individual layers are solved using Fourier 
transforms. A local stiffness matrix in the transform domain 
is formulated for each layer which is then assembled into a 
global stiffness matrix for the entire multilayered half-plane 
by enforcing continuity conditions along the interfaces. Ap­
plication of the mixed boundary condition on the top surface 
of the medium subjected to the force of the indenter results 
in an integral equation for the unknown pressure in the contact 
region. The integral possesses a divergent kernel which is de­
composed into Cauchy-type and regular parts using asymptotic 
properties of the local stiffness matrix and a relation between 
Fourier and finite Hilbert transform of the contact pressure. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
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This results in the following singular integral equation for the 
unknown pressure distribution in the contact region (Eq. (34) 
of Part I), 

H*n [+cp(x') , 
wi,x = — - 7 dx 

•K J ^ c X -X 

1 n oo /. +C 

+ - \ H°ll(s)p(x')sin(x'-x)sdx'ds. (1) 
7T JQ J _ C 

In the above equation, H*u is the first element of the inverse 
of the Fourier transformed global stiffness matrix for the lay­
ered half-plane when the transform variable s approaches in­
finity (see Eq. (30) in Part 1), H°n(s) = Hu(s) -
sgn(s)H*n is the regular kernel (where Hn(s) is the first ele­
ment of the inverse of the Fourier transformed global stiffness 
matrix), andp(x) is the unknown pressure. For homogeneous 
half-planes, the kernel consists only of the Cauchy-type sin­
gularity (H°w {s) vanishes), which results in a closed-form so­
lution for the contact stress. For multilayered half-planes, the 
solution of the resulting singular integral equation is obtained 
using a collocation technique developed by Erdogan (1969) 
and Erdogan and Gupta (1972) which employs orthogonality 
properties of Chebyshev polynomials. 

In Part II of the paper, we present numerical results for the 
contact problem of homogeneous and multilayered composite 
half-planes with different fiber orientations. The quantities of 
interest are the contact force and contact stress profile as a 
function of the contact length. Specifically, the effects of ply 
orientation, thickness, and stacking sequence on the afore­
mentioned quantities are investigated. 
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Numerical Solut ion Technique 
The collocation technique outlined by Erdogan and Gupta 

reduces Eq. (1) to a system of algebraic equations for the 
unknown coefficients in the Chebyshev polynomial expansion 
of the unknown contact pressure (Eq. (36) in Part I of the 
paper). In the course of generating. the algebraic system of 
equations, it is necessary to numerically evaluate the regular 
kernel K0(tr, t'k) 

KoU , c r 
; tk)=~ 

•W J 0 
Hv 

sin[c(/^ -~tr)s]ds (2) 

for each combination of the collocation points tr and t'k. This 
is accomplished by first investigating the behavior of H°n (s)/ 
H*n in order to determine the value of s = smax at which the 
kernel becomes negligibly small. This depends on the geometry 
of the layered half-plane and, in particular, the thickness of 
the surface layer. The rate of decay of the function H°n(s)/ 
H*u decreases with decreasing surface layer thickness and can 
be quite slow for very thin layers. The numerical integration 
effort can thus be quite time consuming due to the periodic 
nature of the sinusoidal term appearing in the regular kernel. 

The behavior of H°n (s)/H*n was investigated for each lay­
ered half-plane configuration and the value of s = i-max de­
termined at which this function became very small. For instance, 
in the case of the [90 d e g / ± 4 5 deg] layer sequence with 1.27 
mm thick layers bonded to a 0 deg half-plane, the value of the 
function H°]i (s)/H*u decayed monotonically from - 0.389 for 
very small s to - 0 . 1 4 2 x 10~6 at smax = 200. The regular 
integral was subsequently evaluated by dividing the interval 
[0, Smax] into 16 subintervals that were mapped onto [ - 1 , + 1 ] 
using appropriate transformation. The individual contribu­
tions were then evaluated using Gaussian quadrature with 64 
integration stations in each subinterval and summed up . For 
the considered range of contact half lengths c, the outlined 
numerical integration scheme of Eq. (2) was found sufficiently 
accurate. Little difference was found between the results gen­
erated with 24 and 48 collocation points at which the pressure 
distribution was evaluated. As a final check of the accuracy 
of the integration scheme, the results presented by Gupta and 
Walowit (1974) for a thin isotropic layer bonded to an isotropic 
half-plane indented by a rigid punch were reproduced by the 
present technique with very good accuracy for the surface layer 
thickness of 1.27 mm and a range of different contact lengths 
(Pindera and Lane, 1991). 

Numerical Results for the Compos i te Hal f -Planes 
The investigated composite half-planes consist of unidirec­

tionaliy reinforced plies with different fiber orientations bonded 
to a half-plane of the same material. The different fiber ori­
entations are obtained by rotating each ply by an angle 6 about 
the z-axis (see Fig. 1, Par t I). The properties of the considered 
composite plies are given in Table 1. This composite is trans­
versely isotropic when referred to its material principal co­
ordinate system 1-2-3, with the 1-axis oriented along the fibers 
and coincident with the x-axis, the 2-axis coincident with the 
.y-axis, and the 3-axis coincident with the z-axis. It is charac­
terized by five independent stiffness elements and its stiffness 
matrix is given by 

C\ I Ci; C 12 0 0 0 

Cn C22 C23 0 0 0 
Ci2 C23 C22 0 0 0 
0 0 0 C44 0 0 
0 0 0 0 C66 0 
0 0 0 0 0 C66. 

(3) 

CK (GPa) 

Elastic coefficients C, 

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvyvuvvv 

I 1 1 1 I 
0.0 15.0 30.0 45.0 60.0 75.0 90.0 

off-axis angle 

Fig. 1 Stiffness elements CVl of unidirectionaliy reinforced plies and 
half-planes as a function of the rotation angle 6 

Table 1 Material properties of unidirectionaliy reinforced plies and half-
planes 

Material property 

En (GPa) 
E22 (GPa) 
E33 (GPa) 

V12 

V13 
v23 

G12 (GPa) 
G13 (GPa) 
G23 (GPa) 

42.74 
11.72 
11.72 

0.27 
0.27 
0.55 

8.238 
8.238 
3.778 

When a given ply is rotated by an angle 0 about the z-axis, 
the material principal coordinate system no longer coincides 
with the x-y-z coordinate system and the ply appears mono-
clinic when referred to the fixed coordinate system. The struc­
ture of its stiffness matrix in the x-y-z coordinate system is 
how 

(4) 

where C44 = 1/2(C22 - C23). 

c„ 
Cn 

Cn 

0 

0 

C)6 

Cl2 

c22 
c23 
0 

0 

C26 

Cn 

c2i 
C33 

0 

0 

C36 

0 

0 

0 

C44 

C45 

0 

0 

0 

0 

C45 

c55 
0 

C16 

C2e 

C36 

0 

0 

Cfa_ 
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Fig. 2 Contact load as a function of half contact length for homoge­
neous half-planes with different fiber orientations 

The barred stiffness elements C,y are related to the unbarred 
stiffness elements Q,- by the familiar transformation equations. 
In the case of generalized plane deformation formulation, which 
must be used if off-axis plies are part of the layered half-plane, 
only nine of the stiffness elements Cy appear in the governing 
Navier equations (Eq. (6) in Part I of this paper). For com­
pleteness, these are given below as follows: 

C,, = C„cos40 + 2 (C12 + 2C66) cos20sin20 + C22sin
40 

C13 = C12cos20 + C23sin
20 

C16=[(C„-C,2-2C66)cos20 

+ (C12 - C22 + 2C66)sin
20]cos0sin0 

C33 = C33 

C36=(C13-C23)cos0sin0 
C44 = C44cos20 + C44sin

20 
C45 = (C66 - C44) cos0sin0 
C55 = C44sin

20 + C44cos20 
C66 = (C„ - 2C12 + C22)cos20sin20 + C66(cos20 - sin20)2 

where 0 is the rotation angle about the z-axis measured from 
the x-axis in the x-y plane. 

Figure 1 presents the nine stiffness elements C„ as a function 
of the rotation angle. These stiffness elements can be related 
to the more commonly employed engineering constants. It is 
observed that the stiffness element C33, and thus the modulus 
Ezz in the direction of the applied force does not change with 
the off-axis angle. Further, even though the stiffness element 
C66 does change with the off-axis orientation, it can be shown 
that for this particular material the shear modulus Gxy remains 
practically constant. Any variation in the contact force and 
stress profile at a given contact length for differently oriented 
surface plies must therefore be attributable to variations in the 
inplane engineering moduli E^, Gxz, vxz, and the out-of-plane 
moduli Gyz, t)xytX, Tjxy,z and nyZiXZ that couple the in-plane dis­
placements u (x, z), w(x, z) with the out-of-plane displacement 
v(x, z). 

The results for homogeneous composite half-planes with 
different fiber orientations are presented first, followed by the 
results for multilayered half-planes. Cases considered include 
layered half-planes with surface laminae of different orien­
tations bonded to a half-plane with fiber direction coincident 

with the x-axis or a half-plane with fiber direction coincident 
with the .y-axis, here called 0 deg and 90 deg half-planes, re­
spectively. Also considered are the layer combinations [90 deg/ 
± 45 deg] and [0 deg/±45 deg] bonded to 0 deg and 90 deg 
half-planes, respectively. 

In generating the numerical results, the radius of the punch 
was fixed at 25.4 mm. For all the cases investigated, the layered 
half-plane consisted of three layers bonded to a homogeneous 
half-plane. Homogeneous half-plane cases were obtained by 
setting the properties of each layer equal to the properties of 
the supporting half-plane. 

Homogeneous Half-Planes. In the case of homogeneous 
monoclinic (off-axis), orthotropic, transversely isotropic, or 
isotropic half-planes, the integral equation for the normal stress 
distribution in the contact area, Eq. (1) reduces to 

H*u [+cp{x') ,, , 
vfi,x = — dx . (5) 

•K J _ c X —X 

As is well known, the solution of Eq. (5) is obtained in closed 
form for isotropic and orthotropic half-planes, yielding an 
elliptical contact pressure profile and a parabolic load versus 
contact length response. By extension, the solution to the con­
tact problem of a monoclinic half-plane for generalized plane 
deformation is also readily obtained in closed form. 

Contact loads as a function of half contact length for ho­
mogeneous half-planes of different fiber orientations are shown 
in Fig. 2. The curves have been generated for half-planes with 
fiber orientations of 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 
and 90 deg. The results indicate that for a given contact length, 
the contact force is largest for the 0 deg half-plane and smallest 
for the 90 deg half-plane. The contact load response curves 
for the 0 deg and 90 deg half-planes form an envelope bounding 
the contact load versus contact length curves of the considered 
monoclinic half-planes (i.e., those with fiber direction at an 
angle 0 from the x-axis in the x-y plane). For monoclinic half-
planes, the contact force as a function of contact length di­
minishes in a monotonic fashion as fiber orientation increases 
from 15 deg to 60 deg. For small off-axis angles, the contact 
forces approach those of the 0 deg half-plane. For large off-
axis angles, the contact forces approach those of the 90 deg 
half-plane. 

Figure 3 shows the normalized contact stress azz distribution 
for the considered half-planes when the half contact length is 
2.54 mm. The same normalized profiles have been obtained 
for the entire range of contact lengths examined (see Fig. 2). 
As expected from the solution of Eq. (5), the curves are ellipses 
superposed on each other regardless of the off-axis orientation 
of the fibers and the contact length. Since the normalized 
pressure profiles shown in Fig. 3 have been generated using 
the aforementioned layered half-plane cross-section (consisting 
of three layers bonded to a homogeneous half-plane), the re­
sults presented in Fig. 3 provide an additional check on the 
solution technique. In fact, examination of the numerical val­
ues of the term H°n(s)/H*n in the regular kernel in Eq. (2) 
indicates that they are practically zero when all the layers have 
the same properties as the supporting half-plane. 

Monoclinic (Off-Axis) Lamina Supported by 90 Deg Half-
Plane. Figure 4 shows contact force as a function of half 
contact length for laminae of different fiber orientations 
bonded to a 90 deg half-plane. The surface laminae have ori­
entations of 0 deg, 30 deg, 45 deg, and 60 deg. The laminar 
thickness is 2.54 mm. The contact load curves for homogeneous 
0 deg and 90 deg half-planes are included for comparison. It 
is observed that these curves form an envelope containing the 
curves for the half-planes having surface layer orientations of 
0 deg, 30 deg, 45 deg, and 60 deg. For the half-plane with the 
0 deg surface layer, the contact load versus contact length curve 
coincides with the homogeneous 0 deg half-plane curve for 
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Fig. 3 Contact stress profiles for homogeneous half-planes with dif­
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Fig. 4 Contact load as a function of half contact length for differently 
oriented laminae bonded to 90 deg half-plane 

small contact lengths. As the contact length increases, the two 
curves deviate from each other, pointing to the influence of 
the underlying 90 deg half-plane. The response curves for the 
surface layers with off-axis orientations are bounded by the 
response curves of the half-plane with the 0 deg surface layer 
and the homogeneous 90 deg half-plane. These curves decrease 
monotonically with increasing off-axis orientations. 

Figure 5 shows normalized contact stress profiles for each 
of the cases presented above when the half contact length is 
3.81 mm. At this contact length, the parameter a = c/h is 1.5 
when the surface layer is 2.54 mm thick, Fig. 5(a), and 3 when 
the surface layer is 1.27 mm thick, Fig. 5(b). In both cases, 
increasing the off-axis angle produces a stress profile which is 
closer to elliptical (i.e., homogeneous 90 half-plane profile). 
As expected, the half-plane with the thinner surface layer ex­
hibits greater departures from elliptical stress profile for a given 
orientation at the considered contact length. 

The effect of changing the thickness of the 0 deg surface 
layer also has been examined. Figure 6 shows the contact load 
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Fig. 5 Contact stress profiles for monoclinic laminae bonded to 90 deg 
half-plane for (a) a = 1.5, and (b) a = 3.0 
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Fig. 6 The effect of surface layer thickness on contact load for 0 deg 
lamina bonded to 90 deg half-plane 
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Fig. 7 Contact load as a function of half contact length for differently 
oriented laminae bonded to 0 deg half-plane 

versus half contact length response curves for half-planes with 
0 deg surface layers 1.27, 2.54, 5.08, and 10.16 mm thick. 
These thicknesses are 1/2, 1, 2, and 4 times greater than the 
standard thickness of 2.54 mm employed in generating the 
response curves shown in Fig. 4. The contact load curves for 
homogeneous 0 deg and 90 deg half-planes are included for 
reference. The results presented in Fig. 6 indicate that the initial 
response of the half-plane is dominated by the surface layer. 
As the contact length increases, the response depends on the 
thickness of the surface layer and the contact length. As the 
surface layer thickness increases, the response of the layered 
half-plane tends to the response of the homogeneous 0 deg 
half-plane. For the half-plane with the surface layer of 1.27 
mm, the response is dominated by the properties of the un­
derlying 90 deg half-plane at larger contact lengths. Decreasing 
the thickness of the surface layer to 0.635 mm (not shown) 
brings the response curve still closer to that of the homogeneous 
90 deg half-plane at longer contact lengths. The above results 
are commensurate with corresponding results obtained for iso­
tropic surface layers bonded to isotropic half-planes. 

Monoclinic (Off-Axis) Lamina Supported by 0 Deg Half-
Plane. Contact loads and normalized contact stress profiles 
for layers of different fiber orientations bonded to a 0 deg 
half-plane also have been generated. Figure 7 shows the contact 
load as a function of half contact length for half-planes with 
surface layers having orientations of 30 deg, 45 deg, 60 deg, 
and 90 deg. The layer thickness is 2.54 mm. The contact load 
curves for homogeneous 0 deg and 90 deg half-planes are 
included as in the previous example. The results presented in 
Fig. 7 can be compared and contrasted with those of Fig. 4. 
In this case, the response of the investigated half-planes is also 
bounded by the response of the homogeneous 0 deg and 90 
deg half-planes. Further, the response curves for the surface 
layers with off-axis orientations are bounded by the response 
curves of the half-plane with the 90 deg surface layer and the 
homogeneous 0 deg half-plane. These curves increase mono-
tonically with decreasing off-axis orientations, producing re­
sponses that tend to approach the response of the homogeneous 
0 deg half-plane. This is the reverse of the behavior shown in 
Fig. 4. 

The normalized contact stress profiles (not shown) for the 
contact half length of 3.81 mm indicate that,the half-plane 
with the 90 deg surface layer exhibits greatest departure from 
elliptical profile. In this case, the maximum value of the nor­
malized profile in the center of the contact region is greater 

200 
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Fig. 8 Contact load as a function of half contact length for "quasi-
isotropic" layered half-planes 

than the corresponding value for the elliptical profile, in con­
trast with the results shown in Fig. 5(a). Decreasing the thick­
ness of the surface layer by half increases the departure from 
elliptical profile as in the preceding case illustrated in Fig. 5(b). 

The effect of layer thickness on contact force for the case 
of a 90 deg layer bonded to a 0 deg half-plane was also in­
vestigated. The layer thicknesses were the same as in the pre­
viously discussed example. The results indicate behavior 
opposite to that shown in Fig. 6 and thus will not be discussed 
in more detail here. 

Quasi-Isotropic Half-Planes. As the final example, contact 
load response curves and normalized contact stress profiles 
have been generated for the following configurations: [0 deg/ 
± 45 deg] layer sequence bonded to a 90 deg half-plane, and 
[90 deg/ ±45 deg] layer sequence bonded to a 0 deg half-plane. 
Symmetric laminates with these orientations are typically called 
"quasi-isotropic" in the composites literature. The thickness 
of the individual layers in these half-planes was 1.27 mm. 

Figure 8 shows the contact load as a function of half contact 
length while the normalized contact stress profiles are shown 
in Fig. 9 for the contact length of 3.81 mm. Included in the 
figures are the results for homogeneous 0 deg and 90 deg half-
planes. The results in Fig. 8 indicate that the initial contact 
load response of the two configurations is dominated by the 
surface layer. As the contact length increases, the response 
tends to be influenced by the properties of the underlying layers 
and the homogeneous half-planes. In fact, at a certain contact 
length, the response of the half-plane with the 90 deg surface 
layer becomes stiffer than that with the 0 deg surface layer. 
Similar trends are observed in Figs. 4 and 7. Interestingly, the 
response of the configuration with the 0 deg surface layer is 
very close to the response of the 90 deg half-plane with 0 deg 
surface layer shown in Fig. 4. The same applies to the con­
figuration with the 90 deg surface layer and the corresponding 
0 deg half-plane with the 90 deg surface layer shown in Fig. 
7. Apparently, decreasing the thickness of the surface layer by 
half is offset by the inclusion of the two ±45 deg angle-ply 
layers. The results in Fig. 9 indicate that the configuration 
with the 0 deg surface layer produces lower contact stress 
profiles in the inner region and higher in the outer region than 
the elliptical profile of a homogeneous 0 deg or 90 deg half-
plane. The contact stress profile of the configuration with the 
90 deg surface layer exhibits opposite behavior. These trends 
are commensurate with the previously discussed response of 0 
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Fig. 9 Contact stress profiles for "quasi-isotropic" layered half-planes 
when a = 3.0 

deg and 90 deg half-planes with 90 deg and 0 deg surface layers, 
respectively. 

Discussion 
The contact problem of layered half-planes with off-axis 

(monoclinic) plies introduces a number of additional param­
eters into the analysis in comparison with contact problems 
involving isotropic or even orthotropic layers. First of all, the 
presence of rotated plies introduces coupling between in-plane 
and out-of-plane displacement components which requires the 
use of generalized plane deformation analysis. This increases 
the number of elastic parameters (i.e., "constants") in the 
governing differential equations which influence the contact 
stress profile and the contact load as a function of the contact 
length. Equally important is the variation of the elastic pa­
rameters of a given ply with the off-axis or rotation angle. 
Finally, the geometry and configuration (stacking sequence) 
of the layered half-plane may be varied, producing a formi­
dable analytical test matrix. 

For this reason, the objective of Part II of the paper was 
to illustrate the applicability of the developed methodology 
outlined in Part I for a specific material system and what the 
authors believe to be fundamental half-plane configurations 
which illustrate the influence of the off-axis ply orientation 
on the quantities of interest. The authors are not aware of any 
investigations in which these effects have been addressed. Fu­
ture investigations will be aimed at identifying the important 
parameters that govern the response of arbitrarily layered half-
planes with isotropic, orthotropic, or monoclinic plies. The 
results presented in Parts I and II of the paper indicate that 
the developed technique can readily be employed to investigate 
the contact problem of such layered half-planes in an efficient 
manner. 

Summary 
The results presented in Part II of this paper indicate that 

the load versus contact length response curves are parabolic 
and the contact stress profiles elliptical for homogeneous com­

posite half-planes regardless of off-axis orientation. For the 
composite material used in this study, homogeneous 0 deg half-
planes generate the highest contact loads .for a given contact 
length while 90 deg half-planes generate the lowest. Homo­
geneous monoclinic half-planes with small off-axis angles have 
contact loads approaching those of the 0 deg half-plane. As 
the off-axis angle increases, the contact loads diminish in a 
monotonic fashion, approaching the contact loads of the 90 
deg half-plane. The monotonic decrease of the contact load 
at a given contact length with increasing off-axis orientation 
is accompanied by the decrease in the inplane moduli Exx and 
Gxz and increase in the inplane Poisson's ratio vxz. 

The contact load versus contact length response curves for 
the investigated layered half-planes are bounded by the re­
sponse curves of homogeneous 0 deg and 90 deg half-planes. 
In the case of layered half-planes, the contact load depends 
on the orientation of the surface layer, relative size of the 
contact zone and the surface layer thickness, and the properties 
of the underlying half-plane. Monoclinic layers bonded to 90 
deg half-plane generate loads tending to approach those of the 
90 deg half-plane with increasing off-axis orientation. The 
reverse is true for monoclinic layers bonded to 0 deg half-plane. 
For contact lengths that are small relative to layer thickness, 
the contact force depends largely on the surface layer prop­
erties. For contact lengths that are large relative to layer thick­
ness, the contact load is significantly influenced by the 
properties of the underlying half-plane. 

The contact stress profiles for the layered half-planes ex­
hibited departures from elliptical that depended on the off-
axis orientation and the relative size of the contact zone and 
thickness of the surface layer. For the investigated cases, de­
partures from elliptical profile were not dramatic. In general, 
90 deg half-planes with 0 deg surface layers produced lower 
values of contact stress in the central region and higher in the 
outer region of the contact zone in comparison to the elliptical 
profile. Increasing the off-axis angle of the surface layer bonded 
to the 90 deg half-plane produced more elliptical profiles. The 
investigated half-planes with 90 deg surface layer bonded to 
the 0 deg half-plane produced stress profiles that were higher 
in the inner region of the contact zone and lower in the outer 
region in comparison to the elliptical profile. Decreasing the 
off-axis angle of the surface layer produced the same result as 
in the preceding case. The departure of the contact stress profile 
from elliptical increased with the relative size of the contact 
length to the surface layer thickness. 

In summary, the results presented in this chapter indicate 
that while the load versus contact length response curves are 
considerably influenced by the surface layer orientation and 
the underlying half-plane, the corresponding contact stress 
profiles are not influenced as much for the considered uni­
directional composite. 
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The Effects of a Space-Fixed 
Friction Force on the In-Plane 
Stress and Stability of Transverse 
Vibrations of a Spinning Disk 
The membrane stress field in a spinning disk induced by a stationary circumferential 
friction force is first derived in the form of an infinite series. It is then shown, both 
by analysis and numerical computation, that this membrane stress field has no effect 
on the stability of transverse vibration of the spinning disk. 

Introduction 
The effects of various load parameters in the stationary point 

load system, such as friction force, transverse mass, damper, 
spring and their pitching counterparts, on the natural fre­
quency and stability of a spinning disk are important to the 
design of high-density floppy disk drives. Ono et al. (1991) 
calculated the eigenvalues of the coupled system by the finite 
element method. Chen and Bogy (1992) derived the first-order 
derivatives of the eigenvalues with respect to various load pa­
rameters in the load system to obtain analytically a better 
understanding of the calculated results. In all these calculations 
and analytical derivations, however, the asymmetric membrane 
stress field induced by the friction force was neglected. It is 
known that the natural frequency and the stability of the system 
can be modified by changing the in-plane stresses (Mote, 1965), 
therefore, as suggested by a reviewer of Chen and Bogy (1992), 
the friction force of the load system may be important in this 
regard. Here we first derive the solution of the friction force-
induced membrane stress field in the form of an infinite series, 
and then we obtain the derivative of the eigenvalues with re­
spect to the friction force to determine its effect on the stability 
of transverse vibration. It is found that this derivative turns 
out to be zero and so the asymmetric membrane stress field 
has no effect on the eigenvalues of the system, at least to the 
first order. Furthermore, we incorporate this membrane stress 
field in the finite element program and confirm that its effect 
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Fig. 1 Concentrated friction force in a disk 

is negligible compared to the contribution from the transverse 
component of the same friction force associated with the slope 
change of the disk when it deflects. The results presented herein 
complement the previous two papers. 

The Asymmetric Membrane Stress Field 
Figure 1 shows a circular disk, which is clamped on the inner 

radius r=a and free on the outer radius r = b, subjected to 
a concentrated force F0 at point (£, 0) in the negative ̂ -direc­
tion, where a < £, < b. To calculate the stress field in the disk 
due to Fe we consider first the displacement and stress fields 
in an infinite domain due to the same force (Love, 1927), they 
are 

, ,< ' )_ Fed + v) 
%-KhEG 

[(3 - j>)GlogGsin0 + 2£(1 + c)sin0(£ - rcosfl)] 

u^ = Fe{)+^ [(3-!>)GlogGcos0 

FB 

+ (1 + v)[Hcos6 + /-sin20(rcos0 - £) J 

7(D £1 
" ~4irhG2 

lrsinid[(3 + p)G-2(l + p)H] 

-rcos2dsine[(l-v)G-2(l + v)H] 

+ sin20(rcos6> - £)[(! -v)G + 2{\+ v)rhm26]} (1) 
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• < ! > -<W ~2 I (rcosd - £)(cos20 - sin2i 
A-whG' 

x [(1 - v)G + 2(1 + v)r2s\n2e} + 4rsin20cos0[G - (1 + v)H] ] (2) 

{/-cos20sin0[(3 + v)G - 2(1 + v)H\ 
AirhG2 

-rsmi6[(l-v)G-2(l + v)H] 
53 

o 
2„;„2fl - sin20(/-cos0 - £) [(1 - v)G + 2( 1 + v)r'smz9] ] (3) 

where 

G = r2 + r - 2r£cos0, / / = rcos'ty + r - 2r£cos0. 

E, v, and ft are the Young's modulus, Poisson's ratio, and the 
thickness of the plate, respectively. It is noted that o-$ and 
lift' are even functions of 8, while ffr'1 and ur

l) are odd functions, 
and that these quantities are obtained from the two-dimen­
sional generalized stress solution divided by thickness h to 
result in functions with units of displacement and stress. With 
use of these equations we can find the displacement distri­
butions on r = a and stress distributions on r = b and expand 
them in Fourier series as follows: 
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Fig. 2 Stress distributions on the inner radius for a conventional 3.5-
in. floppy disk 
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2BX (1 - v)C{ 

2r 
cos0 

The coefficients in these expansions can be obtained easily by 
numerical integration. In general, these series converge very 
fast as long as £ is not very close to a or b, and 20 terms are 
usually enough to obtain a satisfactory result. We now solve 
an auxiliary problem: Find the stress fields oj2.', o$, and afg

] in 
the annular disk with displacements on r = a described by 
Eqs. (4) and (5), and tractions on r = b described by Eqs. (6) 
and (7). Following a procedure similar to that described in 
Coker and Filon (1957), with some obvious modifications, the 
general expressions of the displacement and stress fields of this 
auxiliary problem can be obtained as 

F„ ' 

2 [n(n+l)Anr"-n(n+l)B„r-n-2 

n = 2 

+ n(n-l)Cnr
J,~2-n(n-l)Dnr"]cosnd (11) 

sin# 
,2fli , ( l - y ) C , 

6A{r-^—r + —Z 
r 2r 

+ 2 [(n+l)(n + 2)A„r" + n(n + l)Bnr-"~ 

hEu™ f , i ^ , , 2 , ( 1 + ^ . „ = \(\-lv)Axr + - J — 

1 
+ -z[v - 1 +{v+Y)(v -3)logr]C, + A | sinf? 

hEue
2) 

2 ) 

+ S ( [4 - (1 + v)(2 + n)]A„r»+l+(l + v)nBnr
n-1 

n = 2 

- ( l + ^)«C„r"-1 + [ 4 - ( l + y)(2-n)] JD„r^+ 1}sin«e (8) 

-D0r~ (5 + i>)r Ax+ j 

Ci+DAcosd l + v + - (1 + v)(3 - v)logr 

J] I[4 + (1 + v)n\A^ + (1 + v)nB„r~"~l + (1 + v)«C„/'~' 

- [ 4 - ( l + y)rt]Zy~"+ ')cos«0 (9) 

+ «(n - l)C„rJ'~2+ (n - 1)(« - 2)Dnr"}smne. (12) 

By comparing the coefficients of cos«0 and sin«0 between Eqs. 
(4)-(7) and (8)-(ll), we can determine A„, B„, C„, and D„ in 
terms of a„, bn, c„, and d„ uniquely. The subtraction of the 
stress fields in Eqs. (10)-(12) from the stress fields in Eqs. (1)-
(3) yields the desired solution for the membrane stresses in the 
clamped-free annular disk due to a circumferential load. Figure 
2 shows the stress distributions on the inner radius when a = 
16.5 mm, £ = 48.75 mm, b = 65 mm, h = 0.078 mm, Fe = 
0.32 N, and v = 0.3. These are typical parameters for a con­
ventional 3.5-in. floppy disk. It is emphasized here that the 
resulting orr and oM are odd functions of 6, while a^ is an even 
function. 

Effect of Friction Force on the Eigenvalues of the Spin­
ning Disk 

The equation of motion of a spinning disk subjected to a 
concentrated friction force in the circumferential direction, in 
terms of transverse displacement w and with respect to the 
stationary coordinate system (/•, 0), is 

(w „ + 2Qw ,e + Q2wm) +—- V*w + Llw + FeL2w 
ph 

= - - p M ( ' - I W ) (13) 

where fi, h, and D are the rotational speed, thickness, and 
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Fig. 3 Convergence of the natural frequency and the real part of an 
eigenvalue 

flexural rigidity, respectively, of the disk. <5(:) is the Dirac delta 
function. Lx is the membrane operator associated with the 
axisymmetrical stress due to centrifugal force, whose effect 
has been discussed in Chen and Bogy (1992). L2 is the mem­
brane operator associated with the asymmetrical stress due to 
the friction force, 

L2 = 
1 

' prFe 

d_ 

dr 
3 d\ d 

ra"Jr
+a<6Ye +Te 

d I 
a«br+V dd 

where arr, arS, and aee have been calculated in the preceding 
section. Since the membrane stress field is proportional to F8, 
the operator L2 is independent of Fe. To evaluate the effect 
of the friction force associated with the asymmetric stress on 
the eigenvalues \°m„ = iu>mn of the freely spinning disk, we 
calculate the first-order derivative (see Chen and Bogy, 1992, 
for details of the method) 

3\\ mn _ 
dF„~' 

47T(o„ -.nQ) [ R (r)rdr 

where w°mn = Rmn(r)e±'"e is the eigenfunction, with m nodal 
circles and n nodal diameters, of the freely spinning disk. The 
inner product in the numerator can be expressed as 

<w%n, L2w„„ > = 
1 

pFg 
ra„ 

dw° dwi, 
dr dr r dd dd 

c, 

+ <r„ 
Svt, 

dr 36 36 dr 
drd6 

where the overbar represents complex conjugate. It is noted 
that the integration associated with are always vanishes because 
the two terms in the parenthesis cancel, while the contributions 
from arr and aw also vanish since they are odd functions of 6. 
So we can conclude that the membrane stress field induced by 
the friction force has no effect on the eigenvalues of the spin­
ning disk, at least to the first order in the sense of a Taylor 
series expansion. 

We next incorporate the asymmetric membrane stress field 
due to the friction force into the finite element program de­
veloped in Ono et al. (1991). In order to study the effect of 
this membrane stress field on the eigenvalues, we first consider 
the case when the right-hand side of Eq. (13) vanishes. Since 
there exists a singularity of order r~' in the membrane stress 
field at point (£, 0), it is expected to cause some problems in 
the convergence of the eigenvalue calculations. Figure 3 shows 
the relations between the element size in the radial direction 
and the imaginary (natural frequency u>) and real (stability 
parameter a) parts of the eigenvalue of the mode with one 
nodal diameter and zero nodal circle. The parameters used in 
the calculation are the same as those in Ono et al. (1991) and 
Q, — 100 rpm. It is observed that as the element size approaches 
zero, the natural frequency converges to its correct value while 
the real part of the eigenvalue approaches zero almost linearly. 

Additional eigenvalue calculations using Eq. (13) show that 
including or excluding the membrane effect L2 alters the results 
by less than one percent. So, the significance of Fg on the 
stability of the spinning disk-stationary load system is solely 
through the right-hand side of Eq. (13), and not through L2 
on the left-hand side. 

Conclusions 
We have shown both by analysis and numerical computation 

that the in-plane membrane stress field induced in a spinning 
disk by a stationary circumferential friction force has no effect, 
at least to the first order, on the stability of transverse vibration 
of the disk. 
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Response of Annular Plates to 
Circumferentially and Radially 
Moving Loads 
The forced dynamic response of annular plates to circumferentially and radially 
moving concentrated transverse loads is investigated utilizing classical plate theory, 
with damping included, and solved in integral form. The boundary conditions are 
that the inner boundary of the plate is clamped and the outer boundary is free. An 
analytical expression in Fourier-Bessel series form is obtained for the forced de­
flection response to an arbitrarily moving concentrated load. This study includes 
radially moving loads and is a significant extension of the understanding of circular 
and annular plate dynamics. This understanding of radially moving loads is used 
to examine the nature of resonance conditions and corresponding critical values of 
the load parameters. The shapes of deflection modes of plate vibration are also 
presented. Damping and loading parameter sensitivities are studied in detail. 

Introduction 
The use of circular and annular plates in design and engi­

neering of mechanical systems is very widespread and quite 
pervasive in certain industries. Particular applications of this 
type of mechanical component include turbines, saw blades, 
computer magnetic recording disks, grinding wheels, gears, 
phonograph records, and percussion musical instruments. The 
relative importance of these components in engineering ne­
cessitates a comprehensive understanding of their mechanical 
behavior. One critical facet of this behavior is the vibration 
response of circular and annular plates when used in mechan­
ical system operation, particularly rotational operation. 

This study examines the vibration response of an annular 
plate. A review of the literature briefly cites the history of the 
study of vibrations of circular and annular plates and a few 
of the primary studies of the free and forced vibrations of 
circular and annular plates. This foundation is heavily utilized 
in the analysis. The literature review focuses, however, on the 
vibrations of rotating circular and annular plates and on the 
response of plates to moving loads. 

It must be noted that a difference exists between the problem 
of a rotating plate with a stationary or radially moving load 
and the problem of a stationary plate with a circumferentially 
moving load (Iwan and Stahl, 1973; Huang and Soedel, 1987). 
In the latter case, the complicating centrifugal effects of plate 
rotation are not encountered. Within certain ranges of rota-
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tional speed and excitation frequency, the differences between 
these two problems are not appreciable. 

The general analysis and solution of this problem are de­
veloped utilizing classical plate theory. Therefore, it must also 
be recognized that for the response of rotating plates, both 
centrifugal and flexural effects are operative (Lamb and South­
well, 1921; Southwell, 1922) and the frequencies and modes 
of vibration will depend on the relative importance of these 
effects. Previous studies (Eversman and Dodson, 1969; Bar-
asch and Chen, 1972) indicate, however, that the centrifugal 
membrane effects will be of the order of the bending effects 
only at very large rotational speeds for thin plates. It is common 
practice in both industry and the literature to neglect, when 
appropriate, the centrifugal effects due to rotation in analysis 
and design for many practical problems of interest. Further 
analytical research on the influence of centrifugal stiffening 
should be carried out. 

Starting from the previous work cited in the literature review, 
the general analysis and solution of the problem of annular 
plates subject to arbitrary moving transverse loads is developed 
utilizing classical plate theory with damping included. Damp­
ing is included as a parameter, in the form of linear viscous 
damping, to provide further understanding of the nature of 
the solution. 

The response of a plate to a general load p(r, d, t) is first 
derived as an integral solution. Then any special case of surface 
loading can be studied as a special case of this general solution 
in Fourier-Bessel series form. As stated above, this problem 
has utility for studying the inverse problem of a rotating plate 
with an arbitrary moving load. 

Specifically, the general analysis is applied to obtain an 
analytical solution for the case of an arbitrary circumferentially 
and radially moving load. This type of loading occurs in many 
of the applications mentioned above. Previous literature on 
circular and annular plate response to moving loads has dealt 
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only with circularly orbiting loads, i.e., loads at constant radial 
position. The general solution for the response of annular 
plates to arbitrary radially moving loads is then applied to the 
special case of a load with circumferential and harmonic radial 
motion. In addition to this detailed special case, the methods 
of analysis to obtain solutions for the more general cases of 
a concentrated load with arbitrary periodic radial motion and 
of an arbitrary periodically varying amplitude load are given. 

The analytical expressions and resulting understanding of 
radially moving loads are used to examine the nature of res­
onance conditions and corresponding critical values of the load 
parameters. The shapes of deflection modes of plate vibration 
are also presented for several sets of input system parameters. 
These sets of parameters are used to determine damping and 
loading parameter sensitivities, which are studied in detail. 

The study of circular and annular plate vibrations has a long 
history. Beginning with the first mathematical approach to the 
membrane theory of plates (Euler, 1766) and the observation 
of sand patterns on copper plates excited by a violin bow 
(Chladni, 1787, 1802; Waller, 1938, 1961), later work includes 
the classical thin plate formulation (Kirchhoff, 1850). 

Vogel and Skinner (1965) derived the characteristic equation 
for all nine combinations of the classical boundary conditions 
associated with the transverse vibrations of uniform annular 
plates. A very thorough general analysis considering many 
different types of boundary conditions has been presented by 
McLeod and Bishop (1965). 

Many more works on the free vibrations of plates are cited 
in the literature survey papers by Leissa (1977, 1978, 1981, 
1987), Mote et al. (1978, 1982), D'Angelo et al. (1985), and 
Weisensel (1989). 

Nomenclature 

Am„(t), Bmn(t) = coefficient functions in varia­
tion of parameters method 

flo,m«. bo:/m = coefficient constants 
« m , bm„, cmn, dmn = coefficient constants 

a = outer radius of annular plate 
_ b = inner radius of annular plate 
b = b/a = ratio of inner radius to outer 

radius of annular plate 
c„, d„ = coefficient constants 

D = Ehi/[12(l-v2)] = flexural modulus of rigidity 
E = modulus of elasticity 

/,„„ = undamped natural cyclic fre­
quencies of plate 

h = thickness of plate 
/„ (•) = modified Bessel function of the 

first kind of integral order n 
Jn (•) = Bessel function of the first kind 

of integral order n 
K„(-) = modified Bessel function of the 

second kind of integral order n 
k = integer index 
m = integer index, number of nodal 

circles 
n = integer index, number of nodal 

diameters, integral order of 
Bessel function 

N = sample size for arithmetic mean 
P([) = amplitude of concentrated load 
P(t) = dimensionless amplitude of 

concentrated load 
P0 = maximum amplitude of concen-
_ trated load 
Po = dimensionless maximum ampli­

tude of concentrated load 

The earliest study of a vibrating, rotating elastic plate ap­
pears to be by Lamb and Southwell (1921) who derived the 
linearized equations of transverse deflection and identified the 
respective contributions to the equations from bending stress 
and in-plane stress due to rotation. In that paper, and a sub­
sequent one by Southwell (1922), they examined the frequencies 
and modes of free vibration for complete circular plates which 
were either very flexible or very stiff. 

Mote (1970, 1977) investigated the stability of annular plates 
and plate/collar'systems subjected to moving loads with har­
monically varying amplitude. Benson and Bogy (1978) studied 
the deflection of a very flexible rotating annular plate due to 
a concentrated transverse load that is fixed in space. 

Honda et al. (1985) have analyzed the steady-state response 
of stationary annular plates to concentrated harmonic forces 
moving in concentric circular paths at constant speed. The 
modal response is discussed in detail, with emphasis on the 
vibratory modes. The theoretical analysis described in that 
paper is useful for plates rotating at slow constant speeds. 
Weisensel and Schlack (1988, 1989, 1990) have very recently 
studied the natural frequencies and deflection profiles of ro­
tating thin annular plates due to concentrated transverse loads 
of harmonically varying amplitude moving at constant angular 
speed relative to the plate surface. Their works treat both the 
case of constant radial position and the case of sudden changes 
in radial position. This work is similar in analysis to that cited 
above by Honda et al., but the conclusions derived are quite 
different. 

The only text devoted entirely to the study of the vibration 
of elastic bodies due to moving loads is by Fryba (1972). This 
work definitely provides the most comprehensive treatment 

Pkc, Pks = coefficients of Fourier series 
representation of general peri­
odic amplitude variation 

p(r, 9, t) = transverse load distribution 
(force per unit area) 

p(r, 6, t) = dimensionless transverse load 
distribution 

Po(r, 6, t) = component of Fourier series 
representation of load with 
general periodic amplitude vari­
ation 

PkC(r, 6, 1), pks(r, 6, 1) = components of Fourier series 
representation of load with 
general periodic amplitude vari­
ation 

q = integer index 
<2„,„ = radial characteristic function 

normalization constant 
r = radial coordinate variable 

r0 = radial position constant 
n = radial motion amplitude 

r = r/a — dimensionless radial coordinate 
variable 

?o = r0/a = dimensionless radial position 
constant 

r1 = r1/a = dimensionless radial motion 
amplitude 

r(t) = dimensionless radial motion 
function 

T~kc, ^ks — coefficients of Fourier series 
representation of general peri­
odic radial motion function 

R»m(r) - characteristic function in radial 
coordinate 
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available on this subject. An extensive bibliography is also 
included. 

Significant background directly related to this problem is 
contained in the works by McLeod and Bishop (1965), Raske 
(1966), Raske and Schlack (1967), Mote (1970), and Fryba 
(1972). The current state of the art for this problem is rep­
resented in the works by Honda et al. and Weisensel and 
Schlack. These latter studies give a complete treatment of the 
response of circular and annular plates to circularly orbiting 
concentrated transverse loads. 

Much of the work in the literature deals with natural and 
resonant frequencies of circular and annular plates with mov­
ing loads. Only a small portion further reports the influence 
of moving loads on mode shapes or studies system parameter 
sensitivities in detail. Benson and Bogy (1978) studied the de­
flection of very flexible rotating annular plates due to con­
centrated transverse loads that are fixed in space; first within 
the context of membrane theory, and then with bending stiff­
ness included. Very nice graphical results are presented for 
various values of the stiffness parameter and load position. 

Starting from this previous work the present study develops 
the general analysis and solution of the problem of annular 
plates subject to arbitrary moving transverse loads using clas­
sical plate theory. The current understanding of plate response 
to moving transverse loads is extended to include a component 
of motion in the radial direction in addition to a component 
of motion in the tangential direction. This achievement pro­
vides an understanding for cases of an arbitrary moving trans­
verse load and can be used in any of the areas of practical 
application noted above. 

ffTT^ 
/><', 0,1) 

\ \ '1 \\ 

I 
Fig. 1 Rotating thin annular plate with clamped inner boundary and 
free outer boundary subjected to arbitrary transverse load 

Analysis 
A homogeneous, isotropic, thin annular plate of uniform 

thickness is shown in Fig. 1. The plate is rigidly clamped at 
its inner boundary and free of support at its outer boundary. 

Nomenclature (cont.) 

l = t/-Jpha"/D 
w{r, 6, t) 

w(r, 6, 1) = w/a 

w0(f, 6,1) 

wkc(f,e, 1), wks(r, 6, ~t) 

w„(T, 6, 1) 

wm„(r, 6, ~t) 

time variable 
dimensionless time variable 
transverse deflection of plate 
middle surface 
dimensionless transverse deflec­
tion of plate middle surface 
component of Fourier series 
representation of deflection re­
sponse 
components of Fourier series 
representation of deflection re­
sponse 
fundamental solution of homo­
geneous equation of motion 
characteristic function 

Y„ (•) = Bessel function of the second 
kind of integral order n 

Greek 

a 
CLmn 

arbitrary separation constant 
dimensionless frequency param­
eter (characteristic value) 

/3 = oscillation frequency of radial 
_ motion of load 
/3 = dimensionless oscillation fre­

quency of radial motion of 
load 
dimensionless critical oscillation 
frequency of radial motion of 
load 

7 = equivalent viscous damping 
density of plate (damping con­
stant per unit volume) 

8 {•) = Dirac delta generalized function 

Jk,mng 

V2,mtjy V3,mny V4,mn 

f = dimensionless damping ratio 
coefficient constants 
tangential coordinate variable 

d = d/2ir = dimensionless tangential coordi­
nate variable 

0(0 = dimensionless tangential motion 
function 

_v = Poisson's ratio 
II(?, 6) = spatial distribution of loading 

function 
p = mass density of plate (mass per 

unit volume) 
T = dimensionless time integration 

variable 
<t> = angular speed of plate rotation 

<f> = dimensionless angular speed of 
plate rotation 

h,m,» 4>k,mnq = critical rotational speed of plate 

9k,mn> tPkinmq ~~ 

Q = 

Q = 

*"mn ~ 

*"mn — 

dimensionless critical rotational 
speed of plate 
undamped vibration circular 
frequency of plate 
dimensionless undamped vibra­
tion circular frequency of plate 
undamped natural circular fre­
quencies of plate 
dimensionless undamped natu­
ral circular frequencies of plate 
oscillation frequency of ampli­
tude of concentrated transverse 
load 
dimensionless oscillation fre­
quency of amplitude of concen­
trated transverse load 
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The transverse surface load acting on the plate is taken in the 
general form p(r, 6, t), which can be used to represent all 
possible surface loadings that can be described as functions of 
position and time. According to classical plate theory, the 
governing partial differential equation of transverse motion 
for a damped plate subjected to a general transverse surface 
load is given by 

Dv4w(r,d,t)+ph 
d2w(r,6,t) 

+ yh 
dw(r,6,t) 

••P(r,0,t) (1) 
dt2 ' '" 3t 

where V 4 = V 2 V 2 is the biharmonic operator. 
It is convenient for later analysis to render this governing 

equation dimensionless. For this purpose, introduce the fol­
lowing dimensionless quantities: 

r = r/a, d = e/{2r), w = w/a, b = b/a, f=y/(2pQ), 

!=t/-\Jpha" 
n 1 ri 

/D, p=p/(D/di), "v2 = - g + r - + 
1 

br ? 3f' 4A-2 de2' 

(2) 

Equation (1) can now be written in dimensionless form as 

7^,^-5-^ ,dw(r,6,t) , 
V4Tv(7,0,O+-

dt2 - + ya 
h Sw(r,6,t) 

d~t =P(r,e,o 

_ (3) 
where V 4 = V 2 V 2 is a dimensionless biharmonic operator. 
A fundamental set of solutions of the homogeneous governing 
partial differential equation of motion can be determined (by 
the method of separation of variables using Fourier-Bessel 
series techniques) as 

w„(r,6~t) = [J„(ar)+ r/2,„Y„(ur)+ ij3,„/„(a? ) 

+ V4,nK„(oir)]{c„ cos 2irnd + d„ sin 2-wnd 

xe 
-tat 

a0e ^'•v/i-f O' + b0e - ' V ' - f a* (4) 

where « = 0,1,2,.... 
The boundary conditions for this problem are functions of 

the spatial variables only, thus they are time-independent 
boundary conditions. The classical boundary conditions at 
f=b, describing the fact that the deflection and slope are zero 
at the clamped inner boundary of the annular plate, are given 
in dimensionless form by 

ve = 0, — = 0. 
dr 

(5) 

The boundary conditions at r = 1, describing the fact that 
the moment and resultant transverse shear are zero at the free 
outer boundary, are given by the so-called Kirchhoff boundary 
conditions 

dr 
w 1 dw 1 diw 

?~ffr: + 4ir2?2~dlP 
= 0, 

d (d2w 13w 1 d2w\ l-v d2 /dw_w\ 

3?\dr2 + r df + 47T2?2 dd2) + 4x¥ dP\dr~T)~°- ( 6 ) 

The allowable values of the parameter a can be determined 
by satisfying the boundary conditions in (5)-(6) for the fun­
damental solution given in (4). This results in a family of 
characteristic equations, a different equation for each value 
of n. Thus, for each value of n, this equation will be satisfied 
only for certain values of the parameter a. These characteristic 
values, or eigenvalues, will be denoted umn. 

Utilizing these eigenvalues, the dimensionless undamped 
natural frequencies of vibration of the plate are Qm„ = a2„„ 
where the undamped natural frequencies of vibration Qm„ are 

related to Q,„„ by flm„ = flm„/VD/(pha4 

Since the partial differential equation (3) and boundary con­
ditions (5)-(6) are linear, the general deflection equation for 
free vibration can, by superposition, be written as 

Co Co 

(a 

+ m,m„I„ ( < W ) + V4,mnK„ («„,„? ) ] (c„ cos 2TT/?0 + d„ sin 2imd ) 

xe tttfnn1 

Oo.mifi ' 1 - f l W ^ uG,mnc • ' ' V i - f n m „ ' (7) 

Since a fundamental set of solutions of the homogeneous 
partial differential equation is known, it is appropriate to use 
the method of variation of parameters to determine a particular 
solution to the corresponding nonhomogeneous partial dif­
ferential equation of motion. 

Using the Fourier-Bessel series representation for the plate 
transverse deflection given in (7), an appropriate solution for 
the forced response may be assumed in the form 

Oo CO 

w ( rfi,l) = J] 2 R"'" (7 ) lA»<» (~t)cos 27r"5 

m=\ n = 0 

+ Bnm(l) sm2wnd] (8) 

where Rm„(f) = J„( f) + («„,„/•) 
+ ~nA,nmK„ (a,„„r) and the coefficients A„,„ ( t ) and Bmn ( t ) are 
now functions of time that must be determined through further 
analysis. These coefficient functions depend upon the physical 
plate parameters, the boundary conditions, and the loading 
function. 

Using standard Fourier-Bessel series techniques, we obtain 
an ordinary differential equation for A,„„( t) in the form 

Amn ( t ) + ya2 ^ 1-^- A„,„ (1) + a%„Amn ( t ) 

Rmn(r)cos2im6p(r,e,t )rdrdd 

= Amn( t) (9) 

where (•) and (•) represent ordinary derivatives with respect 
to t. 

The total solution of (9) for A,„„ (t) is 

Amt,0)=AmnCt)+A;„A~t) (10) 

where the homogeneous solution A,„„(t) is given by 

(11) 
The particular solution A*,m{l) can be represented as a Du-

hamel convolution integral. For this purpose, note that the 
dimensionless Green's function for this problem is 

1 
G{1)-

V 
-AW 

i - roB 

V sin V 1 - r0m„l (12) 

Using the appropriate Green's function (Moshaiov and Ear-
eckson, 1988), A*m(t) can be given as 

ALO)-- r Am„(T)G(t~r)df--
• 4T-ro„. 

Rm„(r) cos 2irndp(r,6,T)rdrd6 

x e ~s """> f«™('-'-) V sin \J\-t%m{t-r)dr. (13) 
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In a completely analogous manner, an expression for B,„„ (t) 
can be obtained in the form 

B,m(t)=B,m(i)+B*m{t) 

where the homogeneous solution Bmn(t) is given by 

B m B ( 0 = e -

and the particular solution 5,*„, ( 0 is of the form 

* - 2 
Smn ( t) • 

(14) 

(15) 

A concentrated load with general motion and amplitude 
variation can be expressed as 

_ - _ _ - _ _ - _ 5[7-r(7)]5[0-0(7)] 
pCr,e,t)=p[r(t),d(t),t]=P(t) - ! ^ 4 — (18) 

where P = P/(D/a). 
Substituting the load function given by (18) into the general 

deflection solution and noting that the spatial integrals in (17) 
can be readily evaluated as 

Qmn V 

•>0 J0 Jb 

i - ron 
1 f . 1 

,1 pi 

R» 
0 Jb 

,(r)cos 2im6P(T) 
d[r-f(T))5[e - 8 ( T ) ] 

.,(/•) sin 2imdp(r,6,T)rdfdd 

2irr 

P<J) 

rdrdd 

2TT 
cos 2irnd(T)Rnm(r(T)) 

xe fn»'"( ' T) sin V l - r Q m J I ( 7 - T ) d f . (16) 

In (11) and (15), the constants am„, bm„, cm„, and dmn must 
be determined from the initial conditions and represent a tran­
sient state of vibratory motion resulting from the initial con­
ditions. The nature of the steady-state forced response of the 
rotating annular j)late is contained entirely in the functions 
A*„„(t) and B*„„(t) which are defined by (13) and (16). 

Substituting the expressions for the coefficient functions in 
(10)-(16) into (8), the general deflection solution for the forced 
response of a thin annular plate to an arbitrary transverse 
surface load p(r, 0, 7) is given in integral form by 

0 ->b 
Rm„{r)sm2im6P(T) 

-- 5[r-r(r)]8[e-8(m 
2-rcr 

'rdrdd 

P(r) 
2-K 

sin 2irnS(T)/Jm(I(/•(?)), (19) 

we obtain the following general expression for the deflection 
of a plate due to an arbitrarily moving concentrated load: 

'(7,0,7) =£) J^Rm„(r)e - f<W 

OO CO 

w(r,e;t)=^ YiRm„(r)e-W>»»' 
x < W ' V l - ? ° ' » » 7 + Z w r ' V i - F i w -

x a,„„e 

Q,™Vl-f2"m "° 0 >>b 

+ bmne' 

R„,„(r) cos 2irndp(r,d,T)rdrdd 

• V 

' P{r) 

Qmny/i-rOmn ° 
2ir 

cos 2irnd(T)Rnm(f(T)) 

xeia'"»T sin \]\-S2Qmn{t-T)dT COS 271770 

X e fa">"r sin V 1 - f2 Qm„ (f - f) tfr} cos 2?r«0 

'i-r2n„,„7 + rf e - ' Vi-f2n„m? 

+ | c,„„e 

2 

W i - f 2 a w + ( ; e - ' V W 2 S W 

+ c„,„e' Q™ Vw^fl™ ° 2T 

' P{T) 
sin 2im6(Y)Rmn(r(T)) 

^ 
, (r) sin 2-Kn6p(r,Q,T)rdfdd 

X efn"<«'sin A / H ^ D . ( 7 - T)CF sin 27r«0 . (20) 

,fn
ff sin - \ / l r (sir xei""'"rsm sj 1 -rQ,m,Ct-T)dr sin 2TW0 . (17) 

The general solution presented above can be integrated to 
determine the response of_the annular plate for an arbitrary 
applied surface load p(r, 0, 7). 

Concentrated Load With Arbitary Motion 
Essentially no research has been published addressing the 

problem of circular or annular plate dynamics with radial load 
motion. Introducing a radial component in the motion of the 
load substantially complicates the deflection expression. The 
argument of the Bessel functions now becomes a function of 
time through the radial motion function. Thus, in general, the 
Bessel functions must remain inside the Duhamel convolution 
integral. The resulting integral expressions are extremely dif­
ficult to evaluate analytically. However, the general analysis 
developed above will now be applied to obtain the solution 
for the case of a concentrated transverse load with arbitrary 
tangential and radial motions and arbitrary amplitude varia­
tion. 

To further evaluate the solution for arbitrary concentrated 
moving loads, the functional form of the load amplitude P(t), 
the tangential motion 0 ( 0 , and the radial motion r(t) must 
be specified. 

Concentrated Load With Harmonic Radial Motion 

Analysis such as that above has been used in the literature 
to describe the special case of harmonically varying concen­
trated loads at constant radial position with constant-speed 
tangential motion (Mote, 1970; Honda, et a l , 1985; Weisensel, 
.1988; Weisensel and Schlack, 1988, 1989, 1990). Such a load 
can be described as 

_ . - 7 , , -5 _-8(r-r0)8(d~tn 
p(r,d,t)=P0 cos wt — 

2-wr 
(21) 

where 

P0 = P0/(D/a), w = w/ (7 /0 , r0 = r0/a, <£ = <fr/(7/f). 

(22) 

It is assumed that the angular position of the load at time 1 
= 0 is 8 - 0 for convenience. 

As an extension of the case of constant radial position, 
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Fig. 2 Rotating thin annular plate with clamped inner boundary and 
free outer boundary subjected to harmonic concentrated transverse load 
with harmonic radial motion oscillation 

another special case of interest and of much practical impor­
tance involves harmonic oscillatory motion of the radial po­
sition of the load as shown in Fig. 2. As mentioned previously, 
essentially no research has been published addressing the prob­
lem of circular or annular plate dynamics with radial load 
motion. The component of the load motion for harmonic 
oscillation in the radial direction with frequency /3 can be 
described as 

where 

r(i) = ro + r\ s m (3? 

?i = n/a, p = p/(t/t). 

(23) 

(24) 

If the load amplitude function is harmonic as given in (21), 
the deflection response for this special case will be given in 
integral form by (20) as 

oo oo 

HfAt)=J^ J]Rmn(r)e~ 

X \ } amne< V! ~~^™> + bm„e ~( V ^ ? 5 w 

Qmn V 

2 VP± 

t ~~ f "ww 

COS COT 

2TT 
cos 2irn4>TRnm(r0 

+ ?i sin P7)e~ta'»"T sin y[\-fttm„(t-T)dr cos 2im6 

Qmny/l-f 
sin 2-Kn4nRm„(r0 

sin \] 1 - i fQmn(t-T)<fi\sm2m6\. (25) + ri sin (3?)er m"Tsin 

Note that Rmn(?) is now an implicit function of time. Thus, 
it must remain inside the convolution integral. 

It is readily apparent that to determine the explicit analytical 

solution for this special case, some extremely difficult integrals 
must be evaluated. The general approach used here is to expand 
the Bessel functions, trigonometric functions, logarithmic 
functions, and polynomial functions present in these inte­
grands in appropriate finite and infinite series (Abramowitz, 
1965; Spiegel, 1968). The deflection expression for the forced 
response of an annular plate to a harmonically varying con­
centrated transverse load with constant-speed tangential mo­
tion and harmonic radial motion can be written in the form 

Oo oa 

,mn Yn (otmnr ) 

) +VA,nmK„(am„r)] 

xe 
iK Jfi'i + bm„e -if{i 

7rQ,„„Vl-f2 
COS 271770 

eif,' + d -if 1'. 

vQmny/l-fOn 

sin 2-jrnd 

(27) 

The definite integral functions Si and S2 are evaluated in 
Weisensel (1988) for the general case of transient vibrations. 

However, to understand the fundamental nature of the sys­
tem response, it is sufficient to consider here only the steady-
state response of this system. The steady-state deflection re­
sponse is readily obtained from the general solution given in 
(27) by neglecting all the transient terms. The steady-state 
solution is also given explicitly in Weisensel (1988). These equa­
tions are the first known analytical solutions for the deflection 
of a circular or annular plate due to a transverse load with a 
nonconstant radial motion function. As such, this work rep­
resents a significant extension of the knowledge of plate dy­
namics as a result of moving loads. 

Concentrated Load With General Periodic Radial Mo­
tion 

The special cases of the forced dynamic response of a ro­
tating thin annular plate to a moving concentrated load have 
been presented in the literature for constant radial position 
and herein for harmonically varying radial motion. These re­
sults can be extended beyond these cases to demonstrate the 
analysis for a load with general periodic radial motion by using 
Fourier decomposition to determine the individual harmonic 
components of the general periodic load radial motion. 

Thus, the radial motion of the load used in (18) and defined 
in (22)-(24) can be viewed as simply the initial components of 
the infinite Fourier series expansion of the general periodic 
radial motion function, 

r(l) =r0 + rlc cos Pl + ris sin fi + r2c cos 2^1 + ?^ sin 2/3? 
00 00 

+ • • • =r0+^rkc cos kJi't+Y^ fks sin kfil- (28) 
t = l *r=l 

The radial motion function given by (23) can be obtained from 
(28) by setting ris = ?,, rkc = 0 (k = 1, 2, 3, . . .), rks = 0 
(* = 2, 3, 4, . . .). 

Thus, the general approach to determine the response to a 
load with general periodic radial motion begins with substi­
tuting (28) into (20). The critical step in this approach is to 
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evaluate integrals similar in form to those in (25), but with the 
argument of the characteristic function in the radial coordinate 
R,m{r) being the entire series given in (28), 

cos COT cos 2irn<f>TR„ 

+ 2 rks sin AT/ST 

aiQmnT 

' o + S Ore cos k/3r 
k=\ 

e?!i'»"? sin V l " t2 amn0~ r)dT 

eiU'™ cos COT cos 27T«</>T sin V 1 - r Qm„(t-r) ^ 

Jn 

+ V3,m,Jn 

ro+^>] rkc cos k^T+^ rks sin kfir 
* = i * = i 

00 00 

?0+ 2 ?kc cos ^7 + 2J ^ sin WT 
A r = l * r = l 

C o o o 

?o + 2 ^ cos £J37 + 2 7fa sin &J37 
* = I 

+ V4,mnK„ 

f cos COT sin l-im^rR,, 

+ 2] rfe sin ^ T 

* = i 

* = i 

00 

+ 2J ^ sin ^/^ 
k=\ 

Oo 

^0+2 ^ C0S
 WT 

dl (29) 

efn'""T sin 4^f ®m„(t-T)dT 

= \ e'ta">"T cos COT sin 2TT«</>T sin \j\-f Qm„(?-7) 
o 

r0+ 2 ? ^ cos Ar^7r+ 2 7fa sin Arj37 
* = i * = i 

oo oo 

' ' o+Xl ?*c cos £J37+ ^ ] rks sin £/37 + 1?2,m« Y„ 

+ V3,mnl„ 

k=\ 

+ T)i,mnKn 

r°+ 2 r*c cos ^ T + S rte sin ^T 

k=\ 

OO 

' O + X J ÂrcCOS AriSr 

+ S rfe sin ^|8T C/T. (30) 

General Periodically Varying Load 
The special case of the forced dynamic response of a rotating 

thin annular plate to a moving concentrated transverse load 
of harmonically varying amplitude (in time) has been discussed 
herein. This result can be extended beyond these cases to dem­
onstrate the analysis for a load of general periodic amplitude 
variation by using Fourier decomposition to determine the 
individual harmonic components of the general periodically 
varying load amplitude. The responses to each of these com­
ponents can then be superposed to obtain the response to a 
general periodic amplitude load. This approach has special 
application to correlating experimental measurements and an­
alytical results. 

Thus, the temporal harmonic amplitude variation of the load 
used in (18) and defined in (21) can be viewed as simply one 
component of the infinite Fourier series expansion of the gen­
eral periodic amplitude variation, 

P(1)=P0 + P\C cos co7 + Pis sin co? + P2c cos 2co7 + P^ sin 2co 7 

OO 0 0 

+ • • • =Po+ y ] Pkc cos koil + ^ Pks sin kul. (31) 
* = i jt = I 

Each component amplitude Pkc or Pks of a general load am­
plitude variation function may be determined in any of several 
ways. These include direct application of Fourier analysis for 
analytical functions, spectral analysis for empirical functions, 
or simply assuming that a load is comprised of only specific 
components. Once the component amplitudes are determined, 
they can be used to define component loading functions of the 
form 

p0(r,6,l)=P<Jl(r,6) 

Jilc (7,0,7) =Plc cos co7n(7,0) 

Pis(r,6,~t)=P\s sin co7ll(7,0) 

P2c (7,0,7) =P2c COS 2co7ll(7,0) 

Pis&fi't) =P~2s sin 2w7ll(7,0) 

I (32) 

where 11(7, 0) describes the spatial distribution of the loading 
function. The total periodic loading function can now be de­
scribed as 

Oo o o 

75(7,0,7) =p0(7,0,7) + 2 pkc(r,e,l) + 2 Pks(r,dJ) 
k=l k=\ 

Co Co 

= Pon(7,0)+ J ] Pkc cos A:co7n(7,0) + 2 ] Pks sin £co7n(7,0) 

P 0 + V ] Pkc cos kui t + ~S] Pks sin fcco t 11(7,0) 

Admittedly, these integrals appear formidable. However, by 
carefully and consistently using the series representations of 
the Bessel functions and other functions, these integrals can 
be evaluated in terms of multiple infinite series. Then the 
corresponding analytical deflection expressions can be derived. 
This approach has special application to treating problems 
where the load radial motion function is analytically compli­
cated or is the result of experimental measurements. In such 
cases, the load radial motion function may be adequately rep­
resented by just a few terms of its series expansion. 

= P(7)II(7,0). (33) 

Each component loading function can be used as the non-
homogeneous term of a separate partial differential equation 
of motion of the form given in (1). Solving the equation of 
motion for each component loading function results in a set 
of general solutions of the form given in (7). These solutions 
can be denoted in a corresponding manner as w0(7,0, t), wlc (7, 
0, t), wls(7, 0, t), ~w2c(r, 0, / ) , W2s(r, 0, t) Since the 
partial differential equation of motion and the boundary con­
ditions are linear, the total deflection response to the total load 
given by (33) in just the superposition of the component de­
flection responses, i.e., 
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Table 1 Eigenvalues and undamped natural frequencies of a thin an­
nular plate with geometric and material parameters b -0 .5 , c = 0.3 

m 

1 

2 

3 

n 

0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 

" ™ 

13.02426 
13.28978 
14.70381 
18.56199 
25.59582 
35.73009 
85.03283 
86.70583 
91.73815 

100.16746 
112.04960 
127.44669 
243.69404 
245.43582 
250.68249 
259.49153 
271.94106 
288.11390 

Jmn 
(Hz) 

362.16054 
369.54389 
408.86331 
516.14615 
711.73313 
993.53304 

2364.47537 
2410.99601 
2550.92791 
2785.31826 
3115.72066 
3543.86150 
6776.30723 
6824.74022 
6970.63238 
7215.58200 
7561.76145 
8011.47341 

w(r,d,t) = w0(r,6,l) + wlc(r,6,l) + wls(r,6,l) + w2c(r,6j) 

+ w2s{rj),l)+ • • • 

00 00 

= w0(r,e,l) + J] w*cP,d,7) + 2] wb(r,8,l). (34) 
Ar=l k=l 

Resonance Conditions and Critical Frequencies 
The conditions for system dynamic deflection resonance oc­

cur when specific relationships exist between the system load 
parameters and the system natural frequencies. The lowest 
natural frequencies for the system studied are given in Table 
1. For any particular special case of interest, the resonance 
conditions can be obtained by considering the expression for 
the motion as given by (27). 

The resonance conditions are most clearly exhibited when 
damping is neglected. Thus , for a conservative system, the 
resonance conditions occur whenever any of the denominators 
in the steady-state deflection expression vanish. For example, 
for constant radial position, the resonance conditions can be 
stated as 

'lytrin 

a2,mn-

= - 0 3 
- fl„„, + CO 

2im 

P4,mn 
2irn 

(35) 

where 0 = <j>/(t/t),Q, = Q/(t/t), co = w/(t/t). Negative 
values of 4> simply indicate plate rotat ion in the opposite di­
rection. Also note that (35) is valid for m = 1, 2, 3, . . . ; n 
= 1, 2, 3, . . . . Thus , there are no critical rotat ional speeds 
for the degenerate forms of the original resonance conditions 
when n = 0, corresponding to the axisymmetric component 
of the deflection response (Honda et al . , 1985). 

In addition to the resonance conditions given in (35), those 
for a load moving harmonically in the radial direction can be 
identified as 

'\,mnq = -<t> 6tmnq — 

4>2,mnq — 4>$,mnq 

- Qmn + co - q@ 

2irn 

~ Vmn + CO + gg 

27T« 

P3,mnq ®l,mnq 
fl,„„ + co + qP 

2im 

P4,mnq 
~ &mn + CO - ( 

2im 
(36) 

where 0 = fi/(t/t). 
Equations (36) define the critical rotat ional speeds of the 

plate, i.e., those rotat ional speeds that cause a resonance con­
dition to be satisfied for the undamped annular plate system, 
for a specific load ampli tude oscillation frequency co and a 
specific load radial motion oscillation frequency /3. 

I n j h e degenerate case of loads at constant radial position, 
i .e., (8 = 0, (36) reduces to the resonance conditions given by 
(35). In the degenerate case of constant amplitude loads, i.e., 
co = 0, (36) reduces to 

-a, -qP 
} 1 tmnq " 

V2,mnq ~ 

J3,mnq z 

"4,mnq 

2im 

27Tfl 
(37) 

In the further degenerate case of constant amplitude loads 
at constant radial position, i .e., co = 0 and /3 = 0, (36) reduces 
to the widely known resonance conditions given by 

Vl.mnq ~ <?2,mnq — H>l,mnq — VS.mnq — 

^3,mnq ~ °A,mnq ~ ® 5 ,mnq " "6,/nnq' 

2-KH 

2im' 
(38) 

In a similar manner , the original resonance conditions can 
be solved for the radial mot ion oscillation frequency as a func­
tion of the plate rotat ional speed and the load amplitude os­
cillation frequency, 

-3 is ^'"n + 2TT«0 — co 
2,mnq ~ 

4,mnq ~ 

5,mnq ~ 

HI ,mnq ~~ 
Q 

0 Q,„„-27r«c6 + co 
P3,mnq 

q 

- Um„ - 2im4> - co 
H6,mnq 

q 

- Qmn + 2irn<j)+Z) 
l,mnq Hl,mnq ~ (39) 

Equations (39) define the critical load radial motion oscil­
lation frequencies, i .e., those frequencies of the load radial 
motion oscillation that cause a resonance condition to be sat­
isfied for the undamped annular plate system for a specific 
load amplitude oscillation frequency co and a specific plate 

rotat ional speed <j>. It is important to note from (39) that 

A k,mnq ~~ 

Jfc,mnl 
(40) 

However, note further that a relationship similar to (40) 

between </> and n cannot be derived from (35) because n is also 
an index of the natural frequencies Umn, whereas q is not . 

In the degenerate case of constant ampli tude loads, i .e., co 
= 0, (39) reduces to 

— ftm„ + 2ir« <f> 
0 2,mnq ~~ f 

J4,mnq ~~ P5,mnq ~ " 

q 

-27T7JC 

q 
(41) 
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Table 2 Definition of parameter values and resulting maximum deflec­
tion magnitude values for particular sets of input system parameters 
that correspond to specific near-resonance conditions 

Parameter 
Set No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

m 

1 

1 

1 

1 

1 

1 

n 

1 

1 

1 

1 

5 

1 

1 

— 

1 

1 

--

1 

2 

(rad/s) 

370 

385 

401 

688 

266 

720 

(rad/s) 

0 

0 

0 

2000 

2000 

2000 

P 
(rad/s) 

0 

100 

200 

0 

100 

200 

(mm) 

0 

25 

25 

0 

25 

25 

c 
0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 

Iwl 
0 . 7 2 7 3 5 
0 . 0 4 6 2 5 
0 . 0 2 1 3 8 
1 .19204 
0 . 0 2 1 1 9 
0 . 0 2 9 1 8 
1 .44155 
0 . 0 4 2 5 3 
0 . 0 1 4 4 6 
1 .14870 
0 . 0 4 3 8 3 
0 . 0 2 8 9 1 
0 . 0 5 0 0 5 
0 . 0 5 1 2 0 
0 . 0 3 6 9 8 
0 . 9 0 1 7 8 
0 . 0 3 6 9 6 
0 . 0 1 2 2 1 

In the degenerate case of loads with no tangential (rotational) 
motion, i.e., 0 = 0 , (39) reduces to 

0: 2,mnq PStmnq 

•>4,mnq H8,mnq ~ 

\lmn 

Q 

"/«/? + 

CO 

CO 
(42) 

In the further degenerate case of constant amplitude loads 
with no tangential (rotational) motion, i.e., co = 0 and <j> = 
0, (39) reduces to 

-Q„ 
>\,mnq H3,mnq ~ fJ6,mnq ~ Pl,mnq~ 

*2,mnq ~ P4,mnq ~~ P5,mnq ~ P8 (43) 

Note from (41) and (43) that even constant amplitude loads 
can excite resonances of annular plates with radially oscillating 
loads. This is possible whether or not the plate is rotating. For 
design purposes, this type of loading must be thoroughly ana­
lyzed to ensure resonance is not a problem. 

It should again be noted that if any of the above resonance 
conditions is satisfied, the expression for the dynamic deflec­
tion of the conservative system as given by the conservative 
degenerate form of (27) is indeterminate. The deflection 
expression at resonance can be determined from particular 
forms of (27) by using appropriate limiting procedures. How­
ever, for nonconservative systems (f ^ 0), the deflection 
expression given in (27) is valid and the deflection remains 
bounded for all parameter values. 

This type of critical frequency information is very valuable 
and useful in the design of annular plate systems with the types 
of loading described. 

Dynamic Deflections and Mode Shapes 
The dynamic transverse deflection at any location on the 

surface of the plate and at any time can be computed using 
(27). The significance of the contribution of each individual 
mode to the total dynamic deflection decreases quite rapidly, 
especially for damped nonresonant conditions. Thus, based 
on the higher-frequency modes having negligible contributions 
in these cases, six modes were included in the dynamic de­
flection computation {m = 1, n = 0, 1, 2, 3, 4, 5). Precedent 
exists in the literature for using a small number of modes to 
approximate the total dynamic deflection. One common cri­

terion is to only include modes that contribute more than one 
percent of the total deflection (Ramakrishnan and Kunuk-
kasseril, 1974). Another is simply to include only the single 
mode that corresponds to the lowest values of the modal indices 
(Raske, 1966, 1983; Raske and Schlack, 1967; Laura et al., 
1976). 

For each set of input system parameters studied, several 
important quantities of interest were computed. These quan­
tities were computed for each of the six modes included in the 
dynamic deflection. First, the mode shape was computed and 
the deflection values were analyzed to determine the maximum 
deflection magnitude (absolute value) for each mode shape. 
The mode shapes are used to gain insight into the nature of 
the dynamic response of the plate to a particular set of input 
system parameters. The deflection values for each of the six 
modes were summed to obtain the total dynamic deflection. 
The maximum total deflection magnitude values are used to 
compare different sets of input system parameters. 

To demonstrate the nature and utility of the analytical results 
and the expressions for critical system frequency parameters, 
18 particular sets of input system parameters are studied. These 
sets correspond to six near-resonance cases of the dynamic 
deflection at three levels of damping. The definition of these 
sets of input system parameters is given in Table 2, along with 
the resulting maximum deflection magnitude values. The in­
fluence of the system parameters on the dynamic deflections 
is readily apparent from this table. 

As an example, when m = l,w = 1, the resonance condition 
for the critical rotational speed </>2,„„ in (35) is satisfied for the 
degenerate case of a constant amplitude load (co = 0) at con­
stant radial position (/3 = 0) when 02,mn = </>2,ii = 2.12 (4>2,mn 
= 02,ii = 369.54 rad/s = 370 rad/s). These values correspond 
to parameter setsjiumber 1, 2, and 3 in Table 2 for damping 
parameter values f = 0, 0.02, and 0.05, respectively (the values 
of f are assumed to be approximately constant for each pa­
rameter set). The total dynamic deflection for parameter set 
1 is I w I = 0.72735. The prominent mode shapes, including 
the mode shape corresponding to the resonant condition, i.e., 
m = l,n = 1, have maximum deflections of lw10l = 0.00547 
and I vvn I = 0.65946. The predominance of the selected mode 
for which the resonance condition was satisfied in the previous 
case is clearly evident. It must be noted that the maximum 
dynamic deflection magnitude for the undamped case near 
resonance admittedly exceeds the bounds of applicability of 
classical plate theory. Thus, the results for these undamped, 
near-resonance conditions must be viewed rather qualitatively. 

Parameter sets number 13,14, and 15 in Table 2 for damping 
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Fig. 3(a) 

Fig. 3(b) 

Fig. 3(c) 

Fig. 3 Dynamic deflection of thin annular plate with clamped inner 
boundary and free outer boundary subjected to concentrated transverse 
load. Geometric, material, and loading parameters are: b/a = 0.5, 
h/a = 0.01, « = 0.3, VphaVD = 0.0057 s, ?=0, ( = 0, P„ = 0.011, r0 = 0.75, 
r, = 0.25, 5 = 11.45, /3 = 0.57, ij, = 1.52. (a) Total deflection. Maximum de­
flection !wl =0.05005. (b) Mode m = 1, n = 0. Maximum deflection 
Hv101 =0.03724. (c) Mode m = 1, n = 5. Maximum deflection 
I w161 =0.00533. 

parameter values J = 0, 0.02, and 0.05, respectively, corre­
spond to the case of a load with amplitude oscillation frequency 
u = 2000 rad/s and load radial motion at an oscillation fre­
quency /3 = 100 rad/s and a maximum oscillation amplitude 
r\ = 25 mm. Form = 1,« = 5,<7j= 1, the resonance condition 
for the critical rotational speed 4>\mnq in (36) is satisfied for 
this degenerate case when <j>i<mnq = #3,151 = 152(#3,,„„9 = #3,151 
= 265.6 rad/s = 266 rad/s). The total dynamic deflections 
for these parameter sets and the prominent mode shapes, in­
cluding the mode shape corresponding to the resonant con­
dition, i.e., m = 1, n = 5, are shown in Figs. 3(o)-(c). This 
particular set of input system parameters demonstrates that it 
is plausible that the higher modes may be excited to a significant 
degree, particularly when there is no damping. Notice from 
Figs. 3(a) and 3(c) that the influence of the m = 1, n - 5, 
mode is clearly evident in the total dynamic deflection. When 
damping is introduced, the influence of the resonant higher 
mode is no longer predominant. However, the magnitude of 
the m = 1, n = 5, mode is significantly greater than it is for 
the other resonance cases in which this higher mode is not 
specifically excited. 

It must be noted at this point that the resonance conditions 
in (35) and (36) simply define relationships between the fre­
quency parameters of the system, namely Q,„„, Zo, <j>, and j3. 
Thus, the perception of which parameter is responsible for a 
particular resonance condition being satisfied is, in general, 
not analytically meaningful. For example, the specific set of 
system frequency parameters defined as parameter set number 
13 in Table 2 may be viewed as defining a critical rotational 
speed </> = 266 rad/s of a system that has a load amplitude 
oscillation frequency <o = 2000 rad/s and a load radial motion 
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oscillation frequency /3 = 100 rad/s. Alternatively, this set of 
system frequency parameters may be viewed as defining a 
critical load radial motion oscillation frequency /S = 100 rad/ 
s of a system that has a load amplitude oscillation frequency 
w = 2000 rad/s and a rotational speed # = 266 rad/s. Which 
particular viewpoint is adopted in practice will depend upon 
the specific design and operating conditions of the system under 
consideration, along with any degenerate conditions. This un­
derstanding of the resonance conditions certainly applies to 
all the sets of input system parameters listed in Table 2. 

Parameter Sensitivity 

Special Cases of System Parameters. To investigate the 
sensitivity of plate dynamic deflections to the system param­
eters, especially the damping and loading parameters, 27 ad­
ditional special cases of system parameters were examined. 
The definition of these nonresonance sets of input system pa­
rameters is given in Table 3, along with the resulting maximum 
deflection magnitude values. Again, the influence of the system 
parameters on the dynamic deflections is readily apparent from 
this table. 

The dependent quantity for which system parameter sensi­
tivities are desired is the maximum total deflection magnitude 
value I w I. The selected system parameters for which the sen­
sitivity of the maximum deflection magnitude value is studied 
include damping, load amplitude oscillation frequency, load 
radial motion oscillation frequency, and load radial motion 
oscillation amplitude. Whereas the sensitivity to rotational 
speed of the plate is not selected for further study, note from 
Table 3 that this parameter has been fixed at # = 300 rad/s 
for these additional particular sets of the input system param­
eters. 

Damping Sensitivity. To study the effect of system damp­
ing on the maximum total deflection magnitude value, three 
levels of this parameter were investigated, namely, f = 0, 0.02, 
and 0.05. The effect of damping was examined for both the 
near-resonance cases defined in Table 2 and the nonresonance 
cases defined in Table 3. 

From Table 3, it can be seen that damping plays a significant 
role in determining the resulting maximum total deflection 
magnitude value for the nonresonance cases. Similarly, from 
Table '2, it can be seen that damping also plays a significant 
role in determining the resulting maximum total deflection 
magnitude value for the near-resonance cases. The average 
total deflection magnitude value for the nonresonance cases 
and the near-resonance cases for each value of the damping 
parameter is given in Table 4. 

It is readily apparent from Table 4 that the average total 
deflection magnitude value decreases markedly as the damping 
parameter increases. As would be expected, this effect of 
damping is more pronounced for the near-resonance cases than 
for the nonresonance cases. This is because of the tendency 
of the deflection magnitude in the undamped near-resonance 
case to become unbounded, whereas in the nonresonance case 
the deflection magnitude is limited to a certain maximum 
steady-state value, even for an undamped system. 

Another interesting influence of damping on the resulting 
deflection is the location of the maximum deflection magnitude 
value. Since damping (and also rotation) induces phase changes 
in the deflection expression, it is expected that the maximum 
deflection occurs in general at an angle away from the load 
location (Huang and Soedel, 1987a, 1987b). This effect can 
be clearly observed in the deflection shapes shown for the near-
resonance parameter sets. For example, the location of the 
maximum deflection for the undamped case (parameter set 1) 
is at the load application point (6 = 0). This is quite signifi­
cantly different from the location of the maximum deflection 
for the nonconservative case (parameter set 2, f = 0.02) which 
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Table 3 Definition of parameter values and resulting maximum deflec­
tion magnitude values for particular sets of input system parameters 
selected from a matrix of combinations of input system parameters 

Parameter 
Set No. 

19 
20 
22 
24 
21 
23 
25 
26 
27 
29 
28 
30 
31 
34 
40 
37 
43 
32 
35 
41 
38 
44 
33 
36 
42 
39 
45 

4> 
(rad/s) 

300 

300 

300 

300 
300 

300 

300 
300 

300 

300 
300 

300 

300 
300 

300 

to 
(rad/s) 

0 

0 

0 

200 
200 

200 

2000 
2000 

2000 

2000 
2 0 0 0 

2000 

2000 
2 0 0 0 

2000 

(rad/s) 
0 

100 
200 
300 
100 

• 200 
300 

0 
100 
200 
100 
200 

0 
100 
200 
100 
200 

0 
100 
200 
100 
200 

0 
100 
200 
100 
200 

(mm) 
0 

10 

25 

0 
10 

25 

0 
10 

25 

0 
10 

25 

0 
10 

25 

' ( 

0 

0 

0 

0 
0 

0 

0 
0 

0 

0 . 0 2 
0 . 0 2 

0 . 0 2 

0 . 0 5 
0 . 0 5 

0 . 0 5 

l*| 
0 . 0 1 1 2 0 
0 . 0 1 5 4 8 
0 . 0 4 2 5 1 
0 . 1 1 7 7 1 
0 . 0 2 6 0 6 
0 . 0 5 6 5 8 
0 . 1 2 0 7 5 
0 . 0 1 2 3 2 
0 . 0 1 8 6 4 
0 . 0 2 3 6 3 
0 . 0 2 6 1 9 
0 . 0 5 3 1 5 
0 . 0 2 6 0 8 
0 . 0 3 8 0 2 
0 . 0 8 7 1 3 
0 . 0 4 9 2 7 
0 . 1 0 1 1 7 
0 . 0 2 5 5 6 
0 . 0 3 1 3 8 
0 . 0 3 3 2 9 
0 . 0 5 0 7 9 
0 . 0 2 3 8 3 
0 . 0 2 2 9 7 
0 . 0 2 8 3 7 
0 . 0 2 6 3 0 
0 . 0 3 7 6 2 
0 . 0 1 3 9 3 

Table 4 Average total deflection magnitude value for cases of system 
input parameters for different values of the damping parameter 

Case 

non-resonance 

near-resonance 

c 

0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 

N 

17 
5 
5 
6 
6 
6 

\w\ 

0 . 0 4 8 5 8 
0 . 0 3 2 9 7 
0 . 0 2 5 8 4 
0 . 9 1 0 2 5 
0 . 0 4 0 3 3 
0 . 0 2 3 8 5 

Iw| 

l - i f -o 
1.0 
0 . 6 8 
0 . 5 3 
1.0 
0 . 0 5 
0 . 0 3 

is rotated through a large angle away from the load application 
point. It has been shown previously that the shape of the 
resulting deflection profile of the plate is strongly dependent 
upon the speed of propagation of the load as well as the 
magnitude of the damping coefficient (Reismann, 1963). These 
damping sensitivity results confirm this prior finding. 

Load Amplitude Oscillation Sensitivity. To study the effect 
of the amplitude oscillation frequency of the load on the max­
imum total deflection magnitude value, three levels of this 
parameter were investigated, namely, to = 0 rad/s, 200 rad/ 
s, and 2000 rad/s. The effect of the load amplitude oscillation 
frequency was only examined for the nonresonance cases de­
fined in Table 3. It is not particularly meaningful to examine 
the effect of the load amplitude oscillation frequency for the 
near-resonance cases since this parameter is not independent 
in these cases, but rather plays a role in defining the resonance. 

The effect of the load amplitude oscillation frequency is 
relatively subtle in comparison with the other parameter sen­
sitivities investigated. This is as expected over the ranges of 
nonresonance system configurations. Therefore, to look more 
closely at this parameter, the influence of the other parameters 
was eliminated by considering the effect of the load amplitude 
oscillation frequency for subsets of the results in which all 
other parameters were constant. These subsets can be easily 
examined if the entries in Table 3 are rearranged as in Table 
5. 

From Table 5, it can be seen that the load amplitude oscil-

Table 5 Definition of parameter values and resulting maximum deflec­
tion magnitude values for nonresonance sets of input system parameters 
for different values of the load amplitude oscillation frequency 

Parameter 
Set No. 

19 
26 
31 
20 
27 
34 
21 
28 
37 
22 
29 
40 
23 
30 
43 

4> 
(rad/s) 

300 

300 

300 

300 

300 

to 
(rad/s) 

0 
200 

2000 
0 

200 
2000 

0 
200 

2000 
0 

200 
2000 

0 
200 

2000 

(rad/s) 

0 

100 

100 

200 

200 

n 
(mm) 

0 

10 

25 

10 

25 

c 

0 

0 

0 

0 

0 

Iwl 
0 . 0 1 1 2 0 
0 . 0 1 2 3 2 
0 . 0 2 6 0 8 
0 . 0 1 5 4 8 
0 . 0 1 8 6 4 
0 . 0 3 8 0 2 
0 . 0 2 6 0 6 
0 . 0 2 6 1 9 
0 . 0 4 9 2 7 
0 . 0 4 2 5 1 
0 . 0 2 3 6 3 
0 . 0 8 7 1 3 
0 . 0 5 6 5 8 
0 . 0 5 3 1 5 
0 . 1 0 1 1 7 

Table 6 Average total deflection magnitude value for nonresonance 
cases of system input parameters for different values of the load radial 
motion oscillation amplitude 

(mm) 

0 
10 
25 

N 

5 
11 
11 

1*1 

0 .01962 
0 .04424 
0 .05085 

1 w | 

I w | r i = 0 

1.0 
2 . 2 5 
2 .59 

lation frequency has some effect on the maximum total de­
flection magnitude value for the nonresonance cases. For values 
of /3 = 0 rad/s and /3 = 100 rad/s, the influence of co appears 
to be monotonic in that the maximum total deflection mag­
nitude value increases as the load amplitude oscillation fre­
quency increases. However, for values of (3 = 200 rad/s, the 
effect on the maximum total deflection magnitude value is not 
clear for low values of the load amplitude oscillation frequency. 
As the load amplitude oscillation frequency increases further, 
the relationship that exists for lower values of (3 seems to again 
emerge. More investigation is needed to explore the nature of 
this parameter interaction. 

Load Radial Motion Oscillation Sensitivity. The sensitivity 
of the maximum total deflection magnitude value to the load 
radial motion oscillation is actually dependent upon two in­
dependent load parameters, namely, the load radial motion 
oscillation amplitude ri and the load radial motion oscillation 
frequency (3. Each of these parameters will be examined sep­
arately as well as jointly. 

In a coarse sense, the average total deflection magnitude 
value for the nonresonance cases for each value of the load 
radial motion oscillation amplitude can be examined in Table 
6. This table indicates that the total deflection magnitude value 
is a strong function of the load radial motion oscillation am­
plitude, regardless of the value of the other parameters. This 
table further indicates that as the load radial motion oscillation 
amplitude increases, so does the resulting total deflection mag­
nitude value of the plate. 

Similarly, in a coarse sense, the average total deflection 
magnitude value for the nonresonance cases for each value of 
the load radial motion oscillation frequency can be examined 
in Table 7. This table indicates that the total deflection mag­
nitude value is also a strong function of the load radial motion 
oscillation frequency, regardless of the value of the other pa­
rameters. This table further indicates that as the load radial 
motion oscillation frequency increases, so does the resulting 
total deflection magnitude value of the plate. 
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Table 7 Average total deflection magnitude value for nonresonance 
cases of system Input parameters for different values of the load radial 
motion oscillation frequency 

0 
(rad/s) 

0 
100 
200 
300 

N 

5 
10 
10 

2 

1 w | 

0 . 0 1 9 6 2 
0 . 0 3 2 1 8 
0 . 0 4 6 1 5 
0 . 1 1 9 2 3 

\w | 

' l w | ^ = 0 

1.0 
1 . 6 4 
2 . 3 5 
6 . 0 7 

Table 8 Definition of parameter values and resulting maximum deflec­
tion magnitude values for particular sets of input system parameters for 
different values of the load radial motion oscillation amplitude 

Parameter 
Set No. 

19 
20 
21 
22 
23 
2 1 
25 
26 
27 
28 
29 
30 
31 
3 1 
37 
10 
13 
32 
35 
38 
11 
1 1 
33 
36 
39 
12 
15 

4> 
(rad/s) 

300 

300 

300 

300 

300 

CO 

(rad/s) 

0 

200 

2000 

2000 

2000 

P 
(rad/s) 

0 
100 
100 
200 
200 
300 
300 

0 
100 
100 
200 
200 

0 
100 
100 
200 
200 

0 
100 
100 
200 
200 

0 
100 
100 
200 
200 

(mm) 
0 

10 
25 
10 
25 
10 
25 

0 
10 
25 
10 
25 

0 
10 
25 
10 
25 

0 
10 
25 
10 
25 

0 
10 
25 
10 
25 

5 

0 

0 

0 

0 . 0 2 

0 . 0 5 

1*1 
0 . 0 1 1 2 0 
0 . 0 1 5 1 8 
0 . 0 2 6 0 6 
0 . 0 1 2 5 1 
0 . 0 5 6 5 8 
0 . 1 1 7 7 1 
0 . 1 2 0 7 5 

0 . 0 1 2 3 2 
0 . 0 1 8 6 1 
0 . 0 2 6 1 9 
0 . 0 2 3 6 3 
0 . 0 5 3 1 5 
0 . 0 2 6 0 8 
0 . 0 3 8 0 2 
0 . 0 1 9 2 7 
0 . 0 8 7 1 3 
0 . 1 0 1 1 7 
0 . 0 2 5 5 6 
0 . 0 3 1 3 8 
0 . 0 5 0 7 9 
0 . 0 3 3 2 9 
0 . 0 2 3 8 3 

0 . 0 2 2 9 7 
0 . 0 2 8 3 7 
0 . 0 3 7 6 2 
0 . 0 2 6 3 0 
0 . 0 1 3 9 3 

A more subtle look at the joint effect or interaction of the 
load radial motion oscillation amplitude and the load radial 
motion oscillation frequency can be achieved by again elimi­
nating the influence of the other parameters and considering 
the effect of these two parameters of interest for subsets of 
the results in which all other parameters were constant. These 
subsets can be more easily examined if the entries in Table 3 
are rearranged as in Table 8 to highlight the effect of the load 
radial motion oscillation amplitude or as in Table 9 to highlight 
the effect of the load radial motion oscillation frequency. 

From Tables 8 and 9, it appears that the influences of these 
two load radial motion parameters interact in such a way as 
to strengthen each other for most of the sets of input system 
parameters. This is particularly true when there is no damping. 
When damping is present, however, it appears that the inter­
action between these two load radial motion parameters is such 
that the maximum dynamic deflection magnitude value is re­
duced for cases where j3 = 200 rad/s. The fine details of this 
interaction would require more analysis using several sets of 
parameters at several more levels of each of these two param­
eters. 

For further insight into the nature of the dynamic deflections 
resulting from the nonresonance sets of input system param­
eters, the total dynamic deflection shapes for each of the 27 
sets are shown in Figs. 24-50, as well as others, of Weisensel 
(1988). By examining the entire plate deflected shape, the na­
ture of the influence of the various system parameters is often 
much more clearly demonstrated. 

Table 9 Definition of parameter values and resulting maximum deflec­
tion magnitude values for particular sets of input system parameters for 
different values of the load radial motion oscillation frequency 

Parameter 
Set No. 

19 
20 
21 
22 
23 
2 1 
25 
26 
27 
28 
29 
30 
31 
32 
33 
3 1 
35 
36 
37 
38 
39 
10 
11 
12 
13 
1 1 
15 

4> 
(rad/s) 

300 

300 

300 

300 

300 

300 

300 

CO 

(rad/s) 

0 

200 

2000 

2000 

2000 

2000 

2000 

P 
(rad/s) 

0 
100 
100 
200 
200 
300 
300 

0 
100 
100 
200 
200 

0 

100 

100 

200 

200 

(mm) 
0 

10 
25 
10 
25 
10 
25 

0 
10 
25 
10 
25 

0 

10 

25 

10 

25 

f 

0 

0 

0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 
0 
0 . 0 2 
0 . 0 5 

I i v | 

0 . 0 1 1 2 0 
0 . 0 1 5 1 8 
0 . 0 2 6 0 6 
0 . 0 1 2 5 1 
0 . 0 5 6 5 8 
0 . 1 1 7 7 1 
0 . 1 2 0 7 5 
0 . 0 1 2 3 2 
0 . 0 1 8 6 1 
0 . 0 2 6 1 9 
0 . 0 2 3 6 3 
0 . 0 5 3 1 5 
0 . 0 2 6 0 8 
0 . 0 2 5 5 6 
0 . 0 2 2 9 7 
0 . 0 3 8 0 2 
0 . 0 3 1 3 8 
0 . 0 2 8 3 7 
0 . 0 1 9 2 7 
0 . 0 5 0 7 9 
0 . 0 3 7 6 2 
0 . 0 8 7 1 3 
0 . 0 3 3 2 9 
0 . 0 2 6 3 0 
0 . 1 0 1 1 7 
0 . 0 2 3 8 3 
0 . 0 1 3 9 3 

Summary 
This work has practical use in any application that requires 

knowledge of the dynamic deflection (transient or steady state) 
due to loads with arbitrary circumferential and radial motion. 
The general analysis presented examines the vibration response 
of annular plates subject to arbitrary moving loads. The so­
lution is developed using classical plate theory with damping 
included. The dynamic response of plates to general loads is 
first determined in the form of an integral solution. Then the 
solution for loads that move along the plate surface is deter­
mined as a special case of this general solution. 

The general analysis is used to obtain the solution for the 
case of an arbitrary circumferentially and radially moving load. 
Previous literature in the area of circular and annular plate 
response to moving loads has dealt only with circularly orbiting 
loads, i.e., loads at constant radial position. This is one of the 
very few works addressing the problem of circular or annular 
plate dynamics with radial load motion. Thus, the current 
understanding of the response of circular and annular plates 
to moving transverse loads is extended to include a component 
of motion in the radial direction in addition to a component 
of motion in the tangential direction. In addition to the detailed 
special case, the methods of analysis to obtain the solutions 
for the more general cases of a concentrated load with arbitrary 
periodic radial motion and of an arbitrary periodically varying 
amplitude load are given. 

The analytical results are used to demonstrate the nature 
and utility of the expression for the dynamic deflection. Res­
onance conditions are obtained from the deflection expression, 
and corresponding critical system parameter expressions are 
derived. The critical system parameter expressions indicate 
numerous critical system parameter values that satisfy the res­
onance conditions. Thus, this problem of moving loads, es­
pecially in the area of design, is much more complicated when 
radial load motion is present. This is one of the very few works 
addressing the problem of circular or annular plate dynamics 
with radial load motion. 

Dynamic deflection shapes for numerous particular sets of 
input system parameters and maximum dynamic deflection 
magnitude values are presented. These results are used to com­
pare various sets of system parameters. Parameter sensitivity 
of the maximum dynamic deflection magnitude value is also 
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examined for both near-resonance and nonresonance sets of 
input system parameters. The nature of the parameter sensi­
tivities is discussed in detail. In particular, the importance of 
system damping is emphasized by the fact that physical systems 
with moving loads operate in the range of the critical parameter 
values without experiencing the large dynamic deflections in­
dicated for the undamped sets of parameters. 
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Equations of Motion for 
Nonholonomic, Constrained 
Dynamical Systems via 
Gauss's Principle 
In this paper we develop an analytical set of equations to describe the motion of 
discrete dynamical systems subjected to holonomic and/or nonholonomic Pfaffian 
equality constraints. These equations are obtained by using Gauss's Principle to 
recast the problem of the constrained motion of dynamical systems in the form of 
a quadratic programming problem. The closed-form solution to this programming 
problem then explicitly yields the equations that describe the time evolution of 
constrained linear and nonlinear mechanical systems. The direct approach used here 
does not require the use of any Lagrange multipliers, and the resulting equations 
are expressed in terms of two different classes of generalized inverses—the first class 
pertinent to the constraints, the second to the dynamics of the motion. These equa­
tions can be numerically solved using any of the standard numerical techniques for 
solving differential equations. A closed-form analytical expression for the constraint 
forces required for a given mechanical system to satisfy a specific set of nonholonomic 
constraints is also provided. An example dealing with the position tracking control 
of a nonlinear system shows the power of the analytical results and provides new 
insights into application areas such as robotics, and the control of structural and 
mechanical systems. 

1 Introduction 
D'Alembert's principle, which gives a complete conceptual 

solution to problems of classical mechanics, hinges upon the 
first-order virtual work done by the impressed (given) forces 
and that done by the forces of inertia (Lanczos, 1970). The 
former can often be expressed in terms of the variation of a 
potential energy function (Lanczos, 1970). By integrating with 
respect to time, the virtual work done by the forces of inertia 
can be transformed into a true variation (Rosenberg, 1972). 
Thus for holonomic systems, D'Alembert's principle can be 
reformulated as Hamilton's variational principle, which re­
quires that a definite integral be stationary (Lanczos, 1970). 
The set of Lagrangian equations of motion that follow remain 
invariant under arbitrary, one-to-one point transformations. 

It was in 1829 that Gauss (1829) gave an aesthetic and in­
genious reinterpretation of D'Alembert's principle, changing 
it into a true minimum principle. This principle is applicable 
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to systems with general constraints, including configuration 
constraints (Rosenberg, 1972). Gauss argued that the deter­
mination of the motion of an n-degree-of-freedom system in 
which positions and velocities were known, hinged on our 
ability to determine the accelerations under the given applied 
forces. He formulated the principle of "least constraint" for 
describing the motion of mechanical systems. This principle 
is closely analogous to his celebrated "method of least squares," 
a method he developed and applied to the adjustment of errors 
in measurements. Unlike Hamilton's principle, the principle 
of least constraint has the additional advantage of not requiring 
any integration in time. Hertz gave a geometrical interpretation 
of Gauss's principle for the special case when the impressed 
forces vanish (Hertz, 1917). He showed that in this case Gauss' s 
"constraint" can be interpreted as the geodesic curvature of 
the configuration point in 3«-dimensional space. Appell and 
Gibbs (see Pars, 1979) further extended the principle to apply 
to nonholonomic conditions and in cases where it may be 
advantageous to use kinematical variables (Lanczos, 1970). 
They used the idea of pseudo-coordinates (see, Pars 1979) 
which has, more recently, been again explored by Shan (1975)2. 
Synge (1926) has also provided an alternative set of equations 
of motion of nonholonomic systems in terms of the geometry 

The authors are thankful to an anonymous reviewer for pointing out this 
reference to them. 
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of the resultant trajectories. As such, his formulation is dif­
ficult to directly apply to engineering problems. 

From a practical standpoint, however, the computational 
difficulties of directly solving a minimization problems at each 
instant of time to describe the motion of a mechanical system 
made Gauss's principle unattractive at the time. This caused 
mechanicians of the late 18th, 19th, and 20th centuries to 
expound on, and mainly utilize the methods of Jacobi and 
Hamilton in the solution of problems in mechanics. Modern 
day texts in classical mechanics usually concentrate on these 
two latter approaches (e.g., Arnold, 1980), often relegating 
Gauss's principle to the position of a theoretically insightful 
approach, yet practically speaking, an unusable novelty. 

In this paper we show that with our improved understanding 
of generalized inverses of rank-deficient matrices, Gauss's 
principle may offer a new, direct and oftentimes simpler ap­
proach to handling complex problems in mechanical systems. 
This is true in particular where nonholonomic and rheonomic 
constraints may be present. The key idea is that Gauss's Prin­
ciple allows us to reformulate the equations of motion of 
constrained mechanical systems as a quadratic programming 
problem. In this paper we solve this quadratic programming 
problem, and thereby obtain a new set of explicit equations 
governing the motion of constrained, discrete dynamical sys­
tems. In contrast with the hereto used standard approach, 
which requires the use of Lagrange multipliers (e.g., see Ro­
senberg, 1972) or an expanded set of coordinates (Appell, 
1925), the new approach developed here does away with the 
need for Lagrange multipliers. Furthermore, these equations 
are valid for both holonomic and nonholonomic constraints 
thereby treating both these types of constraints with equal 
consideration, and ease. The paper thus presents a unified 
approach to the handling of equality constraints in the ana­
lytical mechanics of discrete systems. In addition, an explicit 
expression is provided for the determination of the forces-of-
constraint required so that a discrete mechanical system sat­
isfies a given set of nonholonomic constraints. 

Wang and Huston (1989) have looked at the representation 
of the equations of motion for nonholonomic systems, more 
from a matrix algebra standpoint. They also obtain equations 
of motion which do not involve any Lagrange multipliers. The 
equations obtained in this paper are, in a sense, generalizations 
of their results because we present the results in terms of non­
specific generalized inverses which belong to certain classes. 
With the flexibility of choosing any generalized inverse from 
a given class of inverses, specific generalized inverses suitable 
for specific problem situations can often be found quickly and 
efficiently. 

In Section 2 we present a simple, short derivation of Gauss's 
principle for nonholonomic systems. The constraints are taken 
to be in Pfaffian form. The exposition in this section, we belive, 
is not available in the current literature (e.g., in Whittaker 
(1917), Synge (1926) and Pars (1979)), and provides some new 
insights. In Section 3 we use the results obtained in Section 2 
to provide an exact solution to the constrained quadratic min­
imization problem governing the motion of constrained, dis­
crete mechanical systems. In Section 4 we obtain explicit 
expressions for the constraint forces needed to satisfy the im­
posed constraints. Explicit equations for systems subjected to 
nonholonomic constraints are also provided. Section 5 illus­
trates our results using three numerical examples. The first 
deals with nonholonomic constraints, the second with the non­
linear oscillations of a pendulum subjected to nonlinear con­
straints. The third deals with the determination of the forces 
of constraint that need to be imposed on an oscillatory system 
described by a coupled Duffing's oscillator so that a specified 
time-dependent trajectory (constraint) is followed in config­
uration space. This latter example shows the power of our new 
formulation to possible applications in the field of robotics 
and position-tracking control of mechanical systems. 

2 Gauss's Principle 
Consider a holonomic mechanical system with /3-degrees-of-

freedom whose generalized coordinates are qx, q2, qit . . , q„. 
The Lagrange equations describing the motion of the system 
may be written as 

d (df\ dT 
(1) 

where T denotes the kinetic energy and Qr is the generalized 
impressed force. The kinetic energy can be expressed as 

T=- 2 augiqJ+^bi9>+c' (2) 
'. J= i 

where, in general, the ay and b, and c are functions of the 
generalized coordinates and time. 

Assume now that the system is subjected to an additional 
p{p < n) independent nonholonomic, Pfaffian constraints of 
the form 

2 akrdqr + l3kldt = 0, k = 1, 2, . . , p (3) 

where akr and fik, are functions of the generalized coordinates 
and time. We note that the constraints may be scleronomic or 
rheonomic, catastatic or a catastatic (Rosenberg, 1972). These 
p constraints may be thought of as imposing additional con­
straint forces, Qj, on our system, thereby altering the set of 
Eqs. (1) to 

•Qr+Qr,r=l,2, . 
d_ fdT\_ar 

dt \dqrj dqr~ 

Expanding the first term in Eq. (4) we get 

n. (4) 

•ŝ n •• , -̂ -i dars . . -̂ n da, 
= ZjarsQs+2J^-qJqs+2_l 

s = l y ,s=l °qJ s=\ dt 

"db"dbr . 

s=l 7 - 1 ^J 

Expanding the second term we similarly get 
dT l " a„,y . . " dbi . dc 
dqr 2 p1 dqr fr[ dqr dqr 

(5) 

(6) 

Denoting q: = [qx q2q3. . q„]T, and substituting expressions 
(5) and (6) in relation (4), we obtain Lagrange's equations as 

Aq +f(q,q,t) = Q + Q', q(0) = q0, q(0) = q0 (7) 

where the vector function/is in general a nonlinear function 
of its arguments and Q: = [Qu Q2, . . . , Q„]. The vector Q' 
is similarly defined. The n X n matrix A is positive definite 
and symmetric, and is related to the inertial properties of the 
system (Rosenberg, 1972, pp. 202). 

Given the generalized coordinates and the generalized ve­
locities qr and qn let q'r be any kinematically admissible ac­
celeration which satisfies the/7 nonholonomic constraints given 
by equation set (3). Thus, the set {qr, qn qr) satisfies the 
differential constraint equations 

£ <*klq'r + S E ^ QsQr+ J j ~ q, 
r=\ r=\ s = l 0<Js s=l " ^ 

+S^lM.*^.. dt 
,P- (8a) 

Furthermore, if qr are the actual generalized accelerations 
of the mechanical system satisfying both the Lagrange equa-
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tions and the constraints (3), then the set (qn qr, qr) satisfies 
the set of equations 

«*rft + ^j 2j -J- QsQr+ IJ - ^ ft 
r = l r = l . t=l " « 1 = 1 3ft 

+ 2 ^ f t + ̂  = 0,*=l,2, . . . , p . (86) 
a? dt 

Subtracting the corresponding equations from the sets (8a) 
and (8£>), we obtain 

J] otkr(qr - f t ) =0, £= 1, 2, . . . , p. (9) 

Thus, 

bqr = q'r~q„ r= 1, 2, . . . , n, (10) 

are kinematically admissible instantaneous variations of the 
acceleration; i.e., virtual accelerations which are consistent 
with the nonholonomic constraints. Thus, by D'Alembert's 
principle, the total virtual work done by the forces of con­
straint, Q!, under these virtual accelerations equals zero. This 
requires 

f)a'i«,=i]a'(*-j,)=[ef(?'-?)=o, ai) 
r = l r = l 

where in the last expression we have denoted Q' = [Q[, Q2' 
Qi • • Q'nY- Using Eq. (7), this in turn entails 

(12) [Aq+f(q, q, t)-Q]T(q'-q) =0. 

This condition is equivalent to 

[Aq'+f(q, q, t) -Q]TA~l[Aq' +f(q, q, t)-Q] 

= [Aq+f(q, q, t)-Q]TA-l[Aq+f(q, q, t)-Q] 

+ (qr-qr)
TA(qr-qr). (13) 

Since A is positive definite, the second term on the right-
hand side is always positive. Hence, we obtain the condition 
that the generalized accelerations, qr(t) of the constrained 
mechanical system are such as to minimize 

\\J{q(t)\q(t),q(t)}f2: = )\A~U2[Aq(t) 

+Aq,q,t)-Q\H (14) 

at each instant of time t, while satisfying the set of constraints 
(3). We note that both qr(t) and q(t) are known at time /. 

We have thus reduced the problem of the determination of 
the evolution of a mechanical system subjected to given forces 
to that of solving a constrained quadratic minimization prob­
lem at each instant of time. We note that while the expression 
J in (14) may be nonlinear in terms of the generalized coor­
dinates and velocities, it is always linear in the unknown ac­
celerations. 

We point out here that were we to have chosen rectangular 
coordinates (xh yit zi), i = 1, 2, . . , n, for the 3« degrees-
of-freedom of a discrete system of n masses m,, /' = 1 , 2 , . . , 
n then expression (14) would reduce to 

Y\ m\xr -( + mr)yr—- + mr)zr-—[ , (15) 

where Xn Yn Zr, refer to the x, y, z-components of the im­
pressed forces on mass mr. This expression was first ennuciated 
in words by Gauss (1829) who called it the ' ' constraint,'' thereby 
ennuciating the "principle of minimum constraint" (Whit-
taker, 1917). It was further elaborated on by Hertz (1917) and 
many others. 

Since the forces of constraint Q' satisfy Eq. (7), the min­
imization in (14) can also be expressed as 

Minimize (IU 1/2 
Q'\ (16) 

Thus, we see that for the mechanical system to satisfy a 
given set of constraints at each instant of time, Gauss's prin­
ciple requires that at each instant the norm.of the constraint 
forces Q' weighted with respect toA'1/2be minimized—hence 
the name, the principle of minimum constraint. In addition, 
the p constraint equations need to be satisfied. We show in 
the next section how this minimization can be carried out 
explicitly and also the explicit expression that can be written 
down for the constraint forces. 

3 Solution of the Constrained Quadratic Minimization 
Problem 

Using Gauss's Principle, we have thus reduced problems in 
mechanics to finding the accelerations qr(t) at each instant, 
/, given q(t) and q{t), so that we require to 

Minimize (\\A-1/2[Aq(t) +f(q, q, t)-Q}\\\}, (17) 

while satisfying the constraints (8b). These constraints are 
again linear in the accelerations and can be written in matrix 
form as 

Dq(t)=g{q(t),q(t),t] (18) 

where we have denoted by D thsp x n matrix [a]y and by g 
the vector containing the remainder of the terms in Eq. (8b). 
The right-hand side of Eq. (18) is known. For convenience, 
we shall now drop reference to the independent variable /, 
remembering that Eqs. (17) and (18) need to be satisfied at 
each instant of time. The solution of the consistent set of Eqs. 
(18) is obtained as (Rao and Mitra, 1972) 

q = D~g+(I-D-D)h (19) 

where the n x p matrix D~ is any generalized inverse (g-
inverse) of D which satisfies the relation 

DDD = D. (20) 

The vector h is arbitrary. Substituting relation (19) into relation 
(17), we obtain 

(21) Min WHh-zWl 
h 

where 

and 

H=AW2(I-D~D): =AW2H, (22) 

z=-lAW2D-g + A~U2(f-Q)} (23) 

For brevity, we have dropped the arguments of the vector 
function/. We next obtain the solution, h, of the least squares 
problem (21) as (Rao and Mitra, 1972), 

h = Hfsz+(I-HrsH)w, (24) 

where the matrix Hf s is the generalized ' 'least-squares" inverse 
defined as satisfying the relations 

and 

(HHiH)=H, 

[HHfs] 

(25) 

(26) = HHis. 

The vector w is again an arbitrary vector. 
Using expression (24) in (19), we thus obtain the explicit 

solution to the constrained minimization problem given by Eqs. 
(17) and (18) as 

q = D~g+ (I-D~D) [Hfsz+ (I-HfsH)w) (21a) 

= D-g+ (I-D~D)Hrsz+ (I-D~D)w- (I-D~D)HfsHw. 
(21b) 

We now express the matrix H, as in Eq. (22), by Al/2H. The 
least squares g-inverse, / /&, can now be expressed as 

Hrs:=HfsA-y2= (I-D-D)TsA-m, (28) 
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where 

HHfsH=H, and [HHfs]
TA=A[HHfs]. (29) 

Relations (29) follow from the definition of Win Eq. (22) and 
that of i//7 in relations (25) and (26). Using relation (28) in 
(27b), we observe that the last two terms on the right-hand 
side cancel out, yielding 

c/ = D-g+(I-D-D)Hfsz (30a) 

= D~g- (I-D'D) {I-DD)is{D~g+A-x(f-Q)). 
(30ft) 

We have thus obtained explicit expressions for the accel­
erations at time t for the constrained motion, given the gen­
eralized coordinates and velocities. 

Heuristically speaking, the inverse, D , comes about (and 
is related to) to the constraints on the mechanical system, while 
the inverse, H^, comes about (and is related to) the motion 
of the dynamical system. These two inverses employed in 
expression (30o) are in general different in nature from each 
other (Rao and Mitra, 1972). The matrix D refers to any g-
inverse of D (i.e., satisfying relation (20)), while the matrix 
Hj~s refers to any "least-squares g-inverse" of H (satisfying 
relations (25) and (26)). From a practical standpoint, the flex­
ibility of choosing any g-inverse belonging to the requisite 
classes stated above is a useful advantage in obtaining the 
equations of motion of complex dynamical systems, for, de­
pending on the situation at hand, certain g-inverses are easier 
to determine than others. 

For example, a possible candidate for H^ might be 
[HTH]HT. Another might be the often-used Moore-Penrose 
(MP) inverse. However, the MP inverse is an element of both 
the set of g-inverses and the set of least squares g-inverses, 
and is a useful candidate because of the several computer codes 
available for its ready determination. The MP inverse can thus 
be used for both D and Hj~s in Eq. (30«). 

Even if the matrix D has rank/?! < p, we are assured (Lawson 
and Hanson, 1974) that the accelerations thus obtained are 
unique because the matrix A is of rank n. However, when/?! 
< p, the equation set (18) may not be consistent (Dahlquist 
and Bjorck, 1974) for all right-hand sides g. When the rank 
of D is p, a unique solution to the constrained minimization 
problem exists for all g. 

4 Explicit Form of Constrained Equations of Motion 
and the Constraint Forces 

We have obtained in Eq. (30) an explicit expression for the 
generalized accelerations at time t, given the generalized co­
ordinates and the velocities. Using this, we can therefore ex­
press the constrained equations of motion, valid at any time, 
/, for a general system in first-order form, as 

d_ 
dt 

with q(Q) 

= q0, q(0)-
D-g+(I-D-D)Hiz 

q0. (31) 

The quantity z is defined in Eq. (23). We note this explicit set 
of equations for the system include the effects of the Pfaffian 
constraints. They can therefore be thought of as the new equiv­
alent equations of motion; they constitute a generalization of 
the equations found in Wang and Huston (1989). 

The equation set (31), which in general will be nonlinear, 
can now be numerically solved using any of the standard nu­
merical integration schemes, such as the fourth-order Runge-
Kutta method, or other methods like the predictor corrector 
methods. The right-hand side of Eq. (31) guarantees that the 
accelerations satisfy both the constraints and Gauss's Principle 
simultaneously at each instant of time. 

Furthermore, comparing Eqs. (7) and (30a), the forces of 
constraint can also be explicitly written as 

Q' = (I-AXA-1)[f(q,q,t)-Q] + A(I-X)D-g, (32) 

where we have denoted by the matrix X the quantity (/ -
DD)HfsA

in. Often the constraints require that the system 
follows a given trajectory in configuration space. The con­
straint forces can then be thought of as the control forces 
necessary to cause the system to follow this particular trajec­
tory. 

The satisfaction of the constraint equations at each instant 
of time for the mechanical system entails the development of 
constraint forces which, at each instant of time, satisfy Eq. 
(16); the constraint forces Q', by Guass's Principle, must there­
fore minimize \\A~U2Q'II . We note the the constraint forces 
acting at any instant, thus require for their determination noth­
ing other than the displacement and velocity information at 
that instant, along with information about the constraints, at 
that specific instant. These forces of constrain can hence be 
determined at each time instant as the system's dynamics evolve. 
This makes the approach useful in real-time control, especially 
when the complete constrained trajectory is not known a priori. 
Thus, use of relation (32) may be made in the determination 
of real-time control required for tracking a given trajectory. 

Equation (32) also shows that, in general, the control force 
vector, Q', is dependent on q, q, and /, and therefore con­
stitutes closed-loop control. We note that the elements of mat­
rices D and A depend on the coordinates q, and time. Similarly, 
elements of the vector g depend on qh <j, and time. In certain 
special situations the elements of D, A, and g may depend 
solely on time; then, the second term on the right-hand side 
of Eq. (32) is not dependent on qit and q: and may be thought 
of as the feed-forward component of the total control force 
which is required to generate the constrained motion. Thus, 
in this special case, the control force may be thought of as 
being composed of a feedback control force (the first term of 
Eq. (32)) and a feed-forward control force. 

5 Numerical Examples 

In this section we consider three examples, the last two of 
which are numerical. The first deals with the constrained mo­
tion of a particle free of any "given" forces, where the con­
straint is nonholonomic. The second deals with the large 
amplitude motion of a planar pendulum. The pendulum bob 
is provided with two degrees-of-freedom and a constraint re­
lation is provided on the length of the pendulum. We first 
constrain the length of the pendulum to be a constant. We use 
this example as a base line to check our results with the direct 
use of Runge-Kutta integration where the angle coordinate is 
used to preserve the length constraint. We next consider a more 
general, nonlinear constraint on the length of the pendulum. 
The third example is related to the problem of controlling a 
dynamical system (e.g., a machine tool) so that it follows a 
given trajectory. Here we show the ease with which the feed­
back tracking control force can be obtained using Eq. (31). In 
all the computations, a variable-step Runge-Kutta integration 
scheme is used with a local error tolerance of 10"10. The Moore-
Penrose inverse is used for each of the generalized inverses in 
Eqs. (31) and (32). 

(1) Consider the motion of a particle of unit mass, free of 
any "given" forces, moving in three-dimensional euclidean 
space (ql = x, qi = y, q?, = z). Let the particle be subjected 
to the nonholonomic, catastatic constraint 

y=zx. (36) 

At time t = 0, the initial conditions of the particle are 
compatible with this constraint. We want to find the equations 
of motion for the particle for t > 0. 

The system has two degrees-of-freedom; yet, the nonholon­
omic nature of the constraint requires three coordinates for a 
specification of the system's configuration. This example is 
taken from Rosenberg (1972, p. 204). Since there are n o ' 'given" 
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Fig. 1 Response of a pendulum of constant length to large amplitude 
motions using the new constrained equations of motion 

forces, Q= / = 0. The matrix D = [~z 1 0] here, and the 
matrix D~ = {1/(1 +z2) ] [-Z 1 0]T. The matrix A and the 
vector g are scalars equal to unity and zx, respectively. The 
vectors/and Q are zero, and the MP inverse of (/ - D~D), 
obtained by using full rank factorization, is given by 

— ^ - ^ - T O 
(\+z2) (l+z2) 

(I-D~D) + 

(1+z2) (l+z2) 
(37) 

Using Eq. (29), we obtain explicitly the constrained equations 
of motion as 

zx 
'(l+z2) 

(38) 

which are, of course, the same as Rosenberg's result. 
(2) Using rectangular axes in an inertial frame of reference, 

we can express the motion of the pendulum bob in the x and 
^-directions (y taken downwards) as 

mx = 0, my = g; x(0) = y(0) = 0, x(0) = a, y(0) = L, (33) 

along with the constraint given by 

Fig. 2 Response of a pendulum with nonlinear constraints with n = 
- 0.1 and a = 4.0 

The value of m is taken to be unity, that of L was chosen to 
be 20 units, and that of g to be 4ir. Figures 1 (a-d) show the 
results obtained by using Eq. (31), for « = 20 units, with n = 
0. The fourth-order Runge-Kutta scheme (RK) was used. The 
oscillations are in the nonlinear range; the maximum angle 
made by the pendulum bob with the vertical during the oscil­
lation being about 80 degrees. These results are the same (to 
within the error tolerance) as those obtained using the direct 
Runge-Kutta (RK) integration taking the angle of rotation 
(about the vertical) of the pendulum bob as the generalized 
coordinate. Figures 1 (e) and 1 (/) show the phase plots in the 
x-x and the y-y planes. Figure 1 (g) shows the extent to which 
the constraint is satisfied during the numerical computations. 
Here, the error is defined as the difference between the left-
hand side and the right-hand side of Eq. (34), a quantity which 
should theoretically be zero. 

Figures 2(a-d) show the response of the system when a = 
4and/i = - 0 . 1 . We again integrate Eqs. (31)usingthe fourth-
order RK method. Figures 2(e) and 2(f) show the phase plots. 
As before, Fig. 2(g) shows the error in satisfying the con­
straint. 

Figure 3 shows the phase trajectories of the same system 
starting with different initial velocities, a = 0.5, 1,2, and 4. 

(3) The third example deals with a coupled, damped Duf-
fing's oscillator described by the equations 

x2+y2- L2{1 

mix1 + k,(Xi-x2) +ci(xi-x2) +ki(xi-x2)
3 = 0 

m2x2 + k2x2- ki(xi - x2) + c2x2- c^x i 
(35a) 

•/zsin(jr)] (34) ~x2)+k2x
i
2-kl(xl-x2y = 0, (35b) 
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Fig. 3 The phase plots for p. = - 0.1. Figs. 3(a) and 3(d) show the 
response for a = 0.5; Figs. 3(c) and 3(d) show the response for a = 1.0; 
Figs. 3(e) and 3(r) show the response for a = 2; and, Figs. 3(g) and 3(h) 
show the response for a = 4.0 

with 
x{(0) = a, x2(0) = b, x{(0) = c, and Xi(0) = d. 

We aim to determine the tracking control forces required 
so that the relative displacements of the masses are constrained 
to follow the exponentially decaying sinusoidal trajectory given 
by 

xl(t)-x2(t)=Ae~c"sm((,it). (35c) 

The parameters describing the system and its constraints are 

m{=2, m2=\, Ari = 10, k2= 12, ki = l, k2 

= 2, ci = 0.1, c2 = 0.15,A = l, CO = 2TT. 
The initial conditions are taken to be a = 1, b = 1, and d 

= 2. We note that the initial conditions must satisfy the con­
straints and hence the parameter c is determined from d and 
Eq. (35c). Figures 4(a) and 4(b) show the time histories of 
the displacement and velocity, obtained by integrating Eq. (31), 
when the parameter a equals 4 in Eq. (35c). The solid lines 
show quantities relevant to the " 1 " coordinate (i.e., to mass 
mi), and the dashed lines show quantities relevant to the "2" 
coordinate (i.e., to mass m2). Figure 4(c) shows the control 
forces (/i and/2), calculated using Eq. (32), required to be 
applied to masses m\ and m2, respectively, to track this tra­
jectory appropriately in configuration space. Figure 4 (d) shows 
the computed value of [x\(t) - x2(t)]. We find (see, Fig. 
5(a)) that the constraint is tracked to within an error (i.e., 

Time 

Fig. 4 Figures 4(a) and 4(b) shows the constrained response of the 
coupled Duffing's Oscillator, with a = 4.0; Fig. 4(c) shows the two com­
ponents of the control force needed to have the system follow this 
constrained trajectory; Fig. 4(d) shows [x,(f) - x2(f)]. Figures 4(e-h) show 
similar results when the constraint is enforced with a = 0.4. 

, x l O " ; XlO'" 

Time Time 

Fig. 5 (a) position tracking error for « = 4; (b) position tracking error 
for a = 0.4 

LHS-RHS of Eq. 35(c)) of 10~9, a number consistent with 
the local error tolerance level of 10"10 used for the RK inte­
gration. Figures 4(e-h) show similar results when the value 
of a in Eq. (35c) is now taken to be 0.4. All other parameter 
values are left unchanged. As before, the solid lines show 
quantities relevant to the " 1 " coordinate and the dashed lines 
show quantities relevant to the "2" coordinate. The error in 
tracking this trajectory is shown in Fig. 5(b), and is again 
found to be of the order of 10"9. 

6 Conclusions and Discussion 
This paper deals with discrete, dynamical systems which are 
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subjected to Pfaffian, holonomic, and nonholonomic con­
straints. By using Gauss's Principle of Least Constraint, we 
have recast the Lagrange equations which describe the con­
strained motion of such a system in the form of a quadratic 
programming problem. In this paper we present an explicit 
analytical solution to this constrained quadratic minimization 
problem and thereby obtain an exact and explicit set of equa­
tions that describe the constrained motion of discrete, me­
chanical systems subjected to Pfaffian constraints. These 
equations can be numerically integrated using standard nu­
merical techniques like the Runge-Kutta and Predictor-Cor­
rector methods. 

We summarize our finding as follows: 
1 We have used Gauss's Principle to obtain a new concep­
tualization of the equations of motion of a constrained, discrete 
dynamic system. The equations of motion that we develop, 
directly yield the time evolution of the system; we do away 
with the need to use any Lagrange multipliers. Thus Gauss's 
principle, though largely neglected by the mechanicians of this 
century, is shown to yield significant insights into the dynamics 
of constrained systems. 
2 Besides its aesthetic appeal, the method proposed herein has 
special advantages when working with nonintegrable con­
straints. In fact it does away with the somewhat unnecessary 
categorization of Pfaffian constraints into: (a) holonomic and 
nonholonomic constraints and (b) rheonomic and scleronomic 
constraints—the approach being able to handle all these types 
of equality constraints with equal ease. The equations devel­
oped here can be used in situations where the derivation of 
the equations of motion (using Lagrange multipliers) for con­
strained systems may become cumbersome and/or difficult to 
implement computationally. The approach thus provides a 
conceptual and practical simplicity in the formulation of the 
equations of motion of complex mechanical systems, because 
the constraints can be explicitly handled as additional equations 
whose effect can be directly incorporated in the equations of 
motion. The flexibility that this formulation affords in the 
specific choices of the generalized inverses D~ and H^, is an 
added feature which is new, and particularly helpful from a 
practical standpoint. Response sensitivity studies related to 
altering the constraints can thus be easily carried out. 
3 Even for systems, where it may be possible to eliminate 
certain variables directly from the equations of motion, the 
method provides a direct and more aesthetic approach by not 
favoring any particular subset of coordinates over any other. 
4 The explicit expressions obtained for the constraint forces 
may be used to advantage when dealing with the determination 
of control forces required to control a system so that it follows 
a certain trajectory in configuration space, or more generally, 
satisfies a given set of Pfaffian constraints. Such problems 
arise in many areas of application, like position tracking of 

machine tools (Tomizuka, 1987) and robotic manipulator con­
trol (Seraji, 1987). 

Furthermore, we obtain the additional insight from Gauss's 
Principle that for the system to satisfy the constraint equations 
at each instant of time, a specific quadratic function of the 
constraint forces, namely, Q'TA~lQ', must be minimized at 
each instant of time. This sheds light on the reason why least-
squares formulations of the tracking control problem have 
often not led to proper trajectory tracking when minimizing 
the integrals of "general quadratic functions of the control 
forces. 
5 The three examples considered here illustrate that the ap­
proach may be useful in answering the two commonly occur­
ring problems in particle mechanics (Rosenberg, 1972): (a) 
finding the response of mechanical systems subjected to general 
types of time-dependent, Pfaffian equality constraints and (b) 
finding the control forces required to be imposed on a system, 
in real-time, so that it satisfies a given set of holonomic or 
nonholonomic Pfaffian constraints. Our third example shows 
that by using the new set of dynamical equations obtained 
herein, the accuracy with which the system is led to follow a 
constrained trajectory can indeed be high. 
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Jumps to Resonance: Long 
Chaotic Transients, Unpredictable 
Outcome, and the Probability 
of (^stabilization 
For nonlinear oscillators with the ability to escape from a potential well, jumps to 
resonance from a fold can result in qualitatively different types of response. They 
may be safe where the system always restabilizes onto a oscillation within the well; 
unsafe where the system always escapes out of the well; or indeterminate where the 
outcome is unpredictable. In the indeterminate case, long chaotic transients may 
persist before the system decides to which long-term behavior it will settle upon. 
We determine at which control parameters indeterminate jumps occur. We also 
examine how the transients scale as well as the probability of restabilization after 
the bifurcation. 

1 Introduction 
The periodically driven motions of a mass in a potential 

field, with one or more minima, have often been used to model 
the nonlinear oscillations of a wide class of mechanical and 
electrical dynamical systems. The single well problem has been 
used to model the nonlinear rolling motions of a ship (Thomp­
son, 1989; Soliman and Thompson, 1989); the Duffing two-
well potential has been used to describe the motions of a column 
loaded beyond its buckled state (Holmes and Whitley, 1983; 
Moon and Li, 1985; Holmes and Moon, 1983); and multiple 
wells have been used to model the motions of a pendulum 
which is of importance in the study of Josephson junctions 
and charge density plasmas (Huberman and Crutchfield, 1979). 

Through analytical investigations, numerical simulations and 
experimental observations, all of these systems have exhibited 
a wide range of complex nonlinear phenomena; multiple co­
existing attractors, quasi-periodic, subharmonic and chaotic 
oscillations, cross-well motions, discontinuous jumps, and hys­
teresis phenomena as well as other bifurcational behavior. 
Basins of attraction, associated with each attractor, and the 
boundaries that separate them also undergo changes. 

Recent studies have shown that for such nonlinear oscillators 
with the ability to escape from a potential well, qualitatively 
different types of response can occur after a jump to resonance 
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at a. fold or a saddle-node bifurcation (Soliman and Thompson, 
1991; Thompson and Soliman, 1991). 

In this paper we consider the various types of jumps, their 
associated transient behavior, and the nature of the long-term 
response that can occur for a typical softening sinusoidally 
forced damped mechanical oscillator with a cubic potential, 
V = \/2x2 - l/3x3. This particular potential is the universal 
form always encountered just before a mechanical oscillator 
loses its stability at a fold catastrophe; this being the only 
typical mode of instability that can be generically encountered 
by a gradient system under the variation of a single control 
parameter (Virgin, 1986). 

We hence consider the equation of motion 

x + /3x + x-x2 = Fsm(o)t) x=y (1) 
where x is the dependent variable and a dot denotes differ­
entiation with respect to time t. The positive coefficient, j3, 
represents the magnitude of damping, and the oscillator is 
driven by the sinusoidal force of magnitude F and circular 
frequency co. We fix throughout on /3 = 0.1, and focus atten­
tion on driving phase <p = 180 deg, so that to = IT/OI. We pay 
particular attention to jumps to resonance, which from a prac­
tical point of view have important implications since they can 
result in large amplitude oscillations that may be dangerous 
or even catastrophic. 

In Section 2 we look at safe determinate jumps to resonance. 
We show that under the slow variation of a control parameter, 
a small stable oscillation can become a large amplitude oscil­
lation which remains within the well (Fig. 1, Case (i)). This 
bifurcation is not catastrophic in the sense that the system 
always restabilizes onto the bounded oscillation. Long, almost 
periodic transients can persist until the system settles onto the 
large amplitude oscillation. 

In Section 3, we consider indeterminate jumps to resonance. 
Here, jumps can result in a long-term oscillation that remains 
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Fig. 1 For the anharmonic potential, V(x) = 1/2x2 - 1/3x3, a jump to 
resonance at a told can result in qualitatively different types of response. 
After some initial transient, the system may either restabilize to a large 
amplitude oscillation within the well (Case (i)) or may "escape" to a 
remote attractor outside the well (Case (ii)). 

bounded or can result in motions that explode and escape over 
the hilltop and out of the well to the remote attractor at infinity, 
with x — oo as t — oo (Fig. 1, Case (ii)). In the physical sense 
escape can be regarded as failure of the system: in the case 
of the ship problem this would mean capsize; in the case of 
the buckled beam problem it would mean snap-through. For 
these indeterminate jumps we may not predict the final out­
come, whether it be safe or unsafe, but long chaotic transients 
can occur until the system finally settles down. 

In Section 4 we consider unsafe jumps to resonance. Here, 
under small parameter changes the system always escapes out 
of the well. 

By establishing the events which render a system indeter­
minate, we determine, in the (F, oi) control space the critical 
control parameter values which put bounds on the type of 
jump that occur. For control parameters in which indeter­
minate jumps occur, we examine the probability of restabili-
zation, and how such a measure may be useful when defining 
the robustness of a system that is liable to such bifurcations. 
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Fig. 2 (a) Resonance response curve, where a safe jump to resonance 
from fold A occurs. Here, under small parameter changes, the system 
always restabilizes at R. (b) Attractor-basin phase portrait at /S = 0.1, F 
= 0.0562, u = 0.873 just prior to the jump at A. The saddle-node pair, 
0,and S„ (whose basin of attraction is shaded in grey dots), are indicated 
by black dots within white circles. The large amplitude oscillation, S„ 
is indicated by a white circle, whose basin of attraction is shaded in 
black. White denotes the unsafe (escaping) basin of attraction for the 
attractor at infinity. Here it can clearly be seen why the forthcoming 
bifurcation will result in the system settling onto Sr 

2 Safe Determinate Jumps: Predictable Transients and 
Outcome 

In order to illustrate the jump phenomena it is useful to plot 
the steady-state resonance response diagrams showing how xm, 
the maximum value of x{t), varies with w at different Flevels. 
Figure 2(a) shows such a diagram which clearly delineates the 
softening hysteresis phenomena; here a fourth-order Runge-
Kutta numerical algorithm was used to integrate Eq. (1). 

If the system is started at a relatively high frequency, and 
then one slowly decreases the excitation frequency there is an 
increase in amplitude along the resonant part of the response 
curve, Sr. The smooth variation of amplitude and frequency 
continues until point C; near the peak of the response curve. 
Here there is a flip bifurcation where the n = 1 oscillation 
loses its stability and becomes an n = 2 subharmonic oscil­
lation. There is then an infinite period-doubling cascade which 
eventually results in a chaotic attractor, which is then destroyed 
in a crisis (Grebogi et al., 1983, 1987). The system may then 
restabilize or escape out of the well (Stewart and Ueda, 1991). 
There is also an opposing cascade and a jump from resonance 
at fold point B, which always restabilizes onto the nonresonant 
attractor (Soliman and Thompson, 1991). 

Conversely, by slowly increasing the frequency from a rel­

atively small value, one suddenly encounters a jump to reso­
nance from fold A. Here the system which was originally 
oscillating with a small amplitude (lying on the nonresonant 
branch, S„) settles on to a large resonant amplitude oscillation, 
R. 

Between fold points A and B there is the well-known region 
of resonant hysteresis. Here the two stable steady-state oscil­
lations are separated by an unstable saddle solution, Dr. To 
which of the stable co-existing attractprs the system will ap­
proach depends upon the initial conditions. In the space of 
the starting conditions (x0, x0) att = Q, there will be domains 
or basins of attraction such that motions originating in the 
basin of S„ will lead, after the decay of transients, to S,„ while 

' initial conditions in the basin of Sr will lead to Sr. Although 
physically unrealizable, the unstable saddle solution Dr plays 
an important role in the basin organization; the stable mani­
fold, Ws(Dr), of Dr determines the boundary between the two 
co-existing stable attractors. Furthermore it is the stable man­
ifold, Ws(Dh), of the hilltop saddle cycle Dh (which originates 
from the unstable equilibrium {F = y = 0, x = I}) that 
determines the boundary between the safe starts (all initial 
conditions generating orbits that remain bounded) and unsafe 
starts that tend to x — oo as t — oo. 
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Figure 2(b) shows the basin organization, in the Poincare 
section, just prior to the jump to resonance at A. Here 200 x 
200 initial conditions were chosen in the form of a grid and 
integrations were continued until the system either stabilized 
onto one of the bounded attractors, or escaped out of the well. 
Here it can clearly be seen that when the saddle-node anni-
hiliation of Sn - Dr occurs, the system will restabilize onto 
the resonance attractor Sr as it is located in the interior of the 
safe basin well away from the smooth escape boundary, giving 
a totally determinate jump to Sr which is preserved under 
conditions of small external noise or small but finite incre­
mentation of a control parameter. 

Long transient behavior is observed after the saddle-node 
bifurcation as is seen in Fig. 3(a). Here the system is set on 
the saddle node and then given a small increment AF = F—-
FA. There is no significance whether we chose to cross the 
saddle-node boundary by an increment of For by an increment 
of o, or indeed by any other parameter. Here long, almost 
periodic transients occur which mimic the behavior of the 
destroyed saddle node until the orbit settles onto the steady-
state large amplitude oscillation. Moreover, it would be not 
only the initial conditions of the former saddle node that would 
exhibit this type of behavior, but all the initial conditions which 
constituted its basin prior to its destruction that would generate 
orbits with long transient behavior; they would rapidly ap­
proach the remnant of the destroyed attractor, remain there 
for some time, and then be expelled towards the resonant 
attractor (Van Damme and Valkeering, 1987). 

In our studies we have considered the transient length T of 
a given initial condition as the time to reach a given attractor. 
This would be a combination of the trapping time spent in the 
vicinity of the destroyed saddle node, the intermediate tran­
sient, and thereafter the time taken to reach the chosen at-

1.0 x(t) 

200 

Fig. 3(a) 

tractor to within a specified criterion. Figure 3(b) shows that 
the "time" taken to reach the resonant attractor for several 
increments of AF. It can be seen that T approximately scales 
with the system parameter such that 

T O c ( / i - / i * ) - T , 

where n* is the critical parameter and y is the critical exponent. 
For relatively small values of AF, we find y = 0.49 which 
corresponds very closely to the analytical predictions (7 = 
0.50) and numerical results of Van Damme and Valkeeing 
(1987) concerning the scaling of transients in the local neigh­
borhood of a fold bifurcation for the two-dimensional quad­
ratic map. This suggests that for very small changes in the 
incremental bifurcation parameter, the criterion for steady-
state oscillations would not adversely effect the value of the 
critical exponent although it may have a significant effect on 
the constant of proportionality. 

3 Indeterminate Jumps: Unpredictable Chaotic Tran­
sients and Unpredictable Outcome 

As parameters are varied both qualitative and quantitative 
changes occur not only to attractors (and their corresponding 
resonance responses), but as a result of global bifurcations 
their basins of attractions also undergo metamorphoses. It has 
been shown that at critical parameter values, a homoclinic 
tangling of the stable and unstable manifolds of the hilltop 
saddle cycle, Dh, can generate a fractal escape boundary 
(McDonald et al., 1985; Moon and Li, 1985; Thompson and 
Soliman, 1990). A further increase in a parameter can result 
in the unstable manifold of the resonant saddle Dr which leads 
towards the resonant attractor, becoming heteroclinically tan­
gled with the stable manifold of Dh. Under these conditions a 
jump to resonance at fold A becomes essentially indeterminate 
because the saddle node lies on the fractal escape boundary 
with an infinite number of escaping fingers having accumulated 
on to it (Soliman and Thompson, 1992a). If o were increased 
slowly at an infinitesimal rate, the system would find itself at 
A, sitting precisely on the escape boundary. It would therefore 
experience an infinite chaotic transient as its Poincare point 
maps along the stable manifold of Dh leading to the unstable 
oscillation of the hilltop saddle cycle. After the saddle node 

Safe and determinate jump to resonance 
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Fig. 3 (a) A typical time history illustrating the long transients that 
occur just after the bifurcation. Here a = 0.873, F = 0.0569, AF = F -
FA = 0.0002, x(0) = 0.243, y(0) = - 0.209. (b) Long transients beyond 
the saddle node bifurcation occur. Scaling of the transients gives T = 
k(F - FA)~y, where T is the time to reach the attractor and -y is the critical 
exponent. Here k = 0.826, y = 0.49. In this figure, the time to reach the 
attractor is measured in the number of forcing cycles. 
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annihilation, the basins that were accumulated onto the stable 
manifold of Dr will rearrange themselves and "sweep" through 
and fill the region of phase space previously occupied by the 
nonresonant basin (Enschenzi et al., 1989). The value of the 
bifurcational increment AF, will determine to which basin the 
initial conditions of the saddle node will preside. However, in 
any real situation, due to the inherent uncertainties in the 
specification in the parameter values, long-term predictability 
will be lost and hence the jump will become indeterminate. 
This behavior is clearly seen in Fig. 4. The system will expe­
rience a long chaotic transient leading either to the stable res­
onant attractor (or indeed any other attractor present within 
the well), or escape over the hilltop with x -~ <x> as t — oo. 
Figure 5(a) shows three possible outcomes under three slightly 
different increments of AF. The first time history shows the 
jump settling onto a n = 3 subharmonic oscillation; the second 
trace, from the same starting conditions but at a slightly dif­
ferent F, leads to the attractor at infinity; and the final trace 
shows the system settling onto the stable n = 1 resonant at­
tractor Sr. In all three time histories initially long, almost pe­
riodic transient behavior occurs; this is as a result of the co­
existing basins being highly intertwined in the vicinity of the 
saddle node; points mapping from one finger to the next will 
remain there for long periods until the system converges to its 
final outcome. Indeed the highly intertwined basin structure 
will result in fingers folding back upon on one another where 
longer thinner fingers wrap around the shorter fatter fingers, 
will result in unpredictability in both outcome and transient 
length which is clearly seen in Fig. 5(b). Here it can be seen 
that the transients are not typically scaled; an increase in AF 
does not necessarily imply a decrease of transient length. How­
ever, if one was to consider separately those transients that 
were qualitatively and quantitatively similar (i.e., those that 
lead to the same type of attractor; and neglect trials that in­
itialized on relatively thin (fat) fingers that obviously generated 
"exceptionally" long (short) transient times) a general scaling 
trend may be estimated. 

4 Unsafe Determinate Jumps: Predictable Transients 
and Outcome 

At a higher forcing level, several qualitative differences in 
the response curves occur as can be seen in Fig. 6. First, there 
is the growth of the superharmonic at about half the linearized 
natural frequency, but more importantly is the fact that the 
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Fig. 4 (a) Here an indeterminate jump to resonance from fold A occurs. 
Under small parameter changes, the system may restabilize at Ft (or 
indeed any other existing attractor within the well), or may escape to 
infinity, (o) Attractor-basin phase portraits at /J = 0.1, u = 0.83 just 
before (F = 0.0800) and after (F = 0.0805) the jump at A. The saddle-
node pair, D, and S„, are indicated by black dots within white circles. 
The large amplitude oscillation, Sn is indicated by a white circle, (c) 
Blow-up in the region of phase space close to the saddle and node just 
before and after the bifurcation. The large solid circles represent the 
saddle-node pair, and the small solid circle denotes the position of the 
destroyed saddle node. 
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Indeterminate jump to resonance 
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Fig. 5 (a) Indeterminate chaotic transients under a small forcing in­
crement. Three possible outcomes from values of F just beyond the 
indeterminate tangled saddle-node bifurcation at F = 0.08, u> = 0.83, 0 
= 0.1. Trace (a) at F = 0.080068 restabilizes on an n = 3 attractor. Trace 
(b) at F = 0.080069 escapes to infinity. Trace (c) at F = 0.008070 re-
stabilizes on the resonant n = 1 attractor. Poincare points are marked 
at phase 0 = 0. Window is - 1 . 2 < x < 1.2, 0 < t < 900. All runs start 
fromx(0) = -0.04166, y(0) = 0.3119. (b) Scaling of the transients beyond 
the saddle-node bifurcation becomes arbitrary; circles represent bifur­
cation realizations that escaped; triangles represent bifurcation reali­
zations that restabilized. The dominant trend for the escaping trails is 
estimated, with f = 0.52. 
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Fig. 6 As in Fig. 2 but here the jump is unsafe at F •• 
changes in parameters will result in escape. 

1.2 

0.1211. All small 

forcing frequency at E is greater than that at A. This leaves a 
regime where there is no attractor within the well and hence 
an inevitable jump to escape under both decreasing frequency, 
after the crisis of the chaotic attractor, and under increasing 
frequency from fold A. Figure 6(b) showing the basins of 
attraction just before the jump at fold A clarifies this situation. 
A typical time history just beyond the jump at A is shown in 
Fig. 1(d). The behavior observed here is similar to that seen 
for the safe jump but here rather than restabilizing onto the 
bounded attractor, the system always escapes out of the well. 
This situation may thus be deemed to be unsafe but deter­
minate. The transients can be long but are determinate with 
respect to their scaling properties as seen in Fig. 1(b). 

5 Critical Frequencies and the Probability of Resta-
bilization 

In most mechanical systems, sudden jumps to resonance are 
undesirable. It is thus important to know, over a wide range 
of operating parameters, whether jumps exist and if they do 
whether they are safe, unsafe, determinate, or indeterminate. 
However, as in all dynamical systems there are uncertainties 
in the specification of the initial conditions and the parameter 
values, it is useful to know the probability of restabilization, 
as it would give a measure of the relative robustness of a system 
liable to experience these types of bifurcations. By determining 
critical control parameters which place limits on the type of 
jumps that occur, and analyzing the probability of restabili­
zation, systems may be designed accordingly such that dan­
gerous frequencies may be avoided or indeed the level of 
damping level may be prescribed such this type of resonant 
behavior is suppressed (Soliman and Thompson, 1992b). 

Figure 8 show the bifurcation diagram in (F, u) control space 
at (3 = 0.1. Here, we are mainly concerned with the region 
around the primary resonance. Lines A and B are saddle-node 
folds corresponding to jumps to and from resonance. They 
meet at a cusp point P, which limits the hysteresis domain. 
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Fig. 7 As in Fig. 3 but here the Jump is unsafe at F •• 
changes in parameters will result in escape. 
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For forcing levels below P, there are no jumps to resonance. 
Line C is the first period-doubling flip bifurcation at which 
the resonance harmonic attractor period doubles to a stable 
subharmonic of order 2. There is an infinite cascade of these 
flip bifurcations leading to a chaotic attractor which finally 
loses its stability at a crisis at E. Line E meets fold line A in 
a codimension-two bifurcation at Q (Stewart et al., 1991). Line 
M is the locus of the homoclinic tangency between the stable 
and unstable manifolds of the hilltop saddle; WS(D/,) and 
W (Dh). Line H is the heteroclinic tangency between the stable 
manifold of the hilltop saddle, Ws(Dh), and the unstable man­
ifold of the resonant saddle, Wu(Dr); this bifurcation will 
generate an indeterminate jump to resonance at the saddle 
node/4. 

There are several important parameter values that concern 
the jump to resonance from fold A. The first critical control 
parameters, (Fp, up) are those at the cusp point P. For this 
particular softening system, for frequencies above up or forcing 
levels below Fp, no jump to resonance occurs. The second 
critical frequency is (FT, wT) corresponding to the intersection 
of line H with line A where there is a simultaneous simple 
saddle-node bifurcation and a heteroclinic tangency between 
Ws(Dh) and W"(Dr). This is the smallest forcing is required 
to cause an indeterminate jump to resonance;.an infinite num­
ber of fingers of the escaping basin line up along the unstable 
manifold, Wu(Dr), and simultaneously the saddle-node an­
nihilation occurs. Figure 9 shows the manifold organization 
close to these parameter values. These manifolds were located 
numerically using a technique similar to that described by 
Alexander (1989). This involves mapping backwards in time 
from a ladder of starts along the ingoing eigenvectors of (Dh) 
to determine Ws (£)/,), and forwards in time along the outgoing 
eigenvectors to determine W(Dh). The Poincare sections em­
ployed are at phase </> = 180 deg. The final critical control 
parameter is at (F3, coG). This corresponds to where line E 

intersects line A. Just below this forcing level, the jump to 
resonance is indeterminate; here the outcome is to any available 
attractor present (including possibly a chaotic attractor) or 
escape. Just above this forcing level there are no available 
attractors to jump to, and hence a purely deterministic but 
unsafe jump occurs. 

We may estimate the probability of restabilization at various 
frequency values along the fold line A, by various realizations 
of the bifurcation. Figure 10 shows the results in which we 
have considered an array of different increments of AF; here 
the probability of restabilization was defined as the ratio of 
those trials which restabilized onto a bounded solution within 
the potential well, to the total number tested. It can be seen 
that for frequencies above uT all the jumps lead to restabili­
zation. Below uT gradually less and less restabilize until about 
ofi in which all the trails escape. In order to understand this 
behavior we have to consider the organization of the co-existing 
basins at the saddle-node bifurcation, namely those accumu­
lating on the saddle node. We may say that the degree of erosion 
of the safe (recipient) basin by the escaping fingers (Soliman 
and Thompson, 1992a) will determine the probability of re­
stabilization. For low forcing levels, the recipient basin is not 
highly eroded such that there is a high probability of resta­
bilization. At intermediate forcing levels this erosion will be 
more developed such that there is a reasonable chance of re­
stabilization (Fig. 10). For bifurcations occurring at forcing 
levels just below F®, where the resonant attractor is chaotic, 
the safe basin is very small indeed. This is shown in Fig. 11, 
which when compared to the basins of attraction at the lower 
forcing values (e.g., see Fig. 4), clearly illustrate a high degree 
of basin erosion and thus very small chance of restabilization. 
Indeed it has been shown that even the resonant steady-state 
attractor lying within these small highly fractal basins is very 
sensitive to any external noise excitation (Gwinn and Wester-
velt; 1986; Soliman and Thompson, 1990). 
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Fig. 10 Estimation of the probability of restabilization from fold A in 
the region between u>T = 0.843 and w ~ 0.805. Here 50 different incre­
ments, AF, were chosen from AF = 0.00001 to AF = 0.0005 and the 
probability of restabilization was found. The dashed line represents the 
safe basin area at the saddle-node bifurcation. As the basin becomes 
eroded, the probability of restabilization decreases. 

Fig. 8 Bifurcation diagram in the (F, u) control space at 0 = 0.1, showing 
safe, indeterminate, and unsafe jumps from fold A. The marked F levels 
correspond to the earlier figures. Point T, where the arc H of the hetro-
clinic tangency meets arc A of the saddle-node bifurcation, is the bound­
ary between safe and indeterminate jumps. Point Q, where the arc Eof 
the crisis line meets arc A, is the boundary between indeterminate jumps 
and unsafe jumps. 

F = 0.0722, (0 = 0.843, p = 0.1, ()i=180° 

F =0.091, (0 = 0.811, p = 0.1, <|>= 180° 

K(Dh) 

W"B{Dh) 

Wa(,Dh) 

Fig. 9 Fixed points and invariant manifolds at 0 = 0.1, F = 0.0722, o> 
= 0.843 close to the optimal escape point at point T. This occurs when 
the saddle-node annihilation occurs simultaneously with the hetroclinic 
event between W"B(Dr) and WA(D,,). 

6 Conclusions 
In summary, critical parameters may be determined that put 

bounds on the type of jump to resonance that occurs for a 
system with the ability to escape from a potential well. For 
determinate jumps, the final steady-state response was insen­
sitive to how the bifurcation was realized. Here although the 
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Fig. 11 Fixed points and basins of attraction at /3 = 0.1, F = 0.091, u 
= 0.811 close to the optimal point Q. Here the jump to resonance may 
result in escape or restabilization to any attractor within the well, pos­
sibly a chaotic attractor. As can be seen, the recipient safe basin is 
highly eroded leaving little chance of restabilization. 

step in the bifurcation parameter determined the transient 
length, the outcome was always quantitatively and qualitatively 
the same (i.e., either the system always restabilized or always 
escaped). However, for indeterminate jumps to resonance, the 
outcome as well as the transient length was extremely sensitive 
to how the bifurcation was realized. As in all dynamical systems 
there are inherent uncertainties in the specification of the initial 
conditions and parameters this bifurcation was deemed to be 
unpredictable. By estimating the probability of restabilization 
after the bifurcation, we may assess the integrity of a physical 
system that is suspect to this type of resonant behavior. 
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Lyapuno¥ Exponents and 
Stochastic Stability of 
Two-Dimensional Parametrically 
Excited Random Systems 
The variation of the largest Lyapunov exponent for two-dimensional parametrically 
excited stochastic systems is studied by a method of linear transformation. The 
sensitivity to random disturbance of systems undergoing bifurcation is investigated. 
Two commonly occurring examples in structural dynamics are considered, where 
the random fluctuation appears in the stiffness term or the damping term. The 
boundaries of almost-sure stochastic stability are determined by the vanishing of 
the largest Lyapunov exponent of the linearized system. The validity of the ap­
proximate results is checked by numerical simulation. 

1 Introduction 
Investigations of the dynamic stability of elastic systems, 

such as slender columns and thin plates under axial loading, 
or buildings, bridges, and aircraft structures under wind load­
ing frequently lead to the study of the dynamical behavior of 
the solutions of a parameterized family of nonlinear differ­
ential equations of the form 

i = f ( x , 7 o ) , x = (Xlx2 • • •x„) r 6R", f(0, To) = 0, (1) 

where f is an «-vector of nonlinear functions of x, and 70 is 
a scalar parameter characterizing the loading condition. 

In many practical situations, the loading may be subjected 
to fluctuations of a stochastic nature. The loading parameter 
becomes y = yo + o£(t), where £,(t) is a zero mean, ergodic 
random process and a a parameter characterizing the intensity 
of random load fluctuation. The governing equation of motion 
is then modified to the form 

x=f(x, 70, ff€(0), f(0, To, a £ ( O ) = 0 . (2) 

In order to study the almost-sure stability of the trivial so­
lution of the system (2), it is necessary to determine the largest 
Lyapunov exponent of the linearized equation 

k=DJ(x, 7o, af(0)lx=ox. (3) 

The trivial solution x = 0 is stable or unstable with probability 
1 (w.p.l) according to whether the largest Lyapunov exponent 
is negative or positive. Thus, the vanishing of the largest Lya­
punov exponent gives the boundary of stochastic stability w. p. 1. 
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It is also of interest to study the sensitivity to random dis­
turbances of systems undergoing bifurcations. In particular, 
it is important to know to what extent such perturbations 
influence the nature and "direction" of the bifurcation when 
a system is on the verge undergoing a bifurcation. The problems 
examined in this paper deal with two commonly occurring 
examples in structural dynamics, namely pitchfork bifurcation 
and Hopf bifurcation. For both examples, the Lyapunov ex­
ponents are evaluated, both analytically and by simulation, 
from which the almost-sure stability boundaries and the shift 
in the bifurcation point can be determined. 

2 Stochastic Perturbation in Stiffness Parameter 

The typical system considered is described by a nondimen-
sionalized equation of motion of the form 

q + 2/3q-[y0 + aHt)]q + aq3 = 0, a, /3>0 (4) 

where 70 is the stiffness parameter and £(?) is a unit white 
Gaussian noise process. In the absence of stochastic pertur­
bation, the system undergoes pitchfork bifurcation when 70 
changes from a negative to a positive value. 

Examples of system (4) are found in many applications in 
mechanics, especially in problems of dynamical stability of 
elastic systems. In particular, the transverse vibrations of col­
umns and flat plates under axial loading or end displacement 
are governed by equations of the form (4). The question is: 
In what direction is the bifurcation point shifted and by what 
amount as a result of small random fluctuations to the applied 
axial load or displacement? 

In order to study the stochastic stability of the trivial solution 
q = 0, the variation of the largest Lyapunov exponent \q of 
the linearized system 

q + 2(3q-[y0 + ali(t)]q = 0 

has to be determined. 

(5) 
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2.1 Lyapunov Exponent by Linear Transformation. The a series expansion of the linear transformation T(<j>) in the 
linearized system (5) can be replaced by a pair of Ito stochastic form 
differential equations: 

dq{ = g2dt, 

dq2 = - (2 p q2 - yaqiidt + aq{dW. (6) 

Now polar coordinates {a, <j>) are introduced via 

q1 = acos<j>, q2 = asin<t>, (7) 

so that if one defines a pth norm P = ap, a new pair of Ito 
equations for P and <f> can be found by applying Ito's lemma: 

dP=pPf{4>)dt-pPo sin $ cos <f>dW, + 2n 

d<j>= -F(<t>)dt -a cos2 4>dW, (8) 

where 

/(<#>) = (1 + 7o)sin </> cos </> - 2 /3 sin2 0 

1 
+ -(72[C0S4 > + (p-l)sin2$cos2<£], 

F(<£) = 1 - ( 1 +7o)cos2<£ + 2/3sin4>cos4> + a2sm<£cos3$. 
Following Wedig (1988), a linear stochastic transformation 

is then applied through 

S=T(4>)P, P=T-[(<j>)S, (9) 

where the new norm process S and the scalar function T(4>) 
are defined on the stationary phase process </> in the range 
- 7 r / 2 < 0 < i r / 2 . The Ito equation for S is given by 

dS = j | ex2 cos4 <f> T„ + \p a2 sin </> cos3 </> - F( 0) ] 7", +/»/(</>) T 

x P dt-o cos <l>[cos (frT^+p sin <f>T\PdW. (10) 

For bounded and nonsingular transformation T(4>), both 
processes P and S are expected to have the same stability 
behavior. Therefore, T(<t>) is chosen so that the drift term of 
the It6 differential Eq. (10) is independent of the phase process 
<t>, so that 

dS = A.Sdt+aSg(<j>)dW. (11) 

Such a transformation 71s governed by the following equation: 

- a2 cos4 4>T^ - [1 - (1 + 7o)cos2 0 + 2 0 sin </> cos </> 

+ CT2(l-p)sm0cos3t/>]r0 + -p[(p-l)a2sin2c/>cos20 

+ <72cos4</> + 2(l+7o)sm0cos0-4(3sin40]:r=A:r, (12) 

which defines an eigenvalue problem for a second-order dif­
ferential operator with T as the unknown eigenfunction and 
A the associated eigenvalue. The eigenvalue A is seen, from 
(11), to be the Lyapunov exponent of the pth moment. The 
Lyapunov exponent \ of system (16) is related to A through 
the relation (Kozin and Sugimoto, 1977; Molchanov, 1978; 
Arnold, 1988) 

X„ = lim —. 
P-OP 

(13) 

It now remains to solve the eigenvalue problem (12). Since 
the coefficients in Eq. (12) are periodic with period ir, consider 

T(<j>) = ua+^ (C2kuk + S2kvk), (14) 

where the notations C2k=cos2k<t>, S2k = sm2k4> have been 
used. Substituting from (13) in Eq. (12) results in 

«2ff2(3 + 4C2 + C4) 

( l -7o) 

^]{C2kUk+S2kVk) 

(l+7o) 
+ [/3 + ff2(l-p)]S: C2 + y ( l - p ) C 4 

2 iC2kUk +S2kVk) • < ! 
02 

(p + 2)-2(8 

+ ~(l+yo)S2+P(a2 + P)C2+
Ef(2-p)C4l 

u0+^(C2kuk + S2kvk) 

= A u0+^(C2kuk + S2kvk) « = 0, 1, 2, (15) 

where a2 = o2/4. 

Equating the coefficients of like trigonometric terms sin 2n <t>, 
cos2n</>, « = 0, 1, 2, • • • leads to a system of infinitely many 
homogeneous linear equations for the unknowns u0, u„, v„, 
n € Z + . The existence of nontrivial solution requires that the 
determinant of the coefficient matrix be equal to zero, from 
which the eigenvalue A can be obtained in principle. In practice, 
only a finite number of terms is considered to obtain an ap­
proximate value for the eigenvalue A. 

First-Order Approximation. If only the terms u0, ux, t>i are 
considered in Eq. (14), the determinant of the coefficient ma­
trix obtained from (15) is of the form 

A(1) = 

a-A \{p + 2){p-o2) J(p + 2)(l+70) 

P(P + °l) 

zP(l+7o) 

a - ( A + 3ff2) 

l - 7 o 

- l + 7 o 

« - ( A + 3(72) 

= 0, 

(16) 

where a=p[(l/4)o2(p + 2)-l3]. Expanding A(1) in powers of a 
and neglecting terms of order 0(<j4) yields 

A(1) = - A3 + 3 (a - 2a2)A
2 - [(1 - 7 o ) 2 - \p (p + 2)(1 + To)

2]A 

+ p{y(p + 2)(l-7g)-
1 

(/7 + 2 ) ( l+7 0 )V-3 ( r 2 ) 

a2 
+ ( l -7oT 4 

(p + 2)-0 

The largest Lyapunov exponent is then obtained as 

Xa = l i m -

^(p + 2)(1 - yl) - - (p + 2)(1 + y0)
2 (a- 3a2) + (1 •7o) 2 

= lim-
p-0 

^ ( p + 2)-/3 

8 + (l+7o)2
 2 

16(1-70) 

( l -7o ) 2 p(p + 2)( l+7 o)2 

(17) 
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Wedig (1988) considered the case of finite values of 7 Q < 0 . 
By setting 70= - 1 , one obtains X = -fi+ <?/&, which is the 
same as that obtained by Wedig (1988). 

Second Order Approximation. If five terms u0, u\, vx, u2, 
v2 are considered in Eq. (14), the determinant of the 5 x 5 
coefficient matrix is found to be 

as the first-order approximation, and 

1 10911 
Xfl -0 + -

1047 + 429272- 64073 
• 9 6 7

4
a 2 / 3 

16 2409 + 24967 + 2200'y2 + 96O73 + 144T
4 

(206) 

as the second-order approximation, or, after expanding in 
powers of 7> 

\ ( 2 ) . 

a - A (p + 2)0 - (72)/2 (p + 2)(1 + 70)/4 -(p + 2)(p + 4)a2/8 0 

p(P + o2) a- '(A + 3ff2) - 1 + 7 0 

p( l+7o)/2 I - 7 0 « - ( A + 3a2) 

- p ( p - 2 ) a 2 / 4 (p -2 ) (0 + 3cr2)/2 - ( p - 2 ) ( l + 7 o) /4 

0 ( p - 2 ) ( l + 7 o ) / 4 (p-2)(/3 + 3a2)/2 

(/> + 4)03-3ff2)/2 (p + 4)(l+7o)/4 

- (p + 4)( 1 + 7 o) /4 (p + 4)(/3 - 3<r2)/2 

a - (A+12a 2 ) - 2 ( l - 7 o ) 

2 ( 1 - 7 o ) a-(A+12<r2) 

= 0 (18) 

137o)a4 + 81(7c 

where a=p[(l/4)a2(p + 2)~l3]. 
After some lengthy calculations, the largest Lyapunov ex­

ponent is obtained as 

g2 32(93 - 447 o + 142-yg + 20 7 ^ - 3yt) + 12(659 + I2670- 217^)ff4 + 27a8 

*~ ^ + 1 6 16(9-6Oy0+1187o-607o + 97J) + 24(91-6470 + 

The method presented here for obtaining the largest Lyapunov 
exponent X is straightforward. The accuracy of the result can 
be increased by considering more terms in the series expansion 
(14). However, the amount of calculation increases drastically 
with increase in the number of terms considered. Equation 
(19) is again valid only for finite value of 70. 

2.2 Lyapunov Exponent for Small Values of 70. It may 
be noted that when the stiffness and the damping coefficients 
70 and (3 are both zero, the largest Lyapunov exponent has been 
obtained as X? = 0.28931o2/3 by Ariaratnam and Xie (1990), 
which implies that for 70 in the vicinity of 0, \ varies as cr273. 
Therefore, Eqs. (17) and (19) become increasingly invalid when 
70—O, since \Q varies as the square of a rather than as a273. 
This case is of particular importance in studies of stochastic 
perturbation of systems in the vicinity of a point of pitchfork 
bifurcation. 

The results of Eq. (19) cannot be used directly for small 
values of 70. In order to use them, a preliminary scaling of 
the governing equations has to be made. It will be shown that 
the shift in the bifurcation point is of the order a273 rather than 
a2 as in the case when the stiffness is finite. 

Applying the transformation q = xe~^' to Eq. (5), one has 
\= - J S + XJC, and 

X\ =X2, 

x2= -yxi-axi^(t), 

where 7 = -70 - (3 2 . Introducing the scaling x{=yux2 = a°'ly2, 

y = aa2y, these equations become 

yi = oaiy2, 

> 2 = - o B 2 - « > 7 ^ 1 - f f 1 - " ^ ( 0 , 

and \x=\. For the right sides of both equations to have 
comparable influence, ait a2 must be chosen so that 

a«\ = a°'2-<*\ = ^ a
l-ai = ey2, 0 < e . « l , 

which implies that ax = 2/3, a2 = 4/3, and these equations may 
now be written as 

dy1 = ey2dt, 

dy2=-tyyxdt-eU2y\dW, 

where e = a2/3. 
Using the results obtained in (17) and (19), the Lyapunov 

exponent for system (5) is then found to be 

(ff-0). (19) 

X ? = - ^ + 0.28308 ff2/3[1.0-1.045647 + 0.5635272 + O(73)], 

where 7 = - (70 + /32)/<r4/3. In the case of the nilpotent system, 
i.e., when /3 = 0 and 70 = 0, Eq. (20c) gives \ = 0.28308a2'3, 
which is consistent with the exact result 0.28931 a273 obtained 
by Ariaratnam and Xie (1990). 

The validity of the approximate results (20) is checked by a 
digital simulation. It is seen that the first-order approximation 
(20a) does not give the correct result for small values of 70, 
while the second-order approximation (206) agrees well with 
that obtained from digital simulation (Fig. 1). 

2.3 Lyapunov Exponent for Finite Values of Stiffness. 
Consider the linearized system (5) 

q + 2Pq-[y0 + aHO]q = 0, 

when the value of stiffness - 7 0 is positive and finite. By time 
scaling T=(-y0)

W2t, it can be simplified to 

q"+2~0q' + [l + oT](T)]q = O, (21) 

where P = P(-y0y
W2, o = cj(-y0y

iM, V(T) is a unit Gaussian 
white noise process, and a prime denotes differentiation with 
respect to T. The Lyapunov exponent \ of system (21) is related 
to that of (5), X„ by 

(22) \ = (~yo)u\-

0.5-

Second approximation 
Taylor expansion to 0(~f2] 
Taylor expansion to 0(~fS) 
Digital simulation 

0.3 

8 + 0 - T J ^ 
16(1+7) 

0.1 

(20a) -0.4 -0.2 0.0 0.2 0.4 la 

Fig. 1 Largest Lyapunov exponent for Q-[yo + a^(l)]q = 0 
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X, 

0.04- Second approximation 
Taylor expansion to 0(a2) 
Taylor expansion to 0(a) 
Taylor expansion to 0(<r10) 

• Digital simulation 

/3 = 0.05 

0.0 0.2 0.4 0.6 0.8 a 

Fig. 2(a) Largest Lyapunov exponent for q + 2/3q + [1 + <r£(f)g = 0 

0.00 

-Second approximation 
-Taylor expansion to O(o~) 
-Taylor expansion to 0(a&) 
"Taylor expansion to O(o ) 
Digital simulation 

/? = 0.1 

-0.10 

0.0 0.2 0.4 0.6 0.8 " 

Fig. 2(b) Largest Lyapunov exponent for q + 2/3(7 + [1 + "£(')«/ = n 

Suppose the damping constant is small and (3 « ( - y0)
U2, then 

all the first approximation methods yield the same expression 
for the largest Lyapunov exponent for system (21) (see, e.g., 
Pardoux and Wihstutz, 1988; Ariaratnam and Xie, 1989) 

\=~fi + ^- (23) 

For system (21), the method of stochastic averaging (Strato­
novich, 1963; Khas'minskii, 1966) is applicable and can be 
employed to evaluate the largest Lyapunov exponent, which 
also gives Eq. (23). This result was first obtained in this manner 
by Stratonovich and Romanovskii (1958). 

The largest Lyapunov exponent of system (5) in the first 
approximation is then obtained from (22) and (23) as 

x«=-^(4- (24) 
For a second-order approximation, Eq. (19) is employed, 

by setting Y0 = - 1, to yield 

x _ _ - , 8192+ 61440* +27a8 a2 

q~ ^ + 4096 +4032a*+81cF8 16' 

or, after expanding in powers of a, 

\ = -/3 + io2 -
15 1755 

512° + 65536 
a10+O(5u). 

(25) 

(26) 

By using, the relation (22), the largest Lyapunov exponent of 
system (5) is obtained as 

X,= -B + -
1 15 1755 

7 + 0(,r14). 
8 ( - 7 o ) 512 ( - 7 o ) 4 65536 ( -To) 

Pardoux and Wihstutz (1988) also showed that the 
Lyapunov exponent of system (5) was of the form 

(27) 

largest 

X„ -e+l - + 0(a6), 
(-To) 

but did not calculate the coefficient of a6 explicitly. 
The correctness of the approximate results for X? is checked 

by computer simulation, with typical plots shown in Figs. 2(a) 
and (b) for 70= - 1 , /3 = 0.05 and |3 = 0.1, respectively. It is 
observed that the second-order approximation (25) agrees with 
the result obtained by simulation extremely well, while the 
Taylor series expansion (26) also gives good agreement. Equa­
tion (24) is seen to be a valid first-order asymptotic approxi­
mation. 

By examining the results (20) obtained for the nearly nilpotent 
system, one may conclude that when 70 is in the vicinity of 0, 
namely when the natural frequency of the system is vanishingly 
small, the largest Lyapunov exponent grows in the form a2 3 

when the system is perturbed by stochastic disturbance. The 
second approximation by linear transformation agrees well with 
digital simulation, while the first approximation is found to be 
invalid. On the other hand, when 70 is negative and finite, it 
can always be scaled to - 1 by suitable time scaling, and the 
largest Lyapunov exponent grows according to a2. In this case, 
all the first-order approximate methods yield the same result 
for the largest Lyapunov exponent, which is seen to be a valid 
first-order asymptotic approximation, while the second-order 
approximation gives very good agreement with that obtained 
by digital simulation even for larger values of a. 

3 Stochastic Perturbation in Damping Coefficient 
A typical system perturbed parametrically in the damping 

term by a stochastic process may be described by the differ­
ential equation 

£+[2jS + fff ( / ) ]* + * = / ( * , x, oHt)), (28) 

where £ (t) is a Gaussian broad-band random process and/ (x , 
x, a £ ( 0 ) a nonlinear function. The equation of motion for 
many problems of wind-induced vibration is of the form (28). 
For example, the vibration of transmission cables, slender 
bridges, and tall buildings under the action of turbulent wind 
loads is governed by Eq. (28) (Blevins, 1977; Simiu and Scan-
Ian, 1978) with 

/ ( * , x, HO) = J][A2k+l + a2k+irt(t)]x2 (29) 

where A2kA 

stants. 
1> «2A:+1> k=l, 2, n, are deterministic con-

3.1 Lyapunov Exponent by the Method of Linear Trans­
formation. In this section, the method of linear transfor­
mation introduced in Section 2.1 is employed to evaluate the 
largest Lyapunov exponent of the linearized system 

x+[2(3 + ot(t)]x + x=0, (30) 

where £(?) is approximated by "physical" white noise. Equa­
tion (30) can be written in the form of the Stratonovich sto­
chastic differential equations 

d*Xi=x2dt, 

d*x2 = - ( * i + 2fix2)dt - ax2dW, (31) 

where d* (•) denotes the differential in the Stratonovich sense 
(Stratonovich, 1966) and W{t) is the unit Wiener process. The 
equivalent Ito equations are 
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dxx = x2dt, 

dx2 = x\- Ufa — 2j8 1 x 2 dt-ox2dW. (32) 

As in Section 2.1, one introduces polar coordinates (a, 0) 
defined by (7). The Ito differential equations for the angle </> 
and the pth norm P=cf are found to be 

dP=pPf(4>)dt-pPa sin2 <j>dW, 

d(j>= - F'(</>) dt- asin0 cos <j>dW, (33) 

where 

/ ( 0 ) = ( - 2(3 + (72)sm2 0 + (p - 2)az sin4 0, 

F((f>) = 1 + I 2 /3- -a 2 J s in0cos0 -o 2 s in 3 0cos0 . 

The linear transformation S= 7 (0 )P , - ( l /2) i r<0<(l /2)Tr , 
is then applied to yield the Ito differential equation for 5, 

dS= - f f 2 s in 2 0cos 2 0T^ + [p(7 2 s in 3 0cos0-F(0) ]7 ; 

+pf((j,)Tlpdt-asm4>(cos(l>T4t+psm(l>T)PdW. (34) 

Function r ( 0 ) is chosen so that the drift term of (34) is in­
dependent of 0, namely, 

dS = ASdt + aSg(4>)dW. (35) 

From Eqs. (34) and (35), it is found that 7 (0) is the eigen-
function of the following second-order eigenvalue problem 

a2 sin2 0 cos2 0 7 ^ - 1 + ( 2(3 - - a2) sin 0 cos ( 

+P 

(p+ l)ff2sin30cos0 

( - 2(3 + a2)sin2 0 + - (p - 2)a2 sin4 0 7 = A 7 \ (36) 

where A is the associated eigenvalue. 
Following the procedure as described in Section 2.1, one 

seeks the eigenfunction T(4>) in the form of series expansion 
(13). Since in system (30) the stiffness is finite and is normalized 
to unity, the observation from the last section shows that the 
first-order approximation gives a satisfactory approximation 
result for the Lyapunov exponent. Therefore, one considers 
only 

7 ,(0)=MO + «iCos20 + i;1sin20. (37) 

Substituting from (37) in Eq. (36) and equating the coefficient 
of like terms 1, sin 20, cos 20 while neglecting higher order 
terms yield 

" Stochastic averaging 
Digital simulation 

/3 = 0.05 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 3(a) Largest Lyapunov exponent for x + [2(3 + <r£(/)]x + x - 0 

-0.12 4 
0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 3(b) Largest Lyapunov exponent for x + [2(3 + o£{t)]x + x = 0 

+ a\b-p{$-po2) 

1 

l ^ l * 3 

where 

2 + P + - /T 02 

'5 1 
ff+l8P"4'ff2 

5 7 
a-\sP + 4]<72 

a-[lp + l)«2 

= 0, (39) 

+ 4. 

a-A 

p(&-po2) 

0 

1 1 
X+2P)P~~\1+P + 2P >a2 

°- ( o P + 4 ) ° 2 - A 

where a=p{-l3 + (l/2)a2(i/4)pa2), o2 = (l/4)o2. 
For Eq. (38) to have a nonzero solution, it is necessary that 

the determinant of the coefficient matrix vanishes, which gives 

" o l 

M1}=0, (38) 

The cubic Eq. (39) can be solved to yield the largest Lyapunov 
exponent for system (30). After neglecting higher order terms, 
the result is 

- A J + (3a + 2ff2)A
/+ ]p(P-po2 

1 
2+P + -P \o2 

^-2P)P 

-2a{a-a2)-b\A 

A = lim — 
P-op 

l + ^2=-P + r , (40) 

Journal of Applied Mechanics SEPTEMBER 1993, Vol. 60 / 681 

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



which is the same as that obtained by other approximate meth­
ods such as asymptotic expansion of integrals and stochastic 
averaging (Ariaratnam and Xie, 1989). The almost-sure sta­
bility region is found to be o2^^. 

The validity of the approximate result (40) is checked by a 
digital simulation with typical plots shown in Figs. 3(a) and 
3(b). It can be seen that the first-order approximation (40) 
agrees well with numerical simulation, especially for small 
values of the damping coefficient /3. This is to be expected, 
since for system (30), the natural frequency of the system or 
the coefficient of x is finitcand can be normalized to unity. 
This observation is consistent with that seen in Section 2. 
Hence, it is not necessary to obtain the second-order approx­
imation. 

4 Conclusion 
The Lyapunov exponents of two-dimensional parametrically 

excited stochastic systems have been investigated. The sensi­
tivity to random disturbance of systems undergoing bifurca­
tions has been studied. Two commonly occurring examples in 
structural dynamics, namely pitchfork bifurcation and Hopf 
bifurcation, were considered. The almost-sure stability con­
ditions were obtained by setting the largest Lyapunov exponent 
of the system to zero. The validity of the asymptotic results 
has been checked by digital computer simulation. 
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Convex Models of Uncertainty in 
Radial Pulse Buckling of Shells 
The buckling of shells subject to radial impulse loading has been studied by many 
investigators, and it is well known that the severity of the buckling response is greatly 
amplified by initial geometrical imperfections in the shell shape. Traditionally, these 
imperfections have been modeled stochastically. In this study convex models provide 
a convenient alternative to probabilistic representation of uncertainty. Convex models 
are well suited to the limitations of the available information on the nature of the 
geometrical uncertainties. A n ellipsoidal con vex model is employed and the maximum 
pulse response is evaluated. The ellipsoidal convex model is based on three types of 
information concerning the initial geometrical uncertainty of the shell: (/) which 
mode shapes contribute to the imperfections, (2) bounds on the relative amplitudes 
of these modes, and (3) the magnitude of the maximum initial deviation of the 
shell from its nominal shape. The convex model analysis yields reasonable results 
in comparison with a probabilistic analysis due to Lindberg (1992a,b). We also 
consider localized imperfections of the shell. Results with a localized en velope-bound 
con vex model indicate that very small regions of localized geometrical imperfections 
result in buckling damage which is a substantial fraction of the damage resulting 
from full circumferential initial imperfection. 

1 Introduction 
In a series of two papers Lindberg (1992a,b) applies convex 

models to the representation of geometrical uncertainty in ra­
dial pulse buckling of shells. He skillfully demonstrates both 
the usefulness and the limitations of this method of handling 
uncertainty. In the present paper some extensions of the convex 
models employed by Lindberg are proposed and their appli­
cation to radial pulse buckling is examined. 

The uniform bound convex model constrains the initial geo­
metrical imperfection of the shell shape between an upper 
bound, +§, and a lower bound, - § . This convex model of 
uncertainty was used by Lindberg (1992a) in analysis of radial 
pulse buckling, in the analysis of static axial buckling of shells 
by Ben-Haim and Elishakoff, (1989) and in other applications 
(Ben-Haim and Elishakoff, 1990). The imperfection parameter 
§ promises to be a useful quality control parameter during or 
after manufacture of the shell. However, as Lindberg (1992a) 
very convincingly demonstrates, the uniform bound convex 
model is rather conservative in comparison with probabilistic 
models. 

The conservatism of the uniform bound model is explained 
as arising from the contribution of extraneous modes and 
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excessive amplitudes to the imperfection shape. To overcome 
this limitation Lindberg (1992b) employs an ellipsoidal convex 
model defined in the space of Fourier coefficients. In this 
convex model the Fourier coefficients of a selected range of 
mode numbers are constrained to fall in an ellipsoid (see Ben-
Haim and Elishakoff, 1990, for further discussion of this con­
vex model). The shape of this ellipsoid can be based on meas­
ured Fourier spectra of imperfections (see measurements by 
Kirkpatrick and Holmes, 1989). Determination of the size of 
the ellipsoid remains an open question, which is discussed in 
this paper. Our approach is to relate the size parameter of the 
ellipsoid to the maximum initial deflection of the shell. By 
fixing the size of the ellipsoid in terms of the initial shell 
deflection, we are able to relate the maximum response after 
impulse loading to this convenient and practical quality control 
parameter. 

The formalism of multimode buckling is summarized in 
Section 2 and the convex models employed are briefly discussed 
in Section 3. In Section 4, the size of ellipsoid is related to the 
maximum deflection parameter § of the uniform bound model. 
In this way the attractive quality control features of the uniform 
bound model are transferred to the more realistic ellipsoidal 
model. Then, in Section 5, the ellipsoidal model is extended 
to include the possibility that the nominal imperfection of the 
shell shape deviates from zero. In Section 6 a different convex 
model is discussed, which allows one to study spatial locali­
zation of the imperfections. 

2 Multimode Buckling 
We will follow the notation of Lindberg (1992b) in describing 

the buckling response of a thin shell to a radial pressure im-
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pulse. This method of solution of pulsed buckling phenomena 
was derived by Abrahamson and Goodier (1962) and is exten­
sively discussed in Lindberg and Florence (1987). Linear de­
flection equations are obtained by treating the material as 
perfectly plastic, by relating the initial geometrical imperfec­
tions to the initial radial velocity of the shell, and by considering 
only short times after application of the load. 

The initial deviation of the shell from its nominal shape, as 
a function of azimuthal position 0, is described by a truncated 
Fourier series as 

8(6)= J] (a„ cos nd + b„ sin n6) = DT<p(6) 

where D is the vector of Fourier coefficients 

DT= (a2, «3» • • • - aN, b2, b2, • • • 

and 

<p(6)T= (cos 20, cos 30, 

, . . . , cos Ml, sin 26, sin 36, 

bN) 

(1) 

(2) 

. , sinM>). (3) 

The flexural deformation of the shell at normalized time r after 
the impulse loading and at azimuthal position 6 is 

N 

u(6, T) = YJ [a„G„(T)cos n6 + b„G„(T)sm nd] = £>r</>(0, T) 

(4) 

where 

</,(#, T)T=(G2(T)COS 26, G3(T)COS 3d, . . . , GW(T)COS Nd, 

G2(r)sin 26, G3(r)sin 30, . . . , G ^ s i n NO). (5) 

The amplification function is 

G„(T)--
1 

1 
1 

cosh 
cos 

P„T 
1J>1 

where 

•q = n/s, 

and 

P„=^fn.ri2-{ysiw-r\1\\ 

(6) 

t (7) 

aV12 Eha c„= —-
E_H 

(8) 

where h is the wall thickness, a is the shell radius, ay is the 
yield stress, Eh is the strain-hardening modulus, and p is the 
density. The amplification function for r\= 1 is G„(T) = T 2 / 2 . 

3 Convex Models 
A convex model is a set of functions. Each function rep­

resents a possible realization of an uncertain, spatially varying 
quantity. Convex models are used here to represent the spatial 
uncertainty of the initial imperfection profile, 8(6). Following 
are six different convex models for describing uncertainty in 
the initial radial deflection 8(6) of the shell. 

The uniform bound convex model: 

J?UB={5(0):I5(0)I<5). (9) 

This is the simplest model, easy to apply and attractive because 
very little information is needed for its implementation and 
because the single parameter 5 is useful as a quality control 
variable. 

The envelope bound convex model is a variation on the 
uniform bound model. In its most general form the initial 
imperfection is constrained to vary within a specified envelope: 

#E B=f5(0): 5!(0)<5(0)<52(0)) (10) 

where 5^0) and 52(0) are specified functions. 

A common application of this type of convex model is for 
representation of localized imperfections. (See Ben-Haim (1990) 
for a typical application.) For example, if the imperfection is 
uniformly bounded in the angular range from 0, to 02 and zero 
outside of this region, then the envelope functions 5i(0) and 
52(0) are chosen as 

5„(0) = 
0, 

(-1)"5, 
HWu 02] 
0e[0„ 02] 

n=\, 2. (ID 

The resulting special case of the envelope bound convex model 
is called a localized uniform bound convex model, and is de­
noted -RLIJB- This model would be useful for representing initial 
imperfections in the localized loading experiments reported by 
Kirkpatrick and Holmes (1989) or the localized imperfections 
in the constrained shells studied by Li and Kyriakides (1991). 
Localized imperfections will be discussed further in Section 6. 

The band limited uniform bound convex model is a different 
modification of the uniform bound model. The imperfection 
function is uniformly bounded but limited to a specific range 
of mode shapes, 

r N\ 
RBWB= 5(0): 5(0)= J] [a„ cos «0 

+ b„smnd], 15(0)1 < 5 . (12) 

The motivation for this modification of the uniform bound 
model is that the band limitation eliminates the unrealistic high-
mode numbers from the initial imperfections. The pertinent 
mode numbers No and N c a n be obtained from studies such 
as Kirkpatrick and Holmes (1989). However, this model is 
difficult to handle both numerically and analytically. The el­
lipsoidal models are much more convenient. 

The ellipsoidal convex model: 

RELP={D: DTWD<K] (13) 

where D is the vector of Fourier coefficients of the initial 
deflection, defined in Eq. (2). 

Lindberg (1992b) uses two different choices of the matrix 
W, which is square and of dimension 2(N- 1) and determines 
the shape of the bounding ellipsoid. In the absence of specific 
knowledge of the variation of the Fourier coefficients, Wequals 
the identity matrix 

W=I. (14) 

Alternatively, one may choose W to be diagonal, where the 
inverse of each diagonal element approximates the square of 
the variation of the corresponding Fourier coefficient. 

Again, following the notation of Lindberg (1992b), the var­
iation of the Fourier amplitudes measured by Kirkpatrick and 
Holmes (1989) can be approximated by the function 

s, \ { l for n<nc 
f»(n)=[(nc/n)» for n^n; ( 1 5 ) 

The constant/? is typically between 1 and 2. Then Wis chosen 
as 

^ = d i a g { ^ 2 ( 2 ) , ^ 2 ( 3 ) , . . . , ^ 2 ( N ) , ^ 2 ( 2 ) , ^ 2 ( 3 ) , 

• • • ,rp\N)}. (16) 

An important problem raised by Lindberg (1992b) is deter­
mination of the size parameter K. In Section 4 we will determine 
K, after having chosen W, so that the maximum initial deflec­
tion equals the quantity 5 as it is defined in the uniform bound 
model. The parameter 5 is of considerable practical value, as 
Lindberg (1992a) emphasizes and as discussed in Section 1. 

The shifted ellipsoidal convex model: 

RSEhP={D: (D-h)TW(D-h)<K2}. (17) 

The motivation for this convex model is that the Fourier 
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coefficients D of the initial deflection may have a nominal 
value, h, different from zero. In fact, one could interpret the 
imperfection data discussed by Kirkpatrick and Holmes (1989) 
as representing nominal or typical values of the Fourier coef­
ficients, rather than the typical spread of these coefficients. 
Kirkpatrick and Holmes in fact may have this in mind when 
they write: "The imperfection data banks show that imper­
fections have characteristic distributions that include decreas­
ing modal amplitudes with increasing mode number." (1989, 
p. 1076). 

One could thus choose the vector h in Eq. (17) as 

hT= WP(2),fp(3) ,fP(N),fp(2),f„Q), . . . ,fp(N)). 

(18) 

Again, K can be related to 5, as for the regular ellipsoidal 
model. Results with this model will be presented in Section 5. 

4 Ratio of Peaks Based on the Ellipsoidal Model 
Let us consider the ellipsoidal model defined in Eq. (13). 

We Will choose W as either the identity matrix or the diagonal 
matrix obtained from the function fp(n). Then our tasks will 
be 

1 choose K so that the greatest initial deflection of any profile 
in J^ELP equals 5. 

2 evaluate the ratio of the maximum pulse response (Eq. (4)) 
to S. This dimensionless ratio expresses the degree to which 
the initial imperfections are amplified in response to the pulse 
loading. This "ratio of peaks" will be compared with the 
probabilistic ratio of peaks from Lindberg (1992a). 

The initial deflection is h{d) = DT<p(6) as in Eq. (1). We wish 
to choose K, the size of the initial imperfection ellipsoid, so 
that the greatest initial deflection of any profile equals §. Thus, 
we choose K so as to satisfy 

= max max D> <p(6). 
e DiRELP 

(19) 

We begin by seeking maxDtRELp DT<p(6). We are looking for 

the maximum of a linear function, DT<p(9), on the convex set 
RELP- The maximum occurs on the boundary, so this is an 
elementary optimization. Using the method of Lagrange 
multipliers1 one finds 

max DT<p(B)--
D(RELP 

K V ^ W-l<p{6). 

Now choose K to satisfy Eq. (19): 

§ 

maxA/^(0) rW"V(0) 

(20) 

(21) 

Having now derived an expression for the size of the ellipsoid 
of initial imperfection profiles, we can proceed to evaluate the 
ratio of peaks. The shell deformation at position 6 and time 
T is u(9, T) = DT<t>(6, T), as in Eq. (4). The greatest deflection 
in response to a radial impulse is the maximum of u(6, T) on 
the set /?ELP of allowed initial imperfection profiles 

«max(0, r )= max DT<J>(6,T). (22) 
DtRELp 

This is the maximum of a linear function, DT4>(6, T), on a 
convex set, R^-LV, and thus occurs on the boundary of the set. 
The method of Lagrange multipliers again provides an im­
mediate solution: 

'Such optimizations occur frequently in applying convex models. Examples 
can be found on pp. 139-140 and elsewhere in Ben-Haim and Elishakoff (1990). 

x(0, T)= •K\J<p(d, T)TW~ %r) (23) 

which is precisely what Lindberg (1992a, Eq. (22)) obtained. 
Let us assume that W is diagonal and that the first N- 1 

and last N- 1 elements along the diagonal are the same. That 
is 

Wm=W, N- 1 +n,N- l + nt n=\, N-\. (24) 

This condition holds for both Eq. (14) and Eq. (16). Then, 
using Eq. (21) in Eq. (23), the dependence on d vanishes and 
one finds the maximum response related to the maximum initial 
deflection as 

Wmax(v) = S 

\J]GI(T)/W„.K„. 
= 2 

N 
(25) 

This relation indicates that the maximum pulse deflection 
is a weighted average of the amplification functions, G2,(T). 
The average is weighted by the terms 1 / W,m. The specific choice 
of W determines the relative contribution of the various modes 
to the predicted maximum response. Furthermore, the varia­
tion of wmaxwith TV, the greatest mode number, depends strongly 
on the choice of W, as we will see. 

The ratio of peaks is defined as the ratio of the maximum 
pulse response to the maximum initial deflection. The convex 
model ratio of peaks for the two choices of W, Eqs. (14) and 
(16) are, respectively, 

(26) 

and 

I S G2„(T)f2
p(n) 

2 (27) 

A prominent difference between these two predictions of 
«max/§ is that Eq. (26) weights the amplification function uni­
formly throughout the range of mode numbers from 2 to N, 
while Eq. (27) weights the first nc+l modes equally and the 
remaining modes are apportioned a weight which decreases as 
(nc/n)2p. If /Vis not too large, we should thus expect Eq. (26) 
to predict larger values of umax/8 than Eq. (27), because the 
latter model will depress the modes for which G2„ is large. On 
the other hand, as the number of modes becomes very large, 
the right-hand side of Eq. (26) converges to zero, while the 
right-hand side of Eq. (27) will converge to a fixed positive 
value (if p> 1/2). 

Table 1 shows results of numerical evaluation of Eqs. (26) 
and (27), for various values of the greatest mode number, N, 
and for p = 1 an p = 2 in the function fp(n). The third and 
fourth columns show the value of umax/b, which is the convex 
model version of the ratio of peaks. The probabilistic ratio of 
peaks at three standard deviations from the mean is 12.027 
(for p=\) or 6.631 (for p = 2), as presented in Table 2 of 
Lindberg (1992a). These probabilistic results by Lindberg are 
based on Monte Carlo generation of shell populations with 
random imperfections. The Fourier coefficients of the initial 
imperfections in Lindberg's work are assumed to be normally 
distributed with zero mean and standard deviations which vary 
with the mode number. Columns five and six of Table 1 here 
show the ratio of the convex to the probabilistic ratio of peaks. 
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Table 1 Comparison of convex and probabilistic ratio of peaks based 
on the ellipsoidal convex model; s = 20, T = 6, nc = B 

N 

10 

12 

15 

17 

20 

22 

25 

30 

40 

50 

75 

100 

150 

200 

P 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

" m a x / * 

3.6771 
3.6771 
5.7791 
5.7791 
9.6465 
9.6465 
12.002 
12.002 
13.721 
13.721 
13.561 
13.561 
12.739 
12.739 
11.600 
11.600 
10.006 
10.006 
8.9285 
8.9285 
7.2659 
7.2659 
6.2819 
6.2819 
5.1206 
5.1206 
4.4309 
4.4309 

Umax/* 

2.5658 
1.7679 
3.6345 
2.1816 
5.4234 
2.7550 
6.4500 
3.0329 
7.2606 
3.2253 
7.3525 
3.2492 
7.3026 
3.2495 
7.2282 
3.2481 
7.1357 
3.2468 
7.0814 
3.2463 
7.0103 
3.2460 
6.9754 
3.2459 
6.9408 
3.2459 
6.9237 
3.2458 

Conv/Prb 
. (W = I) 

0.306 
0.555 
0.481 
0.872 
0.802 
1.455 
0.998 
1.810 
1.141 
2.069 
1.128 
2.045 
1.059 
1.921 
0.964 
1.749 
0.832 
1.509 
0.742 
1.346 
0.604 
1.096 
0.522 
0.947 
0.426 
0.772 
0.368 
0.668 

Conv/Prb 
( ^ = {/„}) 

0.213 
0.267 
0.302 
0.329 
0.451 
0.415 
0.536 
0.457 
0.604 
0.486 
0.611 
0.490 
0.607 
0.490 
0.601 
0.490 
0.593 
0.490 
0.589 
0.490 
0.583 
0.490 
0.580 
0.490. 
0.577 
0.490 
0.576 
0.489 

Table 2 Comparison of convex and probabilistic ratio of peaks based 
on the ellipsoidal convex model; s = 20, T = 6, N = 200 

nc p 

2 1 
2 

5 1 
2 

8 1 
2 

«majc/<5 

5.0236 
1.0584 
6.9237 
3.2458 
8.4852 
6.0186 

Conv/Prb 
(W = {fp}) 

0.418 
0.160 
0.576 
0.490 
0.706 
0.908 

The most striking aspect of the results in Table 1 is that the 
convex model ratio of peaks is generally less than the prob­
abilistic value. This means that the convex model is generally 
less conservative than the probabilistic model. This is in strong 
contrast to the uniform bound model studied by Lindberg 
(1992a). The explanation is that the ellipsoidal model strongly 
constrains the initial deflections, even though the size of the 
ellipsoid is such that the magnitude of the largest initial de­
flection equals 3, as in the uniform bound model. 

The second point of interest in Table 1 is the dependence 
of the comparison on the number of modes included in the 
convex model. As expected, the convex model for W=I pre­
dicts greater ratio of peaks than the model in which Wh based 
on fp(ri). Furthermore, the former model varies much more 
strongly with N. The range of N values of real interest is 
probably for N no less than about 50, since these modes are 
all excited in the buckling process. On the other hand, N>200 
is an unrealistic model since these very high modes are not 
involved. 

The results for the ellipsoidal model with W based on fp(ri) 
are fairly sensitive to the choice of the cutoff mode number, 
nc, above which fp(n) < 1. This is illustrated in Table 2. The 
convex model ratio of peaks increases with nc. This is because 
the large values of the amplification function are less strongly 
damped when nc is large. 

5 Ratio of Peaks Based on the Shifted Ellipsoidal Model 
Now we consider the shifted ellipsoidal convex model, Eq. 

(17). First we choose the size parameter K to cause the greatest 
initial deflection to equal S. Then we present the maximum 
deflection in response to radial impulse loading and evaluate 
the ratio-of-peaks. 

The maximum initial deflection at angle 9 is 

(28) "init(0)= max 
°«SELP 

oT<m 

This maximum is found with the usual Lagrange technique. 
Since we are optimizing a linear function on a convex set, one 
maximizes DT<p(d) subject to the equality constraint (D — h)T 

W{D — h) = K2. If W is diagonal and satisfies the symmetry 
condition of Eq. (24), then one obtains 

aink(6) = hT<pm + K J] \/Wm. (29) 

Now the size parameter, K, is chosen so that 5 equals the 
greatest value which «jnjt(0) obtains for any value of 6. That 
is, we choose K to satisfy 

5 = max z2inil(0) (30) 

which results in 

5 — maxeh <p(6) 

S i/wvi,„-

(31) 

The maximum pulse response is found by means of the usual 
Lagrange optimization technique. One maximizes DT4>{8, T) 
subject to the constraint (D-h)T

 W(D-K) = K. If Wis di­
agonal and satisfies the symmetry condition of Eq. (24), then 
one obtains 

umm(d,T) = hTUe, T) + K / S ^ W / ^ - M - I - (32) 

Employing the value of K from Eq. (31), and maximizing 
on 6, the greatest pulse response at time T becomes 

«maxM = max hT<t>(d, T) 

+ ( 5 - max hT<p(8) 
S ^ W / ^ » - i . « - i 

£ i/^-i,„-
(33) 

Before discussing this relation, let us recall that h is the 
vector of Fourier coefficients of the nominal initial imperfec­
tion profile. Thus, hT<p(0) is the deflection at angle 6 of the 
nominal initial imperfection, and maxeh

T<p(6) is the greatest 
deflection of the nominal initial imperfection profile. Simi­
larly, hT4>{6, T) is the pulse response of the nominal imperfec­
tion, and maxeh

T4>(6, T) is the greatest response at time r of 
the nominal initial imperfection. The maximum of hT<t>(6, r) 
and hT<p(6) do not necessarily occur at the same angle. 

Comparing the ellipsoidal and shifted ellipsoidal expressions 
for the maximum pulse response, Eqs. (25) and (33), we see 
that Eq. (33) reduces to Eq. (25) if h = 0. This is expected 
since i?SELpreduces to ̂ ?ELpif h = 0. Also, both relations involve 
a weighted average of the amplification functions, where the 
diagonal elements of W~' are the weighting terms. Thus, both 
expressions involve similar sensitivity to the choice of N and 
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Table 3 Comparison of convex and probabilistic ratio of peaks based 
on the shifted ellipsoidal convex model 

p N 6 

1 20 142.1242 
299.8731 
536.4965 

2 20 132.1510 
175.8291 
241.3462 

1 50 145.3221 
310.5071 
558.2845 

2 50 132.8226 
177.1302 
243.5916 

1 100 145.4310 
310.6381 
558.4488 

2 100 132.8160 
177.1281 
243.5961 

1 200 143.7866 
309.6362 
558.4106 

2 200 132.7646 
177.0967 
243.5949 

"max/<5, "max/*, 

(W = I) (W = {/„}) 

3.7748 3.7748 
9.0073 5.6086 
11.0865 6.3372 
1.8263 1.8263 
4.7812 2.1738 
7.2081 2.4593 

3.8417 , 3.8417 
6.5478 5.5652 
7.6044 6.2381 
1.8340 1.8340 
3.6086 2.1873 
5.0601 2.4762 

3.8400 3.8400 
5.1387 5.5075 
5.6460 6.1589 
1.8341 1.8341 
2.9468 2.1873 
3.8568 2.4761 

3.8836 3.8836 
4.1767 5.5120 
4.2899 6.1409 
1.8348 1.8348 
2.4847 2.1880 
3.0159 2.4768 

Conv/Prb Conv/Prb 
(W = I) (W = {/„}) 

0.314 0.314 
0.749 0.466 
0.922 0.527 
0.275 0.275 
0.721 0.328 
1.087 0.371 

0.319 0.319 
0.544 0.463 
0.632 0.519 
0.277 0.277 
0.544 0.330 
0.763 0.373 

0.319 0.319 
0.427 0.458 
0.469 0.512 
0.277 0.277 
0.444 0.330 
0.582 0.373 

0.323 0.323 
0.347 0.458 
0.357 0.511 
0.277 0.277 
0.375 0.330 
0.455 0.374 

W. However, numerical evaluation will show that the shifted 
ellipsoidal model is less conservative than the regular (h = 0) 
ellipsoidal model. This is related to the fact that the term 
involving the amplification functions is multiplied by 
8 - maxeh

T<p(6) in Eq. (33) and by S in Eq. (25). Furthermore, 
the shifted ellipsoid relation is not homogeneous in § and 
therefore does not allow evaluation of «max/§ without first 
explicitly choosing a value for 5. 

Table 3 presents results of the numerical evaluation of the 
Eq. (33). The vector h of Fourier coefficients of the nominal 
initial deflection is given in Eq. (18). The first column shows 
the value of p used in the function fp(n), the second column 
is the value of the greatest mode number, N. The third column 
is the value of §. Three different values of 3 are used. The first 
equals maxgh

T<p(6), which is the greatest deflection of the nom­
inal initial imperfection profile. The third value of 8 equals 
msxeh

T4>(Q), which is the greatest pulse response deflection of 
the nominal initial profile. The second value of § is intermediate 
between the first and the third. The fourth and fifth columns 
show the convex model ratio of peaks umax/5, for W given by 
Eqs. (14) and (16), respectively. The sixth and seventh columns 
show the ratio of the fourth and fifth columns to the corre­
sponding probabilistic ratio of peaks value from Lindberg 
(1992a). The probabilistic ratio of peaks values used are 12.027 
for p=\ and 6.631 p-2, respectively. The other parameter 
values are s = 20, T = 6 and nc=5. Comparing Tables 1 and 3 
one sees that the shifted ellipsoid model is even less conservative 
than the regular ellipsoid model. 

6 Ratio of Peaks Based on the Localized Uniform 
Bound Model 

Let us consider uncertain initial imperfections which are 
limited to a certain angular range of the shell. The envelope 
bound convex model i?EB is suitable for representing this sort 
of uncertainty in the initial deformation profile. We will con­
sider also the special case of the localized uniform bound 
model, RLm-

We will evaluate the maximum pulse response as the initial 
imperfection varies on the convex model. The pulse response 
at angle 0 is, from Lindberg (1992a, Eq. (14)), 

I 2TT 

««)Stt, 0, T)dZ (34) 
o 

Table 4 Ratio of peaks based on the localized uniform bound convex 
model 

02 (deg) 

1.00000 
3.00000 
5.00000 
7.00000 
10.00000 
15.00000 

20:00000 
30.00000 

50.00000 

120.00000 

360.00000 

6 (deg) 

0.50000 

1.50000 
2.50000 

3.50000 
5.00000 
7.50000 
10.00000 
15.00000 
25.00000 

60.00000 

180.00000 

«max(0, T)/S 
1.37809 
4.00272 

6.25326 
7.94303 
9.20630 

10.56260 
14.58738 
21.90472 

27.38136 
31.15329 

31.77872 

where 

1 N 

S(f, 0,T) = - Y . G„(r)cos « ( 0 - £)• (35) 
T „ = 2 

The maximum response for S(£)€,/?EB is obtained when 5(£) 
switches back and forth between the envelope functions 5i(£) 
and S2(£) as S(£, 6, T) changes sign. To represent this maximum, 
define the following sets of points: E+(0) is the set of points 
in the interval [0, 2ir] for which the sensitivity function S(£, 
0, T) is non-negative. Similarly, E-(0) is the set of points for 
which S(£, 0, T) is negative. 

E+(0)={£€[O, 2TT]:S(£, 0, T ) > 0 ) (36) 

E-(fl)=[$€[0, 2 T ] : S ( M , T ) < 0 ) (37) 

The maximum response at angle 0 becomes 

"max(0, r)= max u(6, r )= ( fctfJStf, 0, ? M 

+ [ 8i(f)S(f, 0, T)<#. (38) 
J2-.(0) 

In particular, for the localized uniform bound model, 7?LUB. 
where 5„(£) is rectangular as in Eq. (11), the maximum response 
is 

«max(0, T) = 8 IS ($ ,0 ,T) l r f{ . (39) 

It is evident that um„x{6, T) reaches a maximum for 0 = (0i + 02)/ 
2, and diminishes rapidly as 0 moves out of the interval [d\, 
Ad-

Equation (39) has been evaluated for 0 = (0i + 02)/2, with 
0i = 0 and for various values of 02. Results appear in Table 4, 
for 5 = 20, T = 6 and iV=50. When 02 = 36O deg, one gets the 
value of the uniform bound ratio of peaks found in Lindberg 
(1992a, Table 1). This value is very nearly attained for 02 = 120 
deg, due to the fact that S(£, 0, T) becomes quite small for 
l£ -0 l>12Odeg . 

Furthermore, Table 4 indicates to what extent localization 
of the imperfection reduces the severity of the response. It is 
noteworthy, for instance, that when the imperfection is re­
stricted to a 15-deg sector (02= 15) the ratio of peaks is 10.6, 
which is about 1 /3 of the value of 31.8 when 02 = 360. Similarly, 
an imperfection subtending only five degrees produces a ratio 
of peaks of 6.3 which is fully 20 percent of the value for the 
360-deg imperfection. Very localized imperfections can pro­
duce such substantial damage because the sensitivity function 
S(£, 0, T) is strongly peaked at £ = 0. 

7 Conclusions 
The following conclusions can be drawn from this discus­

sion. 
(1) We have demonstrated the use of a variety of convex 

models for representing uncertainty in the initial shell shape. 
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Each convex model is suited to a different type and extent of 
prior knowledge about the shell imperfections. Convex models 
provide a useful alternative to probabilistic description of un­
certainty when sufficient information is unavailable for reliably 
realizing a probability density function. 

(2) The ellipsoidal convex models of imperfection uncer­
tainty, i?ELP and /?SELP» when compared with a probabilistic 
analysis, seem more realistic than the uniform bound convex 
model. The radial tolerance of the shell, 3, which is a potentially 
useful parameter for quality control in the manufacture of thin 
shells, has been incorporated 'into the ellipsoidal models. 

(3) For W=I and 7V=50 the ellipsoidal convex model, 
^ELP. (Table 1) and the probabilistic model at three standard 
deviations predict approximately the same values of the ratio 
of peaks damage parameter. 

(4) For W based on fp(n) and N- 50 the ellipsoidal mod­
el RELP is more conservative than the probabilistic model by 
about a factor of 2. 

(5) The shifted ellipsoidal model, #SELP , (Table 3) is less 
conservative than the regular ellipsoidal model, #ELP> (Table 
1) by about a factor of 2. That is, the predicted ratio of peaks 
is less with .RSELP than with RELP-

(6) Localized imperfections are very effective in producing 
damage after pulsed radial loading (Table 4). For example, an 
imperfection subtending only five degrees of the shell circum­
ference produces a maximum ratio of peaks which is 20 percent 

of the value obtained from imperfections subtending the full 
circumference. 
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Representation of Strongly 
Stationary Stochastic Processes 
A generalization of the orthogonality conditions for a stochastic process to represent 
strongly stationary processes up to a fixed order is presented. The particular case 
of non-normal delta correlated processes, and the probabilistic characterization of 
linear systems subjected to strongly stationary stochastic processes are also discussed. 

1 Introduction 
Engineering systems, such as civil or mechanical structures, 

can be subjected to excitations adequately modeled as sto­
chastic processes. In these circumstances the response of such 
systems is a stochastic process too, and has to be characterized 
in a probabilistic sense. The probabilistic description of a sto­
chastic process is provided by the finite w-dimensional distri­
butions (m = 1,2, . . . , oo) or equivalently by the correlations 
of order m (see, e.g., Lin, 1977; Stratanovich, 1963). 

If the finite m-dimensional distributions are invariant under 
time shifts, then the process is said to be strongly stationary 
of order m. If this property is satisfied only for m = 2 then 
the process is a weakly stationary one and the mean is constant 
while the second-order correlation depends only on the dif­
ference between the two instants. For normal (i.e., Gaussian) 
processes, the weak stationarity guarantees the strong station-
arity because all the correlations of order greater than two are 
exactly zero. 

The spectral representation of a zero mean weakly stationary 
stochastic process is the Fourier transform of an increment of 
a generating stochastic process having orthogonal increments 
(Priestley, 1965). 

For normal processes this representation is sufficient for the 
complete characterization of stationary processes. In some 
problems, however, the input is affected by significant non-
normality, such is the case, for example, of nonlinear drag 
forces which are exerted on structures subjected to wind or 
ocean waves (Morison et al., 1950; Soize, 1978). The response 
of systems subjected to such inputs is non-normal too, and 
the probabilistic description of both input and output processes 
can be obtained by means of higher order correlations. In these 
circumstances the representation of the stationary stochastic 
processes is not sufficient for the complete characterization of 
these processes, because the classical orthogonality condition 
only guarantees the weak stationarity. Usually (Lutes, 1986; 
Lutes and Hu, 1986; Grigoriu, 1986) the definition of strongly 
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stationary processes is made through the properties of the 
correlation of higher order without first defining the generating 
process and this complicates the subsequent analysis. Here the 
explicit representation of the strongly stationary stochastic 
process is presented and consists of introducing generalized 
orthogonality conditions on the generating process of the spec­
tral representation in order to account for the features of the 
higher order correlations of the process. 

The particular case of a strongly stationary, delta correlated 
process and the probabilistic description of a linear system 
subjected to a strongly stationary (non-normal) process are 
also discussed. 

Throughout the paper the Kronecker algebra is repeatedly 
employed because of its simplicity in extending the probabilistic 
analysis to vectors of stochastic processes. Readers unfamiliar 
with this algebra are referred to Graham (1981) and Ma (1987). 

2 Preliminary Concepts 
In this section some preliminary concepts are briefly re­

viewed for clarity and for introducing appropriate notation. 
Let X(t) be an M-vector of real stochastic processes. At a 

fixed time t0 the vector X(t0) constitutes a vector of random 
variables and its probabilistic description can be made by means 
of the joint probability density function P\(x; t0) or equiva­
lently by means of its Fourier transform, that is, 

Mx(tf; /„) = . - s : exp(-/'irx) 

px(\; t0)dxxdx2 . . . dx„ (1) 
where i = y/ - 1 is the imaginary unit, d is an n- vector of real 
parameters, the apex T denotes transpose, Xj is the jth com­
ponent of the vector x, and Mx(#; t0) is the so-called char­
acteristic function. The latter can be expressed as 

Mx(tf; t0) = 2 ^ T ^ <>[r,7mr[X; t0] 

= exp §-*-y*-V,7kr[X;/,,] (2) 

where the exponent in the square brackets denotes tensor or 
Kronecker power. Specifically, 
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M 0®i?(g) , , . ®& 
dm = 

r-fold 
(3) 

In this equation the symbol ® denotes tensor or Kronecker 
product (Graham, 1981; Ma, 1987), see also the Appendix, so 
that &[r] is a vector of order nr. In Eq. (2) mr[X; t0] and kr[X; 
/0] are the moments and the cumulants of order r, respectively. 
They are given by the equations 

mr[X; t0] =£[XM(/0)] = J ^ j *[rW(x; /„) 

xdxt. 

kr[X; t0) 

dx„ = 
( - / ) ' 

( - / ) ' 
v|flnMx(tf;/o) 

(4) 

(5) 

where E[»] represents stochastic average and V j is the differ 
ential vector defined by 

A A A 
at?! d&2 d$. 

VJ= (6) 

Comparing Eqs. (1) and (2) one can conclude that the prob­
abilistic description of the stochastic vector process X(t) at a 
fixed time t0 can be obtained by the knowledge of the prob­
ability density function, or by the characteristic function, or 
equivalently by the moments or the cumulants of all orders of 
the vector process X (/)• 

Choose arbitrarily 5 + 1 time instants, namely t0, tu . . . , ts, 
the related vectors X(?0)> X ( ^ ) , . . . , X(ts) constitute a fam­
ily of vectors of random variables. Therefore its probabilistic 
description can be made by means or the joint probability 
density functions 

Pxs(xs; ts)=PXo, xi, . . . , x, 

(xo;<o, x,; h, . . . , xs; ts) (s= 1,2, . .) (7) 

where 

Xj=[XT(t0)X
T(tl) . . . XT(ts)] = [Xlx{. Xj] 

tJ = [Mi ts] (8) 

the corresponding characteristic function is given in the form 

i:,r exp(-/'i?s
7"xJ)pxi(xJ; ts)dxoldxo2. . . dxsn (9) 

where x-,j is the y'th component of the vector x,- and ds is the 
n (s + 1) vector of real parameters given as 

*/"= &UI. »I (10) 

The characteristic function Mx (ds\ ts) can be expressed in terms 
of moments and cumulants in the form 

MxA&sl U ^M-'i^y r! 

00 y -\ r 

= exp ^ - ^ -T" »lr]\l%-> Q (11) 

where the moments iiMX ;̂ y and cumulants kr[Xs; t j , both 
of order [n(s + l)] r, are given as 

mr[Xs; ts] = 
1 

(-'•)' vftfxl*,; Q = E[Xlr]] (12) 

k,[X,;tJ = 
1 

( - » • ) ' 

, M 
Vf,lnMi(d1;Q 

and the differential vector V»s is given in the form 

, T T 

v,0 vi , 

(13) 

(14) 

In some circumstances it is of interest to address the issue 
of incomplete representation of the moments, that is with 
vector Ejf+1)(ts) given in the form 

E x
i + 1 , ( t J )=£[X 0 ®X,® ®XS] (15) 

the vector £^+ 1 )( t s) (order ns+1) will be called "average at 
multiple times" and can be obtained by the characteristic func­
tion in the form 

I 

(-/) ' 
V,,0(g> Vtf,(x) ® Vds<g)Mxs(ds-t g 

(16) 

It will be stressed that the various_components of this vector 
are contained in the vector ms+1[Xs; t j . The counterpart of 
E^s+ l\ts) in terms of cumulants is, following the nomenclature 
introduced by Stratanovich (1963), the "correlation at multiple 
times" or simply "correlation" vector R^+ 1 )(? s) , that is 

Rx*+ 1 )(« 

(-0 s Vtf0®Vtfl(g) ® V - ® In Mx(ds;ts) 
»., = « 

(17) 

The various components of RxS + l )(y are contained in the 
vector kJ+1[Xj; y . A suitable choice of the time instants t0, 
t\, . . . , ts in Eqs. (15) and (17) allows the completeconstruc-
tion of the moments and cumulants vectors m ^ , ^ ; t j and 
kj+iIX,; y , respectively. Putting t0 = t{ =. . . = / , inEqs. (16) 
and (17) we obtain ms + ] [X; t0] and ks + ] [X; t0]. As a conclusion 
the averages at multiple times and correlations of any order 
completely characterize the stochastic vector process X (t). For 
zero mean processes the correlations and the averages at mul­
tiple times coincide up to the third order. 

A process is strongly stationary up to (s + l)th order of the 
correlations at multiple times depend not on t0, tu . . . , ts 

taken separately but on the differences T, = tj - t0, i.e., on 
the vector TJ = [T] T2. . . rs] (having 5 components), that is 

Rif+1)(tt = Ki*+1)W vt,. (18) 

In this case both the average at multiple times and the prob­
ability density function depend on the vector T̂  instead of the 
vector ts. If this property is satisfied for a fixed value of s + 
1 it is also satisfied for all orders less than 5 + 1. Moreover, 
if 5 = oo, then the process X(t) is called strictly stationary; 
if the property is satisfied for s = 1, then the process is called 
weakly stationary. If the process is normal, then distinction 
between weak and strongly stationarity is not necessary because 
all correlations of order greater than two are exactly zero, so 
that a weakly stationary normal process is strictly stationary 
too. In all other cases a strongly stationary process is also 
weakly stationary but not vice versa. 

3 Representation of Stationary Process 
An explicit spectral representation of a weakly stationary 

zero-mean real n-vector process X (t), (see, e.g, Priestley, 1965) 
is given as 
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X(t): exp( — ioit)dZ(ui) (19) 

where dZ(co) is a zero mean complex stochastic vector process 
belonging to the family of orthogonal increments stochastic 
processes, that is 

rfZ*(co0)tfZ(u1)
7' = A(o>, - oi0)d$%\uo,ui) (20) 

where the star means complex conjugate, A(«) is the Kronecker 
delta (A(o), - o)0) = 1 if o>0 = o>i, A(o), - o)0) = 0 otherwise), 
*xf ("o. wi) is an n x « deterministic matrix. If o)0 = o>i, then 
Eq. (20) gives the covariance matrix of the process rfZ(co) and 
fi?*x' ("o. o)0) is a Hermitian matrix. Equation (20) can be 
rewritten in the other form 

E[dX*(w0)®dX{u>{)\ = A(o>, -co0)tfH2Vi,aio) (21) 

where the «2 vector d^x\<^o> "i) is the vectorized form of the 
matrix d$x* (o)0,o)0) namely 

Vec d * K W « i ) d * £ W « i ) (22) 

where Vec[«] is a vector column formed by all the columns of 
the matrix in parenthesis written one below another. 

The definition given in Eq. (21) is not well framed in the 
context outlined in the above section in which the probabilistic 
description of stochastic processes is made by the correlation. 
Therefore, the orthogonality condition expressed in this form 
is not easily extendible in order to represent a strongly sta­
tionary process, for this reason it is preferable to write Eq. 
(21) in terms of second correlation R^1. Because the stochastic 
vector process X(/) is real, then the process Z(o>) has an even 
real part and an odd imaginary part, and it can be easily seen 
that Eq. (21) can be rewritten in the form involving the second 
correlation of e?Z(o>) as follows: 
Rg(«i)=£[dZ(«o)®dZ(«i)] 

= A(o)0 + a)1)^g)(-0)0,0),) (23) 

in which o>J = [o)0 o>i . . . o)s]. 
It is interesting to note that putting o>0 = o>, in Eq. (23), the 

second correlation of dZ(w) does not coincide with the vec­
torized form of the covariance matrix. For example for a 
complex scalar process dZ(p>) the covariance E[dZ* (o>0)dZ(o}0)] 
is a real positive function, representing the measure of the 
process dZ(w), while the second correlation R^K^o, o>o) remains 
a complex function. 

Starting from the characterization of the vector process rfZ(co) 
one can proceed to characterize the process X ( 0 given in Eq. 
(19). The second correlation of the vector process X ( 0 is given 
as 

Rk2)(?,)=iB[X(^o)(x)X(/1)] 

rr exp( -/w<,4>-'wi'i)Rffi(«i). (24> 

Putting Eq. (23) in (24) we obtain 

Rx)(tl)=\ exp(-io}0t0-iw^)A 

x(o>0 + o>i)d*ji?(-o>o,o>i) (25) 

and using the main property of the Kronecker delta function, 
Eq. (25) can be rewritten in the form 

*!?(*.) = Rk2)(r1)=J° exp(-/o)1r1)cW£,(o>i,o)1). (26) 

on the time difference T\ and not on t0 and t{ taken separately, 
so that the orthogonality condition (23) guarantees the weak 
stationarity of the vector process X ( / ) . 

If Vx\o>, o>) is differentiable then we can write 

d*%\a>,w) = S%\u)dw (27) 

where S12)(OJ) is the vectorized form of the Hermitian Power 
Spectral Density function (PSD) matrix G%\ai) of the process 

S^2)M = Vec(Gk2)(o))). 

By inserting Eq. (27) in Eq. (24), we obtain 

R X ' ( T ) = ( exp(-(W)Sg'(o))rfo) 

or the inverse relationship 

J_ 
"2TT 

Sx%)) = i: exp(/o)r)Rk2)(r)^ 

(28) 

(29) 

(30) 

that shows that the correlation vector is the Fourier transform 
of the PSD vector and vice versa. 

If the vector process is normal then all the correlations of 
order greater than two are exactly zeros and the second cor­
relation vector or the PSD vector fully characterizes the sto-
ochastic vector process X ( t) . If the vector X (/) is non-normal, 
then the probabilistic characterization of the vector X(/) has 
to be made by correlations of order higher than two. Using 
the representation given in Eq. (19), the probabilistic char­
acterization of the process X (/) requires the probabilistic char­
acterization of the generating process rfZ(co) by means of 
correlations of higher order. 

If X(t) is strongly stationary up to (s + l)th order, then 
other orthogonality conditions in the generating process Z(o>) 
have to be attached; we refer to these as "generalized orthog­
onality conditions." For a strong stationary process vector up 
to (s + l)th order, the extension of equation (23) leads to 

R^+ 1 )(w s)=A(u0 + wi + . . .+o)s) 

X t f * x S + " ( - O)0,O)l, ,«»). (31) 

In this way the (s + l)th correlation vector of X (t) is obtained 
in the form 

X A(o)0 + o), + . . + ws)d*x
s+1\ - cco.a), , . , o)s), (32) 

and using the main property of the Kronecker delta, we obtain 

X f i W X
i + 1 ) ( o > l + 0 ) 2 + . . + WJ,Wi,0)2, • • , 0>s). (33) 

That shows that the (s + l)th correlation vector depends on 
the vector rs containing the time differences TJ = tj - t0, and 
noton/0>^i, ts taken separately, so that the generalized 
orthogonality conditions (31) guarantee the strong stationarity 
of the process X(t) up to (s + l)th order. 

If rf*x + 1)("i + "2 +• • •+ o^on,o)2, . . . , o)s) is differ­
entiable then we can write 

c W X
i + 1 ) ( 0 ) l + O ) 2 + . .+0)5,0)1,0)2, .«*) 

= Sxi+1)(fis)tfco1c?o)2. .rfo)s (34) 

in which ft J = [o>i,o)2, . . , o)s] and SxS+1)(fts) is the generalized 
This equation shows that the second-order correlation depends PSD vector (order ns+'). By inserting Eq. (34) in (33) we obtain 
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Rii+1)(T,) = 
fold exp 

7=1 

S^+l(ils)d^dw2 . . • da=s (35) 

and the inverse relationship 

sr"($w= l (^LfiL^^'l^ 
•xRri)<j,)dT1dT2...dT, (36) 

that shows that the correlation vector of an {s + l)th order 
strongly stationary vector process is the 5th Fourier transform 
of the generalized PSD and vice versa. Equations (35) and (36) 
are the generalization of Eqs. (29) and (30) to the case of 
strongly stationary processes. 

As a conclusion a stochastic vector process X(t) given in 
the form (19) in which the process dZ(u) has an (s + l)th 
order correlation vector expressed by Eq. (31) is an (s + l)th 
order strongly stationary process, the correlation or equiva-
lently its Fourier transform, i.e., the corresponding generalized 
PSD vectors describing the statistical properties of X (/) up to 
(s + l)th order. If all the correlations of order greater than s 
+ 1 are negligible then the complete characterization of X (/), 
from a probabilistic point of view, is ensured by the correla­
tions or the generalized PSD up of to order s + 1, and the 
vector process X(t) is strictly stationary. 

4 Strongly Stationary Delta Correlated Processes 
It has been recognized (Grigoriu, 1986; Horsthemke and 

Lefever, 1984), that a white noise stationary vector process 
W(t) can be obtained by the equation 

W ( 0 = 7 , L ( 0 (37) 

in which L(t) is a process with stationary orthogonal incre­
ments and W ( 0 is a Levy white noise. Strictly speaking, this 
definition is invalid in the ordinary differential calculus because 
L(t) is not differentiable everywhere. However, it can be con­
sidered rigorous in the framework of the generalized theory 
of stochastic differential calculus (Ito 1969). Usually the method 
for representing-non-normal white noise is based on assump­
tions regarding the form of the higher-order correlation func­
tion of the white noise (Stratanovich, 1963; Lutes and Hu, 
1986). Here the generalized orthogonality conditions ensuring 
the stationarity of the process is used in order to define (s + 
l)th order strongly stationary white noise vector process. Let 
W ( 0 given in the form 

W(/) = exp(-/W)fi?Z(co) (38) 

where Z(co) is a vector process having generalized orthogonal 
increments up to (5 + l)th order 

R^z+ ' W = A(C00 + CO! + . . + W,)d*i* + ' 

in which 

dtyiS+l\w{+U>2+. . .+0>s,0)l,032, 

X (-(%,&>!, . 

• , Ws) 

= Sls+l)du,dw2. 

us) (39) 

du, (40) 

Sw + '* being the constant PSD vector, that is a measure of the 
strength of the white noise process. In this way the (s + l)th 
correlation vector of W ( 0 is simply given in the form 

R •r (Tj-S.w J f Q l d J_ 

xexp 
y'=i 

diotdwi dus 

= (2w)sSls+i>5(Tl)8(T2). . .5(r,), (41) 

i.e., the correlation of order s + 1 of the vector W ( 0 given 
in the form (38), having the generalized orthogonality con­
ditions (39) and constant PSD, is given as the product of Dirac's 
delta functions. Random processes having correlation given in 
Eq. (41) following Stratanovich (1963), are the so-called delta 
correlated processes. Recently, Lutes and Hu (1986) called 
them white and Grigoriu (1987) showed that such delta cor­
related processes coincide up to fourth order with the Poisson 
white noise. 

The corresponding correlation of an increment of L(t) ad­
mits the (s + l)th correlation in the form 

Ri + " ( t s ) = (27rrsii+1)5(r1)5(r2) . . . &{rs)dt0dtx . . . dts (42) 

that is the vector process dL has stationary orthogonal incre­
ments. 

Putting t0 = ti = . . . = / j = ( in Eq. (41) we obtain 

R & + 1 ) ( ^ t)=ks+ddh; t] = (2-K)sSis+l)dt. (43) 

This equation shows that all the cumulant vectors up to 5 + 
1 order of the process dL are of order dt. If W (t) is a Gaussian 
white noise process, then L{t) coincides with a Wiener process 
and all the cumulants of order greater than two are exactly 
zero, i.e., the Wiener process is of order dtwl. If W ( 0 is a 
non-normal process, the order of an increment dL cannot a 
priori be established depending of the strength S4S+1). As a 
conclusion, a delta correlated non-normal stochastic process 
is strongly stationary if the generating process Z(co) satisfies 
Eq. (39) in which the generalized PSD vector is constant, i.e., 
Z(o) belongs to the class of processes with generalized or­
thogonal increments, the strong stationarity requiring infor­
mation regarding the strengths S^+!) of the white noise vector 
process. 

5 Input-Output Relationships 
In this section the probabilistic characterization of the re­

sponse of a linear dynamic system subjected to a strong sta­
tionary process is discussed. 

Let X ( 0 be a vector solution of an n-dimensional linear 
dynamical system subjected to the strongly stationary up to (s 
+ l)th order vector process F (t) then the steady-state response 
can be adequately represented in the Duhamel integral form 

X ( 0 = H(t-t)F(t)dt, (44) 

H (t) being the impulse response function matrix. Because F (/) 
is stationary and the system operates from t = - 00 then X(t) 
is also a stationary process. In particular, if F ( 0 is normal, 
then X ( 0 is also normal and the second correlation vector 
completely defines the response process from a probabilistic 
point of view. On the other hand, because F (t) as a stationary 
process admits a representation given in the form 

F(t) -1: exp(-;W)rfZF(o>), (45) 

where ZF(co) is an orthogonal increments vector process given 
in the form (21), then the corresponding vector response is 
given as 

X(t) =a\ exp(-iwt)H(t-t)d~t G?ZF(co). (46) 
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After some easy manipulation, X ( 0 is written in the form 

X ( 0 = ( exp(-rW)H*(w)tfZF(a>) (47) 

where H(o)) is the Fourier transform of H(t), i.e., 

exp(-ioit)H(t)dt. (48) 
o 

Equation (47) is the representation of X(t) in which the gen­
erating process is now H* (oi).dZr(a>), such a process is or­
thogonal since 

(H* (co0)rfZF(co0))(g)(H* (co, WZF(co,)) 

= [H*(o>0)®H* (ul)]E[dZr(G3o)®dZ¥(o>l)] 

= A(o0 + a)1)[H*(Wo)(x)H*(c1)1)]c?*F
2)(-a)o,col). (49) 

Comparing Eq. (49) and Eq. (23), one can state that the new 
generating process H* (u>)dZF(oi) is a weakly stationary proc­
ess. 

The correlation vector of the output X(t) is given as 

R%)(Tl) = E[X(t0)®X(t])] 

= | exp(-ia)1T1)[H(co1)®H*(co,)]rf*F
2)(a)i,"i). (50) 

That shows that the correlation vector of the response process 
X ( 0 is weakly stationary, depending only on the difference 
/ , - / „ = 7). If *F

2> is differentiable then equation (50) leads 
to 

R X ° ( T , ) = [ exp(-/a)171)[H(a),)(g)H*(a)l)]SF
2)(coi)^1 (51) 

that is the vectorized form of the well-known expression for 
the correlation matrix. 

If F ( 0 is a non-normal strongly stationary process up to (s 
+ l)th order then the response vector process X(/) is non-
normal too and the probabilistic description of this vector 
process has to be made by correlations of higher order. In 
particular, the correlation of orders s + 1 of the vector X(t) 
is given in the form 

'*"*>-£.'££.->{-'£•*') 
x [H*(Mo)®ir(co,)® . . toB-'MlR^M. (52) 

Inserting Eq. (31) in Eq. (52) we obtain 

Letting TX = . . . = TS = 0, Eq. (55) gives the cumulants of 
the response vector process, that is 

Rxs+1)(0) = k J+1[X;fl 

i: s 

fbld 
H(Qs)S^+l)(Qs)do>ido}2 . • • do>s. (56) 

If ¥(t) is delta correlated up to (s + l)th order, then Eq. 
(55) becomes 

Rr"w= Lf^L"K_/|>") 
H(Q£)afo)ififa>2 dcox (57) 

H(ns)£WF
s+,)(<oi + co2+. .+o)s,coi,a>2 , . . ,ois) (53) 

where 

ft(0J = H( J]";)®*1**"!)®11**"*)® • • • ®H*(coJ). (54) 

Equation (53) shows that if the input vector process is sta­
tionary up to (s + l)th order then the response vector process 
is also stationary of the same order. If ^Srjs+ " is differentiable 
then we can write 

Rr"(r,)= r—r 
J_„ fold J_ 

x exp ( - / J ] ajTj) H(fi,)SF
J+ " ( Q , ) ^ , ^ . . . do>s. (55) 

An analogous expression to that given by Eq. (57) has been 
obtained by Lutes (1986) for a single oscillator excited by a 
strongly delta-correlated stationary process. 

6 Conclusions 
The spectral representation of a weakly stationary process 

by using the Fourier transform of a complex stochastic gen­
erating process having orthogonal increments is often used in 
stochastic analysis. In order to ensure the strong stationarity 
other orthogonality conditions on the generating process have 
to be attached, here these conditions have been referred to as 
the "generalized orthogonality conditions", which accounts 
for the higher correlations of the given process. 

The extension of the generalized orthogonality conditions 
has been done by using the Kronecker algebra and interpreting 
the classical orthogonality condition by means of the covari-
ance matrix of the stochastic vector of generating process, in 
the form involving the second correlation vector of the gen­
erating process. 

It is shown that the second correlation evaluated at zero and 
the variance are quite different concepts for complex processes. 
The former being the second term of the Taylor expansion of 
the characteristic function while the latter represents the meas­
ure of the process. A consistent definition of the orthogonality 
condition has been found by transferring the usual orthogo­
nality condition of the complex generating process in terms of 
correlation. Then the generalization of the orthogonality con­
ditions in order to represent strongly stationary processes is 
quite straightforward. 

The particular case of non-normal strongly stationary delta 
correlated processes has been also examined showing that in 
this case all the cumulants up to a fixed order of an increment 
of the vector process L(?) whose formal derivative is the Levy 
white noise process are infinitesimal of first order. 

The probabilistic characterization of the response of a linear 
system subjected to a strongly stationary process has also been 
discussed, extending results available in the literature for a 
single-degree-of-freedom linear system to multi-degree-of-
freedom systems. 
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A P P E N D I X 

In this Appendix some elements of the Kronecker algebra 
are reported. 

Let A and B two matrices of order m x n and p x q, 

respectively, then the Kronecker product of the two matrices 
denoted as A (x) B is a matrix C of order (m p) x (« q) 
given as 

C = A(g)B = 

o uB fli2B fllnB 

flmiB amiR amnB 

The following properties hold 

A®(B®C) = (A®B)(x)C 

A(x)(B + C) = A<g)B + A(x)C 

(A®B) r=A r(g)B7 ' 

( A ^ B r ^ A - ' O B - 1 

(A®B)(C®D) = (A C)(g)(B D), 

provided the various quantities exist. 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 
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On the Approximate Solution of 
Nonclassically Damped Linear 
Systems 
A common procedure in the solution of a nonclassically damped linear system is to 
neglect the off-diagonal elements of the associated modal damping matrix. For a 
large-scale system, substantial reduction in computational effort is achieved by this 
method of decoupling the system. In the present paper, the error introduced by 
disregarding the off-diagonal elements is evaluated, and a quadrature formula for 
the approximation error is derived. A tight error bound is then obtained. In addition, 
an effective scheme to improve the accuracy of the approximate solution is outlined. 

1 Introduction 
The method of modal superposition is a very powerful tech­

nique for evaluating the response of a linear dynamic system. 
A linear system is said to have classical normal modes if the 
system possesses a complete set of real orthonormal eigenvec­
tors. In general, an undamped dynamic system always pos­
sesses classical normal modes. When dissipative forces are 
present, the system may or may not possess classical normal 
modes. If it does, the system is said to be classically damped. 
Caughey and O'Kelly (1965) established a necessary and suf­
ficient condition for the existence of classical normal modes 
in a damped linear system. If classical normal modes exist, the 
differential equations of motion become decoupled when ex­
pressed in modal coordinates which are real. Otherwise, the 
system is said to be nonclassically damped. In reality, non-
classical damping comes from drastic variations of energy ab­
sorption rates of the materials in different parts of the structure. 
Typical examples of nonclassically damped systems are a nu­
clear reactor containment vessel founded on soft soil subjected 
to earthquake motion (Clough and Mojtahedi, 1976), and a 
base-isolated structure in the same environment (Tsai and Kelly, 
1988). 

When dissipative forces are nonclassical, it is generally dif­
ficult to analyze the system dynamics, owing to the complex 
nature of the eigensolutions. Foss (1958) and Vigneron (1986) 
proposed a state-space approach which takes into account the 
orthogonality relations between the complex eigenvectors of a 
nonclassically damped system. The key to the utility of the 
eigensolutions is of course orthogonality, which allows de­
coupling of the governing equations. One disadvantage of such 
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exact methods is that they require significant numerical effort 
to determine the eigensolutions. The effort required is evidently 
intensified by the fact that the eigensolutions of a nonclassically 
damped system are complex. From the analysts' viewpoint, 
another disadvantage is the lack of physical insight afforded 
by methods which are intrinsically numerical in nature. Several 
authors have studied nonclassically damped linear systems by 
approximate techniques. For instance, Cronin (1976) obtained 
an approximate solution for a nonclassically damped system 
under harmonic excitation by perturbation techniques. Using 
the frequency domain approach, Hasselman (1976) proposed 
a criterion for determining whether the equations of motion 
might be considered practically decoupled if nonclassical 
damping exists. A similar criterion was also suggested by War-
burton and Soni (1977). Chung and Lee (1986) applied per­
turbation techniques to obtain the eigensolutions of damped 
systems with weakly nonclassical damping. Prater and Singh 
(1986), and Nair and Singh (1986) developed several indices 
to determine quantitatively the extent of nonclassical damping 
in discrete vibratory systems. Nicholson (1987) gave upper 
bounds for the response of nonclassically damped systems 
under impulsive loads and step loads. Bellos and Inman (1990) 
studied the frequency response of nonproportionally damped 
linear systems. 

In analyzing a nonclassically damped system, one common 
approximation is to neglect those damping terms which are 
nonclassical and retain the classical ones. This approach is 
termed the method of decoupling approximation. For large-
scale systems, the computational effort at adopting decoupling 
approximation is at least an order of magnitude smaller than 
the method of complex modes. The solution of the decoupled 
equations would be close to the exact solution of the coupled 
equations if the nonclassical damping terms are sufficiently 
small. A discussion on this topic was given, for example, by 
Meirovitch (1967), Thomson et al. (1974), and Cronin (1976). 
Solution of a damped linear system by decoupling approxi­
mation is often convenient and practical. An attempt to eval­
uate the error of approximation, introduced by neglecting the 
nonclassical damping terms, was recently reported by Shahruz 
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and Ma (1988). It is claimed that the error bounds obtained 
in their paper are the tightest in a certain functional form for 
arbitrary external excitation. Ma and Hwang (1989) have at­
tempted to generalize these error bounds in other functional 
forms. 

The purpose of this paper is to derive a quadrature formula 
for the error due to decoupling approximation. While still 
assuming that the excitation is arbitrary, a new error bound, 
which is generally tighter than the previous ones given by 
Shahruz and Ma (1988), is obtained. An iterative scheme to 
improve the accuracy of the approximate solution is also pro­
posed. The organization of the paper is as follows: In Section 
2, a formulation of the problem is given. It is shown in Section 
3 that the approximation error can be decomposed into an 
infinite series, with each term being the solution of the de­
coupled system. The series is then summed exactly in the La­
place domain, from which an error bound is obtained. An 
approach to improve the accuracy of the approximate solution 
is outlined in Section 4. This approach, inspired by the sum­
mation of the error series due to decoupling approximation, 
was discussed earlier by Ma and Hwang (1989). An example 
in Section 5 illustrates the theoretical developments pursued 
in this paper. In Section 6 a summary of findings is provided. 

2 The Neglect of Off-Diagonal Elements 
Consider the equation of motion of a discrete linear system 

under external excitation 

Mx+Cx+Kx=f(t), x(fl) = x0, x(0) = x0, t>0, (1) 

where the mass matrix M, the damping matrix C, and the 
stiffness matrix K are of order n X n. The displacement vector 
x(t) and external excitation/(0 are M-dimensional vectors. For 
passive systems, the matrices M, C, and K are symmetric and 
positive definite. These assumptions are not arbitrary, but in 
fact have solid footing in the theory of Lagrangian dynamics. 
Symmetry of Mresults naturally from the transformation from 
Cartesian to generalized coordinates for a scleronomic system, 
and the positive definiteness requirement is a property of ki­
netic energy. Symmetry of K results from linearization of the 
potential energy function about an equilibrium point, and the 
form of the Rayleigh dissipation function ensures symmetry 
of C. 

Let U denote the n x n modal matrix corresponding to the 
system (1). The modal matrix is a nonsingular matrix whose 
columns are the eigenvectors of the generalized symmetric ei­
genvalue problem 

Kuu)=uJMu (0 (2) 
where of > 0 and u{l), / = 1 , n, are the eigenvalues and 
the corresponding eigenvectors, respectively. The modal matrix 
is usually orthonormalized according to UTMU=I„, where if 
denotes the transpose of U, and /„ is the identity matrix of 
order n. In addition, UTKU = diag (cof, . . . , u>2„) = 0. By 
the linear transformation x(t) = Uq(t), Eq. (1) can be written 
in the normalized form 

g + D g + Qg = g(t), q(0)=UTMxQ, q(0) = UTMx0, t>0, 

(3) 
where g(t) = lff(t), and #(0 is the w-dimensional vector of 
normal coordinates. The symmetric matrix!) = UTCUis called 
the modal damping matrix. If D is diagonal, the system (1) is 
said to be classically damped. In the event that the damping 
matrix C is a linear combination of the mass and the stiffness 
matrices, then D is diagonal. This is a sufficient condition for 
D to be diagonal, and was originally given by Lord Rayleigh 
(1945). The necessary and sufficient condition under which 
system (1) is classically damped has been given by Caughey 
and O'Kelly (1965). When D is diagonal, system (3) is a set of 
n decoupled second-order differential equations, which can be 

solved for g(t) conveniently. Then, the solution of (1) is ob­
tained from x(t) = Ug(i), for all t > 0. 

Write the modal damping matrix in the form 

D = A + R (4) 

where A = diag (2^uu . . . , 2f„w„) is a matrix composed of 
the diagonal elements of D, and R = [d/j] is a symmetric n x 
n matrix with zero diagonal elements, and whose off-diagonal 
elements coincide with those of D. Note that by the positive 
definiteness of C, f,- > 0 for i = 1, . . . , n. Neglect the matrix 
R in Eq. (3), and denote the solution of the decoupling ap­
proximation by qjj). Thus, 

ga + Aga + Qga = g(t), f>0, (5) 

where ga(0) = ^(0), and <j(0) = <7(0). Define the n-dimensional 
vector of error due to decoupling approximation by 

e = g~qa. (6) 

Subtracting Eq. (5) and (3), we obtain 

e + Ae + Ue + Rg = 0, t>0, (7) 

with e(0) = e(0) = 0. The above expression implies that the 
error e{t) can be_regarded as the image of q{t) under a certain 
linear operator H, so that 

e(t)=H(q{t)). (8) 

In the following, we shall use the La norm of a vector, 
defined by IIh(p) II = max I hi (p) I for any vector h(p) = [hx{p), 

. . . , h„(p)]T. The parameter p can be real or complex. If p 
is real and non-negative, we put p = t, and define \\h{f)\\ = 
max sup I hj(t) I. It will always be clear from the context which 
l s i s / i (aO 
of these norms is used. As shown by Shahruz and Ma (1988), 
Eq. (7) can be manipulated to give an error bound of the form 

\\e\\<m\\g\\. (9) 

The smallest value of m that satisfies the above inequality is 
given by 

2a,- exp(F(r,)) 
m = \\H\\ = max 

l - ex p ( t fU ) ) ' 

where f, is the damping ratio defined earlier, and 

»U) = ft 
d-rf) 2U/2 tan 

*Si 

- l ( l - f f ) 
2-, 1/2 

ft 

"(l-ff)1/2-

(10) 

(11) 

(12) 

The quantity CT,- is the row sum of the absolute values of the 
off-diagonal elements of the modal damping matrix D, 

ff'=S ldvl- (13) 

Several variants of the error bound have also been given by 
Shahruz and Ma (1988). Although the above error bound is 
the tightest of the form (9), the error bound is still relatively 
large for many applications. This is perhaps due to the fact 
that a functional form of the type (9) does not take into account 
the excitation/(0- In the next section, we shall incorporate the 
driving force /(/) into the analysis to derive a tighter error 
bound. 

3 Analysis of Error 
It will be shown that the error due to decoupling approxi­

mation can be decomposed into an infinite series, which may 
then be summed exactly in the Laplace domain. Based upon 
this exact sum, the error bound of the last section will be 
sharpened. In order to do that, it is necessary to take into 
consideration the external excitation, and to cast the new error 
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bound in a functional form that is different from (9). Recall 
that e = q - qa. If qa is used in place of q in Eq. (7), we have 

e+(A + R)e+Qe=-Rqa, t>0, (14) 

where e(0) = e(0) = 0. This equation has the same form as 
(3), with e and -Rqa replacing q and g{t), respectively. At 
this stage, invoke the decoupling approximation on (14), and 
denote the solution of the resulting equation by u0. Then 

u0 + Au0 + Qu0=-Rqa, t>0, (15) 

with the same initial conditions as Eq. (14). Subtracting Eq. 
(15) from (14), and denoting the corresponding error vector 
by 

ei = e-M0. (16) 

we have 

ei + A ei + Uei+Re = 0, ei(0)= e,(0) = 0, t>0. (17) 

Substituting e from (16), 

el+(A + R)el + Qe1=-Rit0, e!(0)= ei(0) = 0, / > 0 . 
(18) 

If the decoupling approximation is invoked again on the above 
equation, with the resulting solution denoted by uu then 

w,+A iii + Q ui= -Ru0, »i(0) = «i(0) = 0, t>0, (19) 

which has the same form as (15). Define the error of this 
approximation by 

e2 = ei-ul. (20) 

It can be easily shown that 

e2+(A + R)e2 + Qe2=-Riiu e2(0)= e2(0) = 0, / > 0 , 

(21) 

and 

e2 = e-u0-ul. (22) 

Thus, the error vector e2 and the error vector e are related 
through terms u0, U\, obtained by successive application of 
decoupling approximation. By induction, the following scheme 
can be defined: for every integer k > 1, 

ek = ek-i-uk.u e0 = e (23) 

uk + Auk + Quk=-Ruk-U M*(0)=H*(0) = 0 , t>0, (24) 

ek+(.A + R)ek + Qek=-Ruk-l, ek(0)=ek(0), t>0, 

(25) 

where u0 is given by Eq. (15). From (23), it is easy to see that 

e - l i m e « ; = 2 (e*-i-e*) = 2 j "*- (26) 

For each k, uk is the solution of a decoupled system that can 
be solved very readily. In the Appendix it is shown that the 
vector ek tends to zero as k increases without bound. The total 
error e due to the decoupling approximation of system (3) can 
therefore be expressed as 

where qa(s), §(s), u0(s), and iik(s) are, respectively, the Laplace 
transforms of qa(t), g(t), u0(t), and uk(t), and /„ is the identity 
matrix. Define two linear operators H{s) and F{s) by 

H(s)= - s ^ + As + Q)'^, 

F(s) = ( / y + As+Q)-

(31) 

(32) 

Note that these n x n matrix functions depend only upon the 
parameters of system (3). In addition, H(s) = -sF(s)R. The 
fth row of H(s) is 

[rf/i • , du-i, 0, du+u . . . , din], (33) 
s2 + 2f,«/S + ci)j 

and the rth row of F(s), on the other hand, is 

1 
•> -3 [0 , , 1, 0], (34) 

where d,j is the ijth element of R. In terms of H(s) and F(s), 
we have 

qAs)=F(s)g(s)+F(s)[(sIn + A)q(0)+q(0)], (35) 

u0(s)=H(s)qa(s)+F(s)Rq(0), (36) 

fl*(s)=J^(s)Mt_,(s), £ > 1 . (37) 

Combining the last two equations 

ak(s) = [H(s)]k+i qa(s) + [H(s)]k F(s)Rq(0), k>0, (38) 

it follows that 
oo 

e(s) = J]tik{s)=H{s)[In-H(s)riqa(s) 
k = 0 

+ [I„-H(s)]-lF(s)Rq(P). (39) 

From Eq. (35) we obtain 

e(s)=H(s)[I„-H(s)rlF(s)g(s) 

+ H(s)[I„-H(s)]-lF(s)[(sIn + A)q(0)+q(0)] 

+ [In-H(s)rlF(s)Rq(0). (40) 
Thus, the error due to decoupling approximation has been 
summed exactly in the Laplace domain. This may also be 
regarded as a quadrature solution of the error function e(f), 
which can be obtained by taking the inverse Laplace transform. 
The right-hand side of Eq. (40) depends only on the parameters 
of system (3), the external excitation, and initial conditions. 
The convergence of this expression is always satisfied if the 
modal damping matrix D is diagonally dominant. Expression 
(40) can also be derived by other methods. The method adopted 
here lends itself to an iterative approach, which will be ex­
pounded in the next section. 

In many applications, the maximum error is attained in the 
steady state. In order to derive a new error bound, it is necessary 
to compute the norm of lle(s)ll in the steady state. Since the 
steady-state response does not depend on initial conditions, it 
can be assumed that <?(0) = <j(0) = 0. Taking norms on both 
sides of Eq. (40) we have 

IL#(s)l 
lle(s)ll< 

1 - ll-HX*) II 
y?(5)ll \\g(s)\ (41) 

e = q-qa = Yj u*- (27) 

It is possible to sum the above series exactly in the Laplace 
domain. Applying the Laplace transform to Eqs. (5), (15), and 
(24), and taking into account the initial conditions, we obtain 

qa(s)=(I„s1 + As+n)^g(s) 

+ (Ins
l + As + Q)-l[(sIn + A)q(0) + q(0)], (28) 

u0(s)= - (iy + As + Q)~isRqa(s) 

+ {I,/ + As+Q)-1Rq(0), (29) 

uk(s)=-(I^1 + As + Q)^1sRuk.i(s), k>\, (30) 

where the La induced norm of the matrices H(s) and F(s) is 
the maximum row sum of absolute values, defined by 

\\H (s) II = max 

WF(s) II = max 
I s / s n 

!T + 2£j(iljS + Ui 

5 2 + 2f , 'W;5+0); 

(42) 

(43) 

with a,- given by expression (13). Suppose the maximum row 
sum is attained when / = / in Eq. (42), and when j = m in 
(43). Then inequality (41) can be manipulated into the form 
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Ile(s)ll< 

where 

aiS+0!2 ais+(oil,/oif)a2 

J + Wm 
com S + ciiff, 

1?/= 
2f /co / - f f ; 

2c0/ 

and ai and a2 are constants given by 

\\g(s)\l, (44) 

(45) 

a,= 
<7/(c0„ -«/) 

(co/ •<4,)2 + 4o>Wm(ri}j-tl) -4T)/co,f,„co„,(«2 + co2„)' 

a2 = 
- 2 f f , co , ( r ; ^ - j >Om) 

( ^ - ^ ) 2 + 4co?a)?„(r,?+r?„)- -4))/co,fma)m(w? + co?„)' 

(46) 

(47) 

It follows from Eq. (44) that 

aiS + a2 
lle(s)ll< max 

l&k&n S +2?J/C0/.S + C0/ 
2§k(s) 

oqS+(uii„/uif)ot2 
gk(s) 

\a\ - \b\ l < l a 

(48) 

b\ has where an inequality of the type 
been used, and g(s) = [§i(s), . . . , g„(s)]'. Note that the coef­
ficients of gk(s) are only ratios of simple polynomials. Clearly, 
the above error bound can be recast in the form 

lie(r)ll<ll&(0", (49) 

by inverse Laplace transform, with b(t) determined by the two 
terms on the right-hand side of inequality (48). The procedure 
to compute the error bound (49) is much simpler than it ap­
pears. Given an excitation vector g(j), Laplace transform is 
first applied to obtain g(s). Ratios of simple polynomials are 
then multiplied to g(s), as shown in inequality (48). Taking the 
inverse Laplace transform of the products leads to the new 
error bound (49). The new error bound (49) is generally much 
sharper than that given by (9) and (10), as will be illustrated 
in Section 5. The new error bound is not of the functional 
form (9), and it involves the external excitation. If the ap­
proximate solution qa is first computed, then the error bound 
defines a neighborhood about qa in which the actual solution 
q lies. 

As an example, in the computation of the new error bound, 
consider a system subjected to harmonic excitation, with g(f) 
= A sinco/[l l ] r . In this case, 

Expression (44) becomes 

a\S+a2 lle(5)ll< 

Y + co2 

alS+ (032
m/Jf)a2 

s2 + Irj/oi/S + co/ s2 + 2$moims + c 
A co 

s2 + c 

Therefore, the error bound (49) is 

lie(0II < sup IC cos(a>0 + D sin(coO I 
(>0 

(50) 

(51) 

(52) 

where 

lle(5)ll< 
CXiS+a2 OtlS+(o>j/o)i)oi2 

.T + 2jJ/C0/5 + C0/ ,T + 2fmC0mS-t-C0m 

(55) 

The error bound (49), valid for f,„ > 0 and 17/ > 0, is 

sin(co/(l-r/,)2? Ile(^) II <sup «! 
O)l(l-rn) 1/2 ' 

• « ' 

H Sin(co/(l • 
OiCO; 

art -«;) 
<*i 

sin(com(l - fm)20 + _«2_ 

«1C0„ 

"m(l - fm) 

2t 

-Sm"m< 

sin(o„,(l-fm)2f-tf>m) 

for which 

</>/= - t a n ' 
(1 -vbl/2 

Vi 

c6,„=-tan - i d - r a 
2x1/2 

(56) 

(57) 

(58) 

Other types of excitation may be considered with the same 
readiness. In fact, a table of error bounds corresponding to 
excitation of various forms has been compiled. 

Similar results apply in the analysis of frequency response. 
For example, the ratio of lle(/o))ll to llg(/co)ll is bounded in such 
way that 

lleQ'co)!! 

i i g ( » i r 

where j = 

jaiw + a2 jaiO} + (ui2
m/o3J)a2 

co/ - c o +j 2??/co/co 
(59) 

wm-co +j 2f,„coraco 

- 1, and co is the frequency of external excitation. 

4 Improving the Accuracy of Approximate Solution 
In this section, we shall present an iterative approach to the 

approximate solution of nonclassically damped systems. We 
collect Eqs. (5), (15), and (24) together in the following system: 

? , + A ? , + 0 ? , = « ( / ) , Qa(.0) = q{0),qa(0) = q(0), /2s 0, 

(60) 

w0 + A u0 + 0 "o= ~R Qa, M0(0)=u0(0) = 0, r>0 , (61) 

uk + A iik + Q uk = -R uk-\, uk(0)=uk(Q) = Q, 
t>0, k>\. (62) 

The above system can be solved iteratively. Solution of (60) 
yields qa, which defines the inhomogeneous part of (61). So­
lution of (61) yields u0, which serves as input to (62). The 
solution of (62) generates uk for k > 1. Moreover, each of the 
above equations represents a decoupled system, the solution 
of which can be found very readily. From Eq. (27), 

<7 = <? a +2 "*(?)- (63) 

C= 

D = 

— Aci}[on(o) — co/)+2a2»//co/]+^4co 

(co2-co2) 

/l[2ai)7/co/co + a2(oii — co )]— A 

(co?-co2)2 

2 

oti(oi -oim)+2a2-2 fmco 
CO/ 

2 . . . 2 2 2 

+ 4-rfi oil co 
2 

1 * 2 , Wm , 2 2\ 
2aifmC0mC0 + «2 - 2 k - W ) 

+ 4 2 2 2 
T)/C0/C0 

(53) 

(54) 

As another example, letg(s) = u(t) [1, 
is the unit step function. Hence, \\g(s)\\ 
(44) can now be written as 

. , l ] r , where u{t) Hence, the exact solution q of system (3) can also be obtained 
11/51. Inequality by the above iterative procedure. The starting point of the 

iteration is qa, the solution obtained by neglecting the off-
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diagonal elements of the modal damping matrix. Once qa is 
determined, u0, and subsequently uk, k > 1, can be computed 
iteratively. Each iteration simply involves the solution of a 
decoupled equation. 

It is proposed that the first few terms of the infinite series 
in (63) can be used as an approximate solution of the non-
classically damped linear system (3). This is indeed an effective 
procedure, as the accuracy of the approximate solution is gen­
erally very high. For a specified degree of tolerance, we can 
always estimate the smallest number N of terms needed to 
achieve that degree of accuracy. To see this, assume again that 
q(Q) = q(0) = 0. Applying the Laplace transform to Eqs. (61) 
and (62), we have 

a0(s)=H(s)qa(s), (64) 

Qk(s)=#Wak-i(s), k>\, (65) 

where H(s) has been defined in Eq. (31). It follows that 

- I ' u0(t)= H(t-r) qa(r) dr, 

- f uk(t)= H(t-r) wfr_,(T) dr,k>\, 

(66) 

(67) 

where H(i) is thejnverse Laplace transform of H(s). Define a 
linear operator H by 

H(h{t)) = (H*h)(t)=\ H(t-r) h(r) dr, (68) 

so that H represents the convolution of the functions H(t) and 
h{t). In this case, Eqs. (66) and (67) can be rewritten as 

u0(t)=H(qM)),t>0, (69) 

uk(t)=H(uk.l(t)),t>0. (70) 

Hence, 

liM0ll<ILtfil WqJ, (71) 

IIK*II<II7/II IlKjt-iH. k>\. (72) 

Combining the last two equations, 

IIK*II<II7/II*+1II0(,II. (73) 

As it turns out, the linear operator H has been used by Shahruz 
and Ma (1988), and JI//II is given exactly by expression (10). 
The operator norm II//II is induced by the vector norm \\h(t)\\ 
= max sup I hj(t) I, and is different from the operator norm 

1<|<« (SO 
used in Section 3. If we solve (60), (61), and the first m equa­
tions of (62), then an approximate solution q* is furnished by 

q =qa + u0+ . . . +um. 

The error e of the above approximate solution is 
CO 

e = q-q* = ^ "*• 
k = m+ 1 

Using the triangle inequality and (73), we have 

.. .. ^ .. . \\H\r+2 

Hell < 
k = m+l 

1 - II//II lQ. 

(74) 

(75) 

(76) 

If an error tolerance is specified by llell<e II^JI, we obtain 

ln(e(l - 117/1)) 
N=m+2> 

lnlli/ll 
(77) 

where N is the number of equations to be solved to meet the 
specified error tolerance. For example, when II//II = 0.2, and 
e = 0.05 or five percent, then m = 0. That means N = 2. In 
other words, the true solution q lies within a band centered at 
q* = qa + u0, with 0.05 ll<7„ll as the half-width. In general, 
we need only solve a small number of decoupled equations to 

achieve a high degree of accuracy. For a large-scale system, 
substantial reduction in computational effort results in utilizing 
this iterative scheme of solution. The above iterative scheme 
was first proposed by Ma and Hwang (1989); however, 
Udwadia and Esfandiari (1990) have also recently discussed 
an iterative method of similar kind. 

5 Example 
In this section, an example is given to illustrate possible 

applications of the results obtained so far. A low-order system 
is employed for convenience. Consider a system whose nor­
malized equation is 

1 0 
0 1 

1.559 
- 0 . 2 

-0.2" 
1.6 

3.8 0 
0 4 

Q h 

Q2 

Qi 

<?2 

1 
1 

g(t). (78) 

It is easy to see that coi = 1.9493, w2 = 2, and f, = f2 = 0.4. 
An approximate solution of system (78) is obtained by solving 
the following decoupled equation: 

g(t). (79) 

"l 0" 
0 1 

Qa\ 

Qal 
+ "1.559 0 " 

0 1.6 

+ 3.8 
0 

0 
4 

Qa\ 

A<a_ 

Qa2 
= 

1 
1 

Case (i). g(t) = sin(2<). The steady-state solution of (79) 

QsU): 
-(0.320)sin(2f+1.506) 
-(0.313)sin(2f- 1.571) 

(80) 

For the system (79), IIgJ = \\qs\\ = 0.32. For illustration we 
shall focus on the first normal coordinate Qi(f). The exact 
solution q\(t), the solution qa\(t) by decoupling approximation, 
and the approximate solution q*(t) obtained by iteration are 
all plotted in Fig. 1. To compute q*(t) it is specified that e = 
0.05, so that the error tolerance becomes Hell < e \\qa\\ = 
0.016. UsingEq. (10), we find that II//II = 0.166. From formula 
(77), N = 2. Therefore, q*(t) = q„\(t) + «oi(0 is sufficient 
to meet the given error tolerance. It should be noted that 
q*(t) is remarkably close to the exact solution qx(t). 

According to Shahruz and Ma (1988), the tightest error 
bound of the functional form (9) is given by Hell < (0.166) 

10.0 

Fig. 1 Exact and approximate solutions for sinusoidal excitation 
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0.25 

-0.25 
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error band of Shahruz and Ma (1988) 
new error band 

0.5 

0.0 2.5 5.0 

Time 

10.0 

Fig. 2 Comparison of error bands for sinusoidal excitation 

10.0 

Fig. 3 Exact and approximate solutions for unit step excitation 

IIgH = 0.061. This error bound is plotted as solid lines in Fig. 
2. The new error bound (52) leads to Hell < 0.046, which is 
clearly sharper than the tightest error bound of the form (9). 
The new error bound is plotted as dashed lines in Fig. 2, where 
the exact solution q^t) is also shown. Since the exact solution 
almost meets the new error bound, the new error bound is 
indeed quite close to the maximum exact error in the steady 
state. 

Case (ii). g(t) = u(t). When the excitation is the unit step 
function, the steady-state solution of (79) is 

&(0 = 
0.263 
0.250 

(81) 

and WqJ = llftll = 0.263. The exact solution q^t), thesolution 
qai{t) by decoupling approximation, and the approximate so­
lution q*i(t) = qa\(t) + «m(0, are all plotted in Fig. 3. The 
tightest possible error bound of the form (9) is given by Hell 
< (0.166) II4II = 0.0436, where II?II is the exact solution. The 
new error bound (56) yields Hell < 0.020, which is sharper 
than the previous bound. The error bound of Shahruz and Ma 
(1988) and the new error bound are plotted in Fig. 4. Extensive 
numerical calculations have been performed by the authors, 

-o.i 

error band of Shahruz and Ma (1988) 
new error band 

0.0 2.5 5.0 

Time 

7.5 10.0 

Fig. 4 Comparison of error bands for unit step excitation 

and all calculations have yielded the same qualitative conclu­
sion that the new error bound is generally much sharper than 
that previously given by Shahruz and Ma (1988). 

6 Conclusions 
The normal coordinates of a nonclassically damped system 

are coupled by the nonzero off-diagonal elements of the as­
sociated modal damping matrix. One common procedure in 
the solution of such a system is to neglect the off-diagonal 
elements of the modal damping matrix. For a large-scale sys­
tem, substantial reduction in computational effort is achieved 
by this method of decoupling the system. In the present paper, 
the extent of approximation introduced by disregarding the 
off-diagonal elements is evaluated, and a tight error bound 
has been derived. The exact approximation error has been 
decomposed into an infinite series, and an iterative scheme to 
improve the accuracy of the approximate solution has been 
outlined. The major results, summarized in the following, are 
applicable to any linear system with nonclassical damping ele­
ments. 

(1) It has been shown that the error due to decoupling 
approximation can be decomposed into an infinite series, which 
can then be summed exactly in the Laplace domain. The exact 
sum is given by expression (40), which may be regarded as a 
quadrature solution of the error function. 

(2) When the external excitation is taken into account, a 
new error bound (48) has been derived. This new error bound 
is generally sharper than that provided by expression (9). The 
error bound defines a neighborhood about the approximate 
solution q„ in which the exact solution q of the original system 
lies. 

(3) An effective procedure to improve the accuracy of so­
lution by decoupling approximation has been proposed. This 
involves the solution of systems (60), (61), and the first few 
equations of (62). By solving a small number of additional 
decoupled equations in an iterative fashion, the accuracy of 
•the approximate solution of a nonclassically damped system 
can be greatly enhanced. 

The above statements are valid for any type of external 
excitation. An example has been employed to illustrate the 
theoretical developments pursued in this paper. 

Acknowledgment 
This research has been supported in part by the National 

Science Foundation under Grant No. MSS-8657619 and by the 

700 / Vol. 60, SEPTEMBER 1993 Transactions of the AS ME 

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Alexander von Humboldt Foundation. Opinions, findings, and 
conclusions expressed in this paper are those of the authors 
and do not necessarily reflect the views of the National Science 
Foundation. 

References 
Bellos, J., and Inman, D. J., 1990, "Frequency Response of Nonpropor-

tionally Damped, Lumped Parameter, Linear Dynamic Systems," ASME Jour­
nal of Vibration and Acoustics, Vol. 112, pp. 194-201. 

Caughey, T. K., and O'Kelly, M.'E. J., 1965, "Classical Normal Modes in 
Damped Linear Dynamic Systems," ASME JOURNAL OF APPLIED MECHANICS, 
Vol. 32, pp. 583-588. 

Chung, K. R., and Lee, C. W., 1986, "Dynamic Reanalysis of Weakly Non-
proportionally Damped Systems," J. Sound and Vibration, Vol. I l l , pp. 37-
50. 

Clough, R. W., and Mojtahedi, S., 1976, "Earthquake Response Analysis 
Considering Non-Proportional Damping," Earthq. Engng. Struct. Dyn., Vol. 
4, pp. 489-496. 

Cronin, D. L., 1976, "Approximation for Determining Harmonically Excited 
Response of Nonclassically Damped Systems," ASME Journal of Engineering 
for Industry, Vol. 98, pp. 43-47. 

Foss, K. A., 1958, "Coordinates which Uncouple the Equations of Motion 
of Damped Linear Dynamic Systems," ASME JOURNAL OF APPLIED MECHANICS, 
Vol. 25, pp. 361-364. 

Hasselman, T. K., 1976, "Modal Coupling in Lightly Damped Structures," 
AIAA J., Vol. 14, pp. 1627-1628. 

Ma, F., and Hwang, J. H., 1989, "On Decoupling the Equations of Motion 
of Nonclassically Damped Systems," ASME Paper 89-GT-123. 

Meirovitch, L., 1967, Analytical Methods in Vibrations, Macmillan, New 
York. 

Nair.S. S., and Singh, R., 1986, "Examination of the Validity of Proportional 
Damping Approximations with Two Further Numerical Indices," J. Sound and 
Vibration, Vol. 104, pp. 348-350. 

Nicholson, D. W., 1987, "Response Bounds for Nonclassically Damped Me­
chanical Systems Under Transient Loads," ASME JOURNAL OF APPLIED M E ­
CHANICS, Vol. 54, pp. 430-433. 

Prater, Jr., G., and Singh, R., 1986, "Quantification of the Extent of Non-
Proportional Viscous Damping in Discrete Vibratory Systems," J. Sound and 
Vibration, Vol. 104, pp. 109-125. 

Lord Rayleigh, 1945, The Theory of Sound, Vol. 1, Dover, New York. 
Shahruz, S. M., and Ma, F., 1988, "Approximate Decoupling of the Equations 

of Motion of Linear Underdamped Systems," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 55, pp. 716-720. 

Thomson, W. T., Calkin, T., and Caravani, P. , 1974, "A Numerical Study 
of Damping," Earthq. Engng. Struct. Dyn., Vol. 3, pp. 97-103. 

Tsai, H . -C , and Kelly, J. M., 1988, "Non-classical Damping in Dynamics 
Analysis of Base-Isolated Structures with Internal Equipment," Earthq. Engng. 
Struct. Dyn., Vol. 16, pp. 29-43. 

Vigneron, F. R., 1986, "A Natural Modes Model and Modal Identities for 
Damped Linear Structures," ASME JOURNAL OF APPLIED MECHANICS, Vol. 53, 
pp. 33-38. 

Udwadia, F. E., and Esfandiari, R. S., 1990, "Nonclassically Damped Dy­
namic Systems: An Iterative Approach," ASME JOURNAL OF APPLIED ME­
CHANICS, Vol. 57, pp. 423-433. 

Warburton, G. B., and Soni, S. R., 1977, "Errors in Response Calculations 
for Non-Classically Damped Structures," Earthq. Engng. Struct. Dyn., Vol. 5, 
pp. 365-376. 

A P P E N D I X 
It will be shown that both vectors ek and uk tend to zero as 

k increases without bound. Taking norms in Eq. (38), we have 
\\uk(s)\\<\\H(s)\\k+l\\qa(s)\\ + \\H(s)\\k\\F(s)Rq(())\\. (Al) 

It has been assumed that \\H(s)\\ < 1. This assumption is 
certainly valid if the modal damping matrix D is diagonally 
dominant. From the above equation, it is clear that lim \\uk\\ 

k- oo 

= 0. It follows that lim uk = 0, implying 
k~ oo 

lim uk=Uoo = Q. (A2) 
Ar-oo 

Let k - oo in Eq. (25). Then 

ece+(A + R)ea, + Qea,= -R 11^ = 0. (A3) 
Since £<»(0) = ex(0) = 0, it follows from the uniqueness of 
the solution of the differential Eq. (A3) that 

lim ek = ea, = 0. (A4) 

This completes the demonstration. 
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Maxwell Critical Loads for Axially 
Loaded Cylindrical Shells 
It is proposed that the classical Maxwell criterion for instability of gradient systems 
has significance as a lower bound on the appearance of localized as opposed to 
repeated periodic buckling. The hypothesis is tested against experiments, for the 
classic nonlinear problem of diamond-pattern buckling in the long thin axially loaded 
cylindrical shell. Excellent correlation is achieved. 

1 Introduction 
The response of an elastic structure in the post-buckling 

range is often directly represented by one or more fourth-order 
nonlinear differential equations. With time rather than a spa­
tial dimension as the independent variable, these would relate 
to the special class of nonlinear dynamical system, known as 
Hamiltonian or energy preserving, most often associated with 
celestial mechanics: the spatial differential equation is of course 
independent of the choice of positive direction, while the gen­
eral non-Hamiltonian dynamical system has a time domain 
that is irreversible, to take account of energy loss via damping. 

For long structures, where the response may localize over a 
portion of the length, a time-like interpretation of the spatial 
dimension has great appeal. In particular, the conservative 
nature of the Hamiltonian suggests an energy interchange, over 
the spatial dimension, of "local" potential energy V, with a 
spatial form of "kinetic" energy T. Statical equilibrium, for 
which T = 0, corresponds to the periodic (constant amplitude) 
response, while "dynamical" equilibrium, with T ^ 0, allows 
for fluctuation in amplitude along the length, opening the way 
for modulation and localization of the buckle pattern in an 
exchange of energy between V and T. The response is then 
analogous to movement on a potential surface, which is the 
same as the periodic potential and contains all the inherent 
nonlinearities. 

With the focus exclusively on localized responses, it is then 
possible to predict maximum amplitudes directly from energy 
considerations. For problems like the axially loaded cylindrical 
shell, which first destabilize and then restabilize in the post-
buckling range, such amplitudes are apparently only attainable 
for loads greater than the classical Maxwell critical load, where 
the energy levels on the unbuckled fundamental path and re-
stabilized post-buckled path are equal. The Maxwell load should 
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thus represent a lower bound on the appearance of localized 
responses. 

To check the validity of this conjecture requires solution 
well into the post-buckling range. The underlying theory is 
presently developed only in an asymptotic context (Hunt and 
Wadee, 1991), and we might expect some drift from the exact 
result as deflexions increase. We have therefore chosen, as a 
first check on this new theory, to compare with the careful 
experiments of Yamaki (1984) on the axially loaded cylindrical 
shell. Agreement with the minimum experimental load, and 
the corresponding wavelengths, is found to be excellent. 

2 Lagrangian Formulation 
Let us consider the well-known form of an unstable sym­

metric point of bifurcation, shown at the left of Fig. 1. This 
might represent the equilibrium response of a single-degree-
of-freedom system, or perhaps a continuous system buckling 
periodically into a discrete post-buckling mode of amplitude 
Aj, such as a strut on an elastic foundation (Thompson and 
Hunt, 1973). In each case, evolution of the potential energy 
V(Aj, P) under variation of the single control (loading) pa­
rameter P is as shown; equilibrium corresponds to stationary 
states of V, giving the single equation dV/dA; = 0. 

For a single-degree-of-freedom system the stationary state 
(a) is the only post-buckling solution available. Periodic buck­
ling, however, can give way to a modulated (b) or a fully-
localized (c) form, such that amplitude A, varies along the 
length of the structure as seen at the top right of Fig. 1. It 
might then be postulated that the system is behaving as a point 
mass sliding frictionlessly in a potential well, as shown at the 
bottom right, with the varying amplitude expressed as A,(X), 
where X is a distance measure replacing time t in a Lagrangian 
formulation. Potential energy remains the same as for periodic 
responses but there is a new kinetic energy contribution T, 
which can be written 

T(Ai) = 
1 

I a A,•, (1) 

the dot denoting differentiation with respect to X. Motion is 
then described by the Lagrange equation 

d fd£\_d£ 
dX\dAj~dA~ ' 

(2) 
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Fig. 1 The rolling ball analogy, as applied to: (a) periodic, (b) modu­
lated, and (c) localized responses 

where the Lagrangian £(Ah Ah P) = T(A,) - V(AhP).We 
note that, as motion is described in an inverted potential well 
in Fig. 1, we would expect the coefficient T,, to be negative. 

The hypothesis has some attractive features, notably that 
the potential energy carries all the nonlinearities of the prob­
lem, and is obtainable from a periodic formulation. It can be 
developed analytically, and readily extends to more than one 
degree-of-freedom, the new kinetic energy function T being 
obtained either from the underlying differential equation (Hunt 
et al., 1989) or from an initial potential energy functional via 
the calculus of variations (Hunt and Wadee, 1991). There is, 
however, often an asymptotic flavor to such analysis; the 
adopted spatial measure X is related to the true spatial di­
mension x by 

X=sx, (3) 
for instance, where s is a perturbation parameter measuring 
progress outwards from the critical point C. This has led X 
to be referred to as slow space, and the analysis to be termed 
double scale (Lange and Newell, 1971; Potier-Ferry, 1983; 
Hunt et al., 1989; Hunt and Lucena Neto, 1991). 

The Maxwell criterion discussed below takes s some way 
into the post-buckling regime, and extra validation of any 
asymptotically based approach is thus desirable. For a strut 
on a nonlinear foundation, numerical runs of the full under­
lying fourth-order nonlinear differential equation provide use­
ful checks (Hunt and Wadee, 1991), but for the diamond-
buckling of cylindrical shells, such an approach is impossibly 
complex. The careful experiments of Yamaki (1984), however, 
provide a most useful basis for comparison. 

3 Localized Buckling and Zero Energy 
To trace the correct amplitude variation for a localized re­

sponse, specific conditions need to be met. The response must 
take infinite "time" X to reach, or move away from, the 
maximum of - V that corresponds to the flat fundamental 
state A; = 0. This is achieved by "release," with zero kinetic 
energy, from the point on the K-surface with the same F-level 
as the maximum, as shown in the left-hand well of the bottom 
right diagram of Fig. 1; the full variation of the upper right 
is of course traced by starting and finishing at the maximum. 

Thus, for localized buckling, alternative states of zero po­
tential energy (the same F-level as the flat fundamental state) 
take on a new significance (Toland, 1986). This contrasts with 
the more familiar variational view, really only useful for pe­
riodic responses, where equilibrium depends only on the first 
variation, dV/dAit of potential energy, never on its absolute 
value. 

4 Maxwell Criterion 
It is often the case that a buckling problem has a post-

-JPDIin==-^ 
-vr W 

frflim-^ ii -^rrar^ 

^%^W\ ' Ihs-i 

' ^ ~"<-u-umij]_^ ~ pD 

Jt^_pu 

Ai 

Fig. 2 No localization below Maxwell critical load, P", where funda­
mental and (periodic) post-buckled states have equal energy 

buckling path which is initially unstable and falling with respect 
to load P, as seen in Fig. 1, but then restabilizes and rises again 
from some lower load. Such a situation is shown in Fig. 2, 
where we suppose that a periodic form of buckling is initiated 
at a critical delay bifurcation load PD, giving an unstable path 
which restabilizes at the lower post-buckling load PL. The 
potential energy surface then evolves under changing P as 
shown; we see that, for PL < P < PD, there is a total of five 
equilibrium states, three stable and two unstable, all being 
depicted by closed circles. An assumed load P to end-short­
ening 8 form is shown at the right. 

Zero energy states corresponding to maximum amplitude at 
the center of localization are shown as open circles in Fig. 2. 
We see that, somewhere in the range PL < P < PD, there 
must be a specific load PM below which no zero energy post-
buckling state exists. Interestingly, this coincides with the clas­
sical Maxwell critical load for periodic responses, which marks, 
under increasing P, the point of interchange of the global 
minimum of V from the fundamental, to the stable post-buck­
ling, state (Zeeman, 1977). The Maxwell critical load for a 
periodic response thus represents a lower bound on the possible 
appearance of a localized form of the same buckle pattern. 

5 Periodic Analysis of Cylindrical Shells 
It is clear from experiments on long, thin, axially loaded 

cylindrical shells (Sendelbeck et al., 1967; Yamaki, 1984), that 
the well-known diamond-pattern buckling appears in a local­
ized, rather than a periodic, form along the length. In a recent 
paper (Hunt and Lucena Neto, 1991), double-scale analysis is 
used to generate a theoretical amplitude variation that seems 
to compare well with experiment. The analysis has a strong 
asymptotic flavor, however, and the thoroughly unstable na­
ture of the response means that comparisons are conducted a 
considerable way into the post-buckling range. The concept 
of Maxwell critical load as a lower bound for localized re­
sponses provides a useful independent check against experi­
ments; it has the advantage of being defined with respect to 
periodic behavior, and is thus amenable to standard modeling 
techniques such as the Rayleigh-Ritz method. 

Such techniques have been used before (Madsen and Hoff, 
1965; Hunt et al., 1986), but with interest focussed on the 
minimum post-buckling load PL not the Maxwell load PM. In 
the modern context, because of the large deflexions and con­
sequent large number of contributing modes, analysis is most 
conveniently conducted using algebraic manipulation soft­
ware, such as the standard package Mathematica (Wolfram, 
1988), which has the advantage of avoiding roundoff error. 

Moderately large deflexions of a thin axially compressed 
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—/axial wavelength 

Fig. 3 The first modes of Eq. (6), for 0 
circle 

Table 1 Comparisons of minimum load level, corresponding 0, and 
corresponding maximum inward (positive) and outward (negative) dis­
placements 

1, in relation to the Koiter 

pM IpD 

0 

w/t 

n 

12 
11 
10 
9 
8 
12 
11 
10 
9 
8 
12 
11 
10 
9 
8 

Present 
analysis 

0.27 
0.24 
0.21 

.0.18 
0.16 
1.48 
1.49 
1.51 
1.56 
1.60 

8.3, -3.7 
10.0, -4.4 
12.2,-5.5 
15.1,-6.8 
19.3, -8.7 

Yamaki's 
Experimental 

-
0.24 
0.21 
0.17 
0.14 

-
1.43 

-
-

1.37* 
-

7.7, -3.3 
10.6, -4.6 
13.0, -5.9 
16.5, -7.7 

results 
Theoretical 

0.29 
0.26 
0.22 
0.17 
0.12 

-
1.54 

-
-

1.42* 
6.0,-2.8 
7.7,-3.6 
10.2, -5.0 
13.0, -6.3 
16.3, -7.7 

* not at minimum load. 

cylindrical shell are assumed to be governed by the von Kar-
man-Donnell equations 

k2V4w + K 
d2w_ 

dx2 P dx2' 

d2<j> d2w d2 d2w d2(j> 
- 2~~2 

dx' dyL dyL dx 

d2w d2<j> 

dxdy dxdy 

vV+p 
d2w ( d2w 

dx2 [dxdy I dx2 dy 
d*w d2w 

(4) 

(5) 

where X and y are axial and circumferential coordinates; V4 

denotes the two-dimensional biharmonic operator; w is in­
wards displacement; k t2/12(l vl)\ A = P/Et; p and t 
are the shell curvature and thickness; P is axial load per unit 
length; E is Young's modulus and v is Poisson's ratio; and </> 
is a stress function related to the in-plane stress resultant de­
viations from the uniform membrane state (Hunt and Lucena 
Neto, 1991). The first is an equilibrium, and the second a 
compatibility equation. 

For a Rayleigh-Ritz formulation employing a kinematically 
admissible displacement field, the second equation must be 
satisfied completely. Noting the linearity in <t>, we can start 
with an assumed w, 

' - 2 2 q>jcos ^x cos j&yy> ' +j=even (6) 
i = 0 j = 0 

and write down the corresponding <j> in standard manner (Cow-
ell, 1986). The first equation is not solved completely; rather 
the assumed form for w, with its corresponding <j>, is substituted 
into an energy formulation (Hunt et al., 1986). All of the above 
processes can be performed exactly within Mathematica. 

The assumed form for w comprises a uniform post-buckling 
dilation Qoo, which is determined from consideration of con­
tinuity of circumferential displacement together with a set of 
mutually orthogonal buckling modes. Here, /3 is the mode-
aspect ratio (axial/circumferential wavelength); y = pn/(3 is 
a scaling factor; and n is the number of whole circumferential 
waves for the "seed" mode of amplitude qn. 

The nonlinearity in w in the compatibility equation and 
consequent extended form for 0 introduces a cascade of rel­
evant buckling modes via the phenomenon of mode interaction 
(Hunt et al., 1986). A typical set of modes for (3 = 1 (n = 
1/2 ~Jpk), in the wavelength related space due to Koiter (1945), 
is shown in Fig. 3; the first eight periodic modes, together with 

<?oo> are given, with the next significant row of seven lying on 
a straight line between q06 and qm. 

Nonlinear equilibrium equations are solved using a Newton-
Raphson scheme. Minimization is also carried out with respect 
to the mode aspect ratio /3. Thus, with the sole input of the 
circumferential wave number n, the minimum-energy axial 
wavelength and combination of assumed modes is found for 
any post-buckled state. 

6 Comparison With Experiments 

To compare with the experiments of Yamaki (1984), cal­
culations are carried out for a shell with the following prop­
erties: 

P = 0.01mm"1 , f = 0.247mm, j- = 0.3, 

and for circumferential wave numbers n = 8, 9, 10, 11, and 
12. Results with 16 terms retained in Eq. (6), i.e., terms sat­
isfying i + j = 0, / + j = 2, i + j = 4 and / + j = 6, are 
summarized in Table 1. 

Yamaki's experiments were carefully carried out for clamped 
cylindrical shells with different lengths; only results from the 
longest one (L = 160.9 mm) will be considered. Figures 4(a) 
and 4(b) show, respectively, recorded relations between load 
and end-shortening displacement and load and maximum in­
wards (positive) and outwards (negative) deflexions. The post-
buckling configuration observed spontaneously is of asym­
metric type with two tiers of staggered buckles, as seen in 
contour line representations in Figs. 4(c) and 4(d) for n = 11 
and n = 8, respectively; here solid and dotted lines correspond 
to inwards and outwards deflexions. In the same reference, a 
theoretical post-buckling analysis is performed by applying the 
Galerkin procedure to Eq. (4), after Eq. (5) has been satisfied 
completely, with w assumed as a trigonometric series which 
satisfies the clamped end conditions; this gives an excellent 
reproduction of the observed diamond pattern. 

In the present analysis the periodic post-buckling curve, 
shown schematically at right in Fig. 2, is calculated for each 
assumed value of n; the Maxwell critical load is then picked 
up by checking the energy level in this state against that of the 
fundamental path. Table 1 shows our results together with 
those taken directly from the plots of Yamaki (1984) (see Figs. 
4(o) and 4(b)). 

It became clear during the analysis that, as might be expected 
from the relative deflexions involved, the lower the wave num-
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Fig. 4 Experimental results for a 

Fig. 5 Periodic buckled surface corresponding to Maxwell critical load 
for n = 10, where /3op, = 1.51 

ber n, the more terms are required in Eq. (6) for satisfactory 
convergence. With the chosen 16 terms, modal interactions at 
cubic and quartic energy levels are extensive, and the micro­
computer used for the study was working close to its limit. In 
Table 1 we find that the Maxwell critical load creeps slightly 
above the experimental minimum load for n < 9 and we 
attribute this to a lack of complete convergence. Otherwise, 
agreement between the theoretical Maxwell load and the ex­
perimental minimum load is apparently very good. 

But perhaps the clearest evidence for the importance of the 

(c) 

J — • — i i i i i 
140° 160° 180° 200° 

long cylinder (after Yamaki, 1984) 

periodic Maxwell load comes from a wavelength comparison, 
as evidenced by the mode aspect ratio /3 of Table 1. Yamaki's 
account of the experiments unfortunately gives no indication 
of axial wavelength at the minimum load level, apart from for 
n = 11, which is contour-mapped close to this state (see Fig. 
4(c); note that Fig. 4(d) for n = 8 is clearly not at a minimum 
state). It is noticeable from our periodic runs that in the re-
stabilizing region, while the load may only change fractionally, 
there is a simultaneous quite rapid change in the optimum 
(minimum-energy) value of (3. For n = 11, for instance, 
PL/PD = 0.22 and /30Rt = 2.05, but at the slightly higher 
Maxwell load ofPM/Pb = 0.24, /30pt = 1.49. The latter, but 
not the former, compares well with the experimental value of 
(8 = 1.43, taken directly from Fig. 4(c). 

Finally, Fig. 5 shows a computer-drawn image of the periodic 
deflected shape, built from the 16 harmonic functions of Eq. 
(6) at the Maxwell load for n = 10. Displacement comparisons 
are also carried out in Table 1, but it must be remembered 
that localized values would be less than their periodic coun­
terparts, since the deflexion pattern must damp down along 
the length. There is also a further trend in this comparison, 
in that if convergence is incomplete, peak values should be yet 
further reduced; the corners of the diamond pattern, where 
the peaks occur, would appear more rounded than they should 
be. Combine these two effects, and the deflexion comparisons 
of Table 1 are much as expected. 

7 Concluding Remarks 
The paper introduces a new criterion for localized buckling, 

based on the potential energy of an associated periodic form; 
it is suggested that the minimum localized post-buckling load 
coincides with the classical Maxwell critical load for periodic 
responses. Since periodic solutions of von Karman-Donnell 
equations based on energy methods are well known, results 
are obtained simply by adding V = 0 to the condition 9 V/dgij 
= 0 in the restabilized post-buckling state. 
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In essence, the new approach is quite different in concept 
from other mode-fitting procedures; it remains independent 
of end conditions, for instance, on the assumption that if the 
shell is long enough, boundaries have little or no effect on a 
localized form. This contrasts with the Galerkin procedure of 
Yamaki (1984) in which, to compare with experiments, clamped 
end conditions are fed into a model of finite length. It is noted 
by Yamaki that convergence erodes as length increases; apart 
from problems associated with too short a cylinder there are 
no such length limitations in the new approach. 

The comparisons show • excellent agreement between the 
Maxwell critical load and the minimum load from experiments; 
in spite of the limited available results for the mode aspect 
ratio (3, agreement is again most encouraging. For small values 
of circumferential wave number n, it is noted that more terms 
must be retained in Eq. (6) for satisfactory convergence. 

We are at present unable to compare with experiments other 
than at the Maxwell critical load since the "kinetic" energy 
component, T, remains undefined; its description is certainly 
possible (Hunt and Wadee, 1991) but is left for future work. 
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A Similar Flow Between Two 
Rotating Disks in the Presence 
of a Magnetic Field 
A similarity solution is obtained for a flow between two rotating parallel disks which, 
at time t * are spaced a distance H (/ - at *) l n apart and a magnetic field proportional 
to B0(7 - a\*)~"2 is applied perpendicular to the disks. Approximate analytic 
solutions are given and a numerical solution to the resulting nonlinear ordinary 
differential equations is presented. The effects of magnetic forces on the velocity 
profiles, the normal forces and the torques which the fluid exerts on the disks are 
studied. It is observed that by increasing the magnetic force a considerable increase 
in the load can be achieved. Also, the torques are more sensitive to changes in the 
squeeze Reynolds number than to changes in the rotation Reynolds number. 

I Introduction 
A similarity solution has been obtained for a flow between 

two parallel disks which, at time t*, are spaced a distance 
H(l - at*)l/2 apart, and a magnetic field proportional to 
B0(l - at*yxn is applied perpendicular to the disks by Hamza 
(1989), where H denotes a representative length and B0 denotes 
a representative magnetic field. The effects of the magnetic 
forces on the velocity profiles, and on the normal forces which 
the fluid exerts on the disks, are considered, and it has been 
found that by increasing the magnetic force, a considerable 
increase in the load could be achieved. Hamza and MacDonald 
(1984) have obtained a similarity solution to the motion of a 
viscous incompressible fluid contained between two parallel 
disks, which at time t* are spaced a distance H(\ — at*)W2 

apart, and are rotating with angular velocities proportional to 
fli(l - at*)'' by reducing the governing Navier-Stokes' equa­
tions to a set of ordinary differential equations. Here a~l 

denotes representative time and Q] denotes a representative 
angular velocity. They have examined the way in which the 
normal forces are modified by the rotation of the disks and 
the torque is modified by the normal motion of the disks by 
presenting approximate solutions for a range of values of the 
three linearly independent parameters that influence the fluid 
motion. 

The effect of magnetic field on such flows have received 
considerable attention due to the important role they play in 
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many industrial applications. Many studies of the problem 
have been motivated by the increased use of liquid metal lu­
bricants in high-temperature bearings. The theoretical and ex­
perimental investigations into the magnetohydrodynamic 
effects in lubrication that have been reported include Hughes 
and Elco (1962), Kuzma, Maki, and Donnelley (1964), Krieger, 
Day, and Hughes (1967), Kamiyama (1969), and Hamza (1988). 
In this paper we examine the motion of a viscous, incom­
pressible fluid contained between two parallel disks, which at 
time /* are spaced a distance H{\ - at*)1'2 apart and are 
rotating with angular velocities proportional to fi^l - at*y'. 
Also a magnetic field proportional to B0(l - at*)~1/2 is applied 
perpendicular to the disks and thus the paper considered here 
is a unified presentation of the effects of rotation, squeezing, 
and magnetic field on fluid between two parallel disks. Ap­
proximate analytic solutions are given and a numerical solution 
to the resulting nonlinear ordinary differential equations is 
presented for a range of values of the squeeze Reynolds number 
Rs

e = aH2/2v, the rotation Reynolds number i?f = ti\H2/v, 
and the Hartmann Number M2 = <j50//i (a denotes electrical 
conductivity and n denotes viscosity) which influence the mo­
tion. The effect of the magnetic forces on the velocity profiles, 
on the normal force which the fluid exerts on the disks, and 
on the torque which the fluid exerts on the disks are considered. 

2 Mathematical Formulation 
We consider an axisymmetric, incompressible flow between 

two parallel infinite disks which rotate in their own planes and 
are spaced a distance h(t*) apart where /* denotes time. A 
magnetic field B(t*) is applied perpendicular to the two disks 
kept at z* = 0 and z* = h(t*), h(o) = H, and the upper 
disk is moving with velocity h' (t*) towards the lower disk. 
The disks rotate in their own planes with angular velocities 
proportional to fi^l - at*)'1 and fl2(l - at*)""1. We select 
cylindrical polar coordinates (/•*, 6*, z*) and denote by u*, v*, 
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w* the velocity components in the radial (/•*), the tangential 
(6*), and the axial (z*) directions. The equations of continuity 
and momentum governing the motion are 

The Normal Force. On integrating the equations of mo­
tion, the fluid pressure is obtained as 

P (r,y,t)=p(t) + 

1 d(u*r*) dw* 
* ~ * • ~ * —• 0 

r dr dz 
,,*2 , 

U,* + U U* + W Uz* TT= -~ P* 
r p 

pa2r2 

m-at*)2 
Rs

e
 + a2 

pa2H2 

' 8 ( l - a f ' ) ' 

+ v 
1- u 

' *; r 
+ ~JeBa 

P 

(1) 

(2) 

V,* +U Vr* + W Vz*+~ 

(9) 

where p(t) is an arbitrary function of time. If the disks are 
assumed to be of finite radius " a " and of negligible thickness, 
the normal force o'r load W* which the fluid exerts on the disk 
is 

W* = 2TT \ r[p*(r, l,t)-p*(a, \,t)]dr 

vr**+^v* + vz 
r 

irixaa 

-JrBa (3) 
P 

w,* + u wr* + w wz* = 
1 * 

— Pz* + V 
p 

wr* ! + ^ w** + w*V (4) 

where Ba, p, (En Eg, Ez), (Jn Je, Jz) are the applied magnetic 
field, the pressure at a point, the electric field, and the current 
density with 

Jr=(Er+v*Ba) 

Je= -au*Ba. 

On the assumption that 

otr 

or 

where 

W=-6Rl 

SH2(l-at)2 

Jit . ^.^ " 1 

a 

III c » " ! 
Ao) + 4Re — 

a 

(10) 

w= 
SW*(l-at)2 

3irpa a 

2(1-at ) 

aH 
\fl-at 

* 
Z 

f'(y), v 

f(y), B, 

r » , 

The Torques Exerted on the Disks. When \[vt « a, the 
torque T*u, which the fluid exerts on the upper disk, is given 
by 

(I-at*) 

Bo 

g(y) c" 
2irr2ix • dr 

z = H-J\-at 

~H\f(l-at*)' 

Jl-at* 

r=r , t=t , 

•Kfxa Oj 

2H(1 - aty \g'W 

the equation of continuity (1) is satisfied and the equations of 
motion reduce to 

8fi? 
Tu=g'(l) where Tu= 

2H(l-aty 

(11) 

(12) 

/"" = Re\yf" + 3 / " -2ff" - —J- gg']+Mf" (6) For the lower disk, the corresponding result is TL = g' (o). 

g " = Rs
e[yg '+2g + 2gf'-2fg'}- M2E* + M2g (7) 

where 0 , /« = R*/2R% and E* = Jj g(y)dy andf(y), g(y) 
are unknown functions to be determined. The boundary con­
ditions are 

/(0) = 0, / ' ( 0 ) = 0, g(0) = l 

/ ( l ) = l / 2 , / ' (1 ) = 0, g(l) = -^ = s. 

3 Approximate Analytic Solution 

We describe approximate analytical results which can be 
obtained for Rs

e = 0(1), R? = 0(1) and M = 0(1), when M 
= 0(Rs

e) and R* = 0(Rs
e) and also when M = 0(Rs

e) and 
Re = 0(Rs

e)
i/2. The functions/and g for Rs

e = 0(1) may be 
expanded in the form 

(8) 

In the limiting case when M2/Rs
e - 0 and R* = 0, Eqs. (6) 

and (7) and the boundary conditions (8) reduce to the equations 
which govern the unsteady flow between two disks at a distance 

h(t*) = HsJ 1 — at* apart and moving towards or away from 
each other with relative velocity h' (t*). This case was studied 
by Wang (1976) and Ishizawa (1966). In the case when M = 
0, they reduce to equations which govern the motion of a 
viscous incompressible fluid contained between two parallel 

disks spaced a distance HyJ 1 - at* apart and are rotating 
with angular velocities proportional to Q^l - at*)'1 that were 
examined by Hamza and MacDonald (1984). In the limiting 
case Rf = 0, the equations yield a similarity solution obtained 
by Hamza (1989) for a flow between two parallel disks which 

at time t* are spaced a distance H\J 1 - at* apart and a 
magnetic field proportional to BQ(1 — at*)[/2 is applied per­
pendicular to the disk. 

/ = / o + ^ / i + 0 ( i ? f ) 2 

g=gO + Regl+0(Re)2. 

(13) 

(14) 

Case (i)- For Rs
e = o(l), R? = O(Rf) and M = 0(Rs

e), 
fa, go, f\ and gx satisfy the equations 

/o = 0 

f\ =yfo + 3 / 0 - 2 /Q /O -2-^sgogo+-^sfo 
Ke JXp 

go = 0 

gi 

We obtain 

, M * M 
'-ygo + 2gafo -2f0go--^sE0+—s 

Ke K„ 

My)=y2($/2-y) 

go(y) = i-(i-s)y 
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where the parameter s( = Q2/fii) may, by symmetry, be taken 
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The expressions for/! and git which are more lengthy than 
in Case (i), will not be quoted here. The results for W, Tu, 
and TL are 
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4 Numerical Solution 
To test the accuracy of the perturbation solution and to 

obtain reliable information on the nature of the flow for values 
of Rs

e, Rf, and M which are not small, a numerical solution 
of the governing equations is necessary. For wide ranges of 
the three parameters, the two-point boundary value problem, 
expressed by Eqs. (6), (7), and (8), has been integrated by using 
the Runga-Kutta Gill method where the initial estimates for 
the unknown boundary conditions at y = 0 were determined 
by shooting methods. The calculations were performed for 
values ofRs

e, R* and M in the ranges 0.01 < Rs
e < 1.0, 0.02 

< R* < 5.0 and 0 < M < 4. 

5 Results and Discussion 

We present and discuss the case where a thin film of fluid 
is squeezed between two parallel rotating disks in the presence 
of an axial magnetic field. In the following we shall be con­
cerned with the combined effects of magnetic forces, rotation 
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Fig. 1(b) 
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Fig. 1(c) 

Fig. 1 Variation of dimensionless functions I, r", and g with R" when 
s = -1 .0 

and squeezing on the velocity profiles, the normal force (load) 
which the fluid exerts on the upper disk, and the torques which 
the fluid exerts on each disk. 

The Velocity Field. The dimensionless functions / , / ' and 
g which give components of velocity, are approximately given 
by the zeroth-order perturbation results since i?f = o(l) when 
M = 0{Rs

e) and R* = 0{Rs
e), i.e., by 

/ ( ^ )= / (3 /2 - j ) 

f(y) = 3y(l-y) 

g(y) = l-Q-s)y. 
Thus, we have the usual parabolic distribution in the radial 

direction. The azimuthal velocity component adjusts linearly 
from the value unity at y = 0 to the value s at y = 1. 
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Fig. 2 Variation of dimensionless function f with M when s = - 1.0 

Figure 1 displays the dimensionless functions / , / ' , and g 
which describe the velocity components u, v, and w when M 
= 4.0with.?= - 1.0 for a range of values of R^. The numerical 
results indicate that the radial velocity is directed inwards to­
wards the axis in the vicinity of the midplane y = 1/2. This 
inwardly directed flow is evident in the radial flow when Rf 
= 1.0 and Rf = 2.0. The corresponding graphs for the non­
magnetic case when M = 0 with s = -1.0 for a range of 
values of Re have been displayed by Hamza and MacDonald 
(1984). It is observed that despite remarkable changes in both 
/ a n d / ' as Rg varies, g, to a good order of approximation, 
remains linear in the nonmagnetic case. However, this is not 
so when the magnetic field is present and it is evident from 
the graph of g in Fig. 1. Also, appreciable change in the value 
of/', due to the presence of the magnetic field, is more evident 
for Rf = 2.0 from Fig. 1. 

With an increase in M, with R^ and Rs
e fixed, there is a slight 

increase in the radial velocity profile near the disks and a slight 
decrease in the region of the mid-plane/ = 1/2. This increase 
(decrease) becomes more pronounced with increase in M, and 
the radial velocity profiles in the interior region become more 
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Fig. 3 Variation of dimensionless function / ' with /Wwhen s = - 1 . 0 

$ I20 

flat—features which are common to values Re = 0.01 and Re 
= 0.02 when s = — 1.0 with M ranging from 0 to 6, is seen 
in Fig. 2. Regions of inward radial flow are evident near y = 
1/2 when R? = 1.0 and 2.0 for R* = 0.01 and s = -1.0 as 
seen from Figs. 2-3 for M = 0.0 to 4.0. 

The Load. Of particular interest is the response of the load 
to changes in the squeeze Reynolds number, the rotation Reyn­
olds number, and the Hartmann number. When a magnetic 
field is absent, the load exerted on the upper disk is large and 
positive and decreases with increase of squeeze Reynolds num­
ber when Rf = 0.02 and s = - 1.0 and 0.5 as is evident from 
Fig. 4. By applying a perpendicular magnetic field, the results 
of this indicate that a remarkable increase in the load can be 
obtained. Figure 5 shows for values of Rg = 0.01, 0.1, and 
1.0, the way in which W varies with M when R^ = 1.0. The 
results indicate that the load increases with increase of magnetic 
field. Figure 6 shows the way in which W varies with M for 
values of s = -1.0 and 0.5 when R^ = 2.0. It is observed 
that at this value of J?f,whens = 0.5, ^increases with increase 
in Rg for a fixed value of M. 

Figures 7 and 8 show for values of M = 4.0, the variation 
of W with R^ when s =0.0. and 1.0. It is clear that for fixed 
Rf, W decreases with increase of 7?f and this decrease is more 
rapid when s = 1.0 than when 5 = 0.0, —1.0 or 0.5. From 
Figs. 7 and 8 and from the corresponding graphs of the re-
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Fig. 4 Response of load to changes in M when R" = 0.02 and s = 0.5 
and -1 .0 
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Fig. 5(a) 
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Fig. 5 Response of load to changes in M when R" = 1.0 and s = 1.0 
and 0.0 

sponse of normal force to changes in the rotation Reynolds 
number R? for the nonmagnetic case with fixed Rf when s = 
0.0, + 1.0, - 1.0, given by Hamza and MacDonald (1984), we 
observe that the load increases with increase of the magnetic 
field M for a fixed value of R?. 

The increase of the load-carrying capacity with increase of 
the magnetic field is of significant interest in situations like 
high-temperature bearings, where use of liquid metal lubricants 
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Fig. 6 Response of load to changes in M when R" = 2.0 and s 
and 0.5 

-1.0 

is unavoidable. This helps in achieving an improvement in the 
lubrication characteristic of the liquid-metal lubricants. 

The Torques. When the disks rotate with same angular 
velocities (i.e., s = 1.0), the magnitude of the torque which 
the fluid exerts on each disk is given by 
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and -1.0 

SEPTEMBER 1993, Vol. 60 / 713 

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Tu= U 

Re = 5 0 

0-2 0 4 

Fig. 9(a) 

3 0 

?••> 

? 0 

^ ^ ^ " 
i ^ ^ Tu = TL 

Re = 5 0 

rft - 3 o 
Re = 0 0 

i i l i i 
0-2 0-4 °i 

Fig. 9 Response 
in flf when s = -

Fig. 9(/» 

of torque on the upper and lower disks to changes 
1.0 and M = 4.0 and 2.0 

-T, 
3ira fii/x 

Rs
e + 0(Rs

e)
2. 

AH{\-aty 

Hence, as Rs
e -~ 0, the torques which act on the disks tend 

to zero. But when R? jt 0 and s - 1.0, the angular velocities 
of the disks, and hence the rate of diffusion of angular mo­
mentum, are time dependent. Therefore solid-body rotation 
is not possible. 

When (Rf/Rs
e) » 1, the torques which the fluid exerts on 

the rotating disks are of greater interest than the normal forces. 
Figure 9 shows for values of s = - 1 . 0 the way in which - TL 

varies with Rs
e, when R* = 0.0, 3.0, and 5.0 for M = 4.0 and 

2.0. It is apparent from the figures that the torques are more 
sensitive to changes in Rs

e than to changes in 7?f. 
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Free-Edge Stress Intensity Factor 
for a Bonded Ductile Layer 
Subjected to Shear 
The stress state found in a thin, power-law hardening ductile layer bonded between 
a pair of rigid adherends and subjected to a shear loading is investigated. Within 
the context of a work-hardening plasticity theory, a stress singularity of type Kr6 

(5 < 0) exists at the point where the interface between one of the rigid adherends 
and the ductile layer intersects the stress-free edge. The intensity of this singularity 
{i.e., K) has been calculated for a plane strain condition using a technique that 
combines results of an asymptotic analysis of the stress singularity with those of a 
detailed finite element analysis. A dead-soft aluminum layer is considered first with 
emphasis placed on an assessment of the region dominated by the plastic stress 
singularity. Results for a fully plastic layer with negligible elastic strains are presented 
next. The relation defining the fully plastic, free-edge stress intensity factor for a 
shear loading depends only on a characteristic shear stress, layer thickness, and the 
layer's hardening exponent. 

Introduction 
Within the context of both elasticity and work-hardening 

plasticity theory, a stress singularity of type Krs (8 < 0) can 
exist at an interface corner (i.e., the point where an interface 
between bonded materials intersects a stress-free edge, Fig. 
1(a)). For example, see Williams (1952) and Bogy (1968) for 
linear elasticity solutions and Lau et al. (1987, 1988) and Duva 
(1989) for work-hardening plasticity solutions. Most previous 
work has been aimed at determining the strength of this stress 
singularity (i.e., 8). In recent work, the relation defining the 
elastic, free-edge stress intensity factor Kf for a thin linear 
elastic layer bonded to rigid adherends and subjected to either 
a tensile or shear loading has been fully determined for a plane 
strain condition (Reedy, 1990, 1991). Specifically, for a shear 
loading 

Kj=a*h'-xAs(v) (1) 
where a* is the nominal shear stress found at the center of the 
layer, 2h is layer thickness, X - 1 is the order of the stress 
singularity, and As(v) is a function defined for a shear loading. 
As(v) and X - 1 are functions of Poisson's ratio only, and 
their values are plotted in Fig. 2. Note that Kj is defined so 
that <je(r, 0) = Kf^s where ae(r, 0) is the stress normal to 
the interface (see Fig. 1(b)). 
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Fig. 1(a) The plastic, free-edge stress intensity factor Kf is determined 
for a ductile layer bonded to rigid adherends 

Fig. 1(b) Boundary conditions used in the interface corner singularity 
analysis of a power-law hardening quarter-plane bonded to a rigid layer. 
Note: stress-free edge at 6 = - ?r/2. 
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Fig. 2 Calculated dependence of the quantity 1 - X and the function 
As[v) on Poisson's ratio v. Note K, = ff*/i1"Ms(c) for a linear elastic layer 
subjected to shear. 

Since the intensity of the stress singularity (i.e., K) char­
acterizes the magnitude of the stress state in the region where 
the interface and stress-free edge intersect, this parameter may, 
under suitable conditions, characterize flaw nucleation, the 
initial growth of small preexisting flaws, or other aspects of 
the failure process. Several experimental studies have inves­
tigated the use of a linear elastic, interface corner stress in­
tensity factor to predict the failure of relatively brittle bonded 
materials, and these studies lend some support to its use (Gra-
din, 1982; Groth, 1988; Hattori et al., 1988). The failure of 
bonded elastic-to-plastically deformable materials is also of 
technological interest with application to glass or ceramic-to-
metal seals, soldered microelectronic components, and metal 
matrix composites. For example, the failure of a thin ductile 
adhesive layer used to bond to ceramic adherends together has 
been the subject of recent studies (Evans et al., 1986; Cao et 
al., 1988, and Dalgleish et al., 1988). 

Reported as follows are the results of an analysis of the 
interface corner stress state found in a thin, power-law hard­
ening ductile layer bonded between a pair of rigid adherends 
and subjected to a shear loading. In particular, the intensity 
of the interface corner singularity, referred to here as the plas­
tic, free-edge stress intensity f a c t o r ^ , has been calculated for 
a plane strain condition using a technique that combines results 
of an asymptotic analysis of the stress singularity with those 
of a detailed finite element analysis. This study examines the 
effect of material, geometric, and load parameters on the value 
of A?. 

Asymptotic Solution for Region Near Interface Corner 
The present analysis determines the order of the dominant, 

interface corner stress singularity of type / (5 < 0) for bonded 
ductile and rigid quarter planes, and also the spatial variation 
of stresses and displacements in the region dominated by the 
stress singularity. Both Lau et al. (1987,1988) and Duva (1989) 
have analyzed related problems. The method of analysis used 
here is similar to that carried out by Hutchinson (1968) in his 
asymptotic analysis of crack-tip stress fields in a strain-hard­
ening material (i.e., the HRR singularity field); only boundary 
conditions and angular domain differ. 

Figure 1(b) shows the problem analyzed. As indicated, a 
single elastic-plastic quarter-plane is considered, and a polar 
coordinate system is centered at the interface corner. The pres­
ence of the bonded, rigid quarter-plane is specified by interface 
boundary conditions. The four homogeneous boundary con­
ditions applied to the edges that form the interface corner are 

Ur(r, 0)=Ue(r, 0) = oe(r, -r/2) = art(r, - T / 2 ) = 0. (2) 

The layer's tensile elastic-plastic behavior is represented by the 
Ramberg-Osgood relation 

e = (ay/E)(a/<jy + a(a/ay)") (3) 

where E is Young's modulus, a is a material constant, ay is 
yield strength, and n is the hardening exponent. The layer's 
response to multi-axial stress states is based upon a J2-defor-
mation theory of plasticity generalization of Eq. (3). A de­
formation theory of plasticity is physically reasonable only 
under conditions -of monotonic, proportional loading. It is 
assumed, as it is in the HRR crack-tip singularity analysis, that 
this condition is approximately satisfied. In the singularity 
analysis, consideration is limited to the region in the immediate 
neighborhood of the interface corner. In this region, the elastic 
strains are negligible compared to plastic strains, so only the 
nonlinear, power-law term of Eq. (3) enters into the analysis. 

The differential equation governing the stress state at the 
interface corner can be formulated in a straightforward manner 
using the nonlinear, plane strain J2-deformation theory con­
stitutive relations, linear strain-displacement relations, and a 
stress function of the form 

0 = /-s+10(0), -7r/2<6><0, r>0. (4) 

Note, this stress function is used to investigate a stress sin­
gularity of type r*~l (s < 1). Solutions with (1 - \/n) < s 
< 1 are of interest since they produce unbounded stresses and 
vanishing displacements as the interface corner is approached. 

The governing homogeneous, forth-order, nonlinear differ­
ential equation for 0(0) will not be listed here since it is similar 
to that used in the well-known HRR crack-tip singularity anal­
ysis (Hutchinson, 1968). The boundary conditions for the in­
terface corner singularity problem (Eq. (2)) take the following 
form when expressed in terms of 0. 

£(0) = (^-1)0(0) (5a) 

$(0) = (s(4n(l-s)+s-4)-l)4>(0) (5b) 

0 ( - T T / 2 ) = O (5C) 

<K-TT/2 ) = 0 (5d) 

Note that in the above (') = d/dd. 
The governing homogeneous differential equation and ho­

mogeneous boundary conditions define an eigenvalue problem 
in s. This type of problem can be solved for a specified hard­
ening expbnent n using a shooting method. In essence, this 
method adjusts the values of 5 and 0(0) until the boundary 
conditions at d = - TT/2 are satisfied (note that the condition 
0(0) = 1 can be arbitrarily applied in this eigenvalue analysis). 
A fourth-order Runge-Kutta method was used to integrate the 
differential equation, and a Newton's method was used to 
update the values of 5 and 0(0). MACSYMA (1989), a symbolic 
algebra program, was used to develop the governing differ­
ential equation, and also to implement the shooting method 
for solving the governing equation. 

The solution for n = 1 corresponds to an incompressible, 
linear elastic material. A solution for this case can be deter­
mined using an alternate approach (Reedy, 1991), and it has 
been verified that the present method reproduces that solution. 
A parameter tracking scheme was used to determine the initial 
guess for 5 and 0 for the n of interest using calculated values 
for smaller values of n. Using this approach, results for hard­
ening exponents ranging from 1 to 13 have been attained with 
no difficulty (calculations for higher values of n were not 
attempted). 

The calculated order of the interface corner stress singularity 
(s - 1) is plotted in Fig. 3 as a function of hardening exponent. 
This plot indicates that the strength of the singularity decreases 
rapidly with increasing hardening exponent; the value at n = 
1 is - 0 . 4 1 , while at n = 5 the value is - 0 . 1 5 . For a specified 
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Fig. 3 Order of the interface corner stress singularity - ( 1 - s) as a 
function of hardening exponent for a power-law hardening quarter plane 
bonded to a rigid layer 

value of n and the corresponding value of s, the solution for 
stresses and displacements near the interface corner can be 
determined to within a single constant, the intensity of the 
singularity, using the calculated values of <j> and its derivatives. 

The stress intensity factor is defined here so that 

ae(r,0) = K^-1 (6) 

as (r, 0) is the stress component normal to the interface, and 
KPf is called the plastic, free-edge stress intensity factor. If it 
proved convenient, a strain intensity factor could also be de­
fined. In the region dominated by the stress singularity, dis­
placement, and stress quantities are then given by 

Ur= (aa/E) (A?/ffy)V(i-1)+1t/,.(0) (7a) 
U„= (aa/E) (Kp

f/oy)"r"(s-l) + iUe(d) (lb) 

a^K^-'SriO) (8a) 

ae = Ky-lSe(6) (Eb) 

arg = Ky-lSre(d) (8c) 

oe = Ky-[3e(6) (8c?) 
am = K^-ldm(e) (8e) 

where ae is effective stress and am is mean stress. The functions 
Ur(6), Ue(6), or(6), ae(6), are(e), oe(6), and am(6) are fully de­
termined by the asymptotic analysis. Although a complete 
tabular listing of function values is not presented here, Table 
1 does list values of s - 1, Ur(-ir/2), Ue(-ir/2), ae(0), and 
ar6(0) as a function of the hardening exponent n. Note that 
Ur( - T/2) and Ue( - ir/2) are used to define displacements along 
the stress-free edge, while ae(0), and 5^(0) are used to define 
interfacial stresses. 

Finite Element Solution for the Intensity of the Stress 
Singularity 

Plane strain finite element calculations were carried out for 
an idealized configuration that models a thin layer bonded 
between rigid adherends. The layer has thickness 2h, and length 
2L. All calculations were carried out for an applied shear 
loading. As shown in Fig. 4, the applied shear loading was 
enforced by displacing the layer's lower edge relative to the 
fixed upper edge. One quarter of the layer was modeled with 
boundary conditions consistent with a skew symmetric loading, 
and L = 2.5 mm. Most calculations were performed for h = 
0.125 mm (L/h = 20). Preliminary calculations showed that 
the stress state at the center of the layer is uniform for this L/ 
h ratio, and consequently the results are appropriate for all 
L/h values of 20 or greater. Figure 4 shows a typical finite 
element mesh. The object of a calculation is to determine the 
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Table 1 Quantities used to define displacements along the 
stress-free edge and stresses along the interface of a plastically 
deforming quarter-plane bonded to a rigid layer in the region 
of the interface corner 
n 

1 
2 
3 
5 
7 
9 
11 
13 

s - 1 

-0.4054 
-0.2759 
-0.2126 
-0.1475 
-0.1135 
-0.0924 
-0.0779 
-0.0674 

UA-TT/2) 

1.2720 
0.9646 
0.6872 
0.3318 

• 0.1568 
0.0735 
0.0343 
0.0160 

U0(-TT/2) 

2.5222 
1.8943 
1.3622 
0.6767 
0.3288 
0.1579 
0.0753 
0.0357 

oe(0) 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

M0) 

0.5042 
0.4871 
0.4739 
0.4563 
0.4452 
0.4375 
0.4318 
0.4274 

Boundary Conditions 
UT = U 2 =0 along A 

1 a-t = U2 = 0 along B 
Entire mesh. r j 2 = 0, U-, = U* along C 

Detail of mesh near free edge. 

Detail of mesh near interface corner. There are 24 element rings. 

Fig. 4 Typical finite element mesh used in analysis 

value of the free-edge stress intensity factor Kf, and for this 
reason the mesh is highly refined in the region of the interface 
corner. There are 24 rings of elements surrounding the interface 
corner with radial nodal positions at r = 0,0.033,0.067,0.100, 
(100125i)/10 Mm, where i = 1, 2, . . . , 21. The finite element 
calculations were performed with the ABAQUS code (1989) 
using 4-node bilinear elements. The mesh shown in Fig. 4 
contains 876 elements and has 1930 degrees-of-freedom. 

As discussed in the previous section, the tangential displace­
ment along the stress-free edge in the region dominated by the 
stress singularity is given by Eq. 7(a), and a plot of log(£/r) 
versus log(/) will be a straight line with slope n(s — 1) + 1. 
The logarithm of the free-edge tangential displacements cal­
culated by the finite element method does indeed vary in an 
essentially linear manner with the logarithm of distance from 
the interface corner for 0.1 < r < 1.0 /xm for hardening 
exponents of 3 to 13 (Fig. 5, each curve is defined by dis­
placement values computed at 9 nodal points). The values of 
s determined from the slopes of the lines in Fig. 5 are within 
1.0 percent of the value determined by the singularity analysis. 
The value of Kf was determined from computed free-edge 
displacements by a linear least square fit of 

(Ur/{(a/Ea"y-
l)Ur(-Tr/2y-s-i)+l})w" = Cl + C2r (9) 

where d and C2 are constants (Cx = K1}), the value of s and 
Ur( - ir/2) are known for a given value of the hardening ex­
ponent (see Table 1), and 0.1 < r < 1.0 /xm. 

The deformation generated by a shear loading is sketched 
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r (mm) 

Fig. 5 Displacement U, along the stress-free edge for y* 
the lower to upper curve n = 3, 5, 7, 9, 11, and 13. 

0.10. From 

Deformed Center Line 

Fig. 6 Deformed shape of a ductile layer subjected to a positive a shear 
loading 

in Fig. 6. The calculated magnitude of Kj is the same at points 
A, B, C, and D; however, Kf is positive at points B and C, 
and negative at points A and D. 

Results for a Soft Aluminum Adhesive Layer 
Results for a thin, soft aluminum layer are presented first 

(h = 0.125 mm, E = 69 GPa, v = 0.33, n = 5, a = 0.5, ry 
= 11.5 MPa). This particular analysis can be considered to 
model stiff adherends (e.g., alumina) bonded together with a 
dead soft aluminum adhesive layer. 

Calculated values of Kf are listed in Table 2 and plotted in 
Fig. 7 as a function of 7*, the shear strain in the center of the 
layer. Note that 7* = U*/h, where U* is the applied edge 
displacement defined in Fig. 4. Values of Kf are presented for 
y* = 0.001 to 0.100. These results are for a layer that is fully 
yielded (7*77^ = 2 to 225, where yy = ry/G). As anticipated, 
Fig. 7 shows that Kf increases in a power-law-like manner. 
According to Ilyushin's theorem (see Hutchinson, 1979, p. 59), 
the solution to a boundary value problem with a single, mon-
otonically increasing displacement parameter X, will have 
strains that increase linearly with X, and stresses that increase 
as \l/n when the material obeys a power-law hardening, 72-
deformation theory of plasticity (i.e., the linear term in Eq. 
(3) is neglected). In the problem considered here, the applied 
edge displacement is a monotonically increasing displacement 
parameter. As the layer approaches a fully plastic condition 
(elastic strains are negligible), the ratio of Kf, a stress-like 
quantity, to a*, the shear stress in the center of the layer, 
should approach a constant value. Table 2 shows this to be 
the case. 

The ability of Kf to characterize interface corner failure 
processes is currently unknown. Clearly, to be of any potential 
use the stress state characterized by Kf must dominate a suf­
ficiently large region around the interface corner. One ap­
proach for characterizing the region dominated by the stress 
singularity is to compare the angular dependence of stress 
quantities as determined by the finite element analysis to that 
determined from analytic considerations. Figures 8(a) and 8(b) 

Table 2 Calculated values of the plastic, free-edge stress in­
tensity factor Kf as a function of applied load (n = 5, h = 
0.125 mm) 

(MPa) 
\K"A 

(MPa-mm01475) 
0.001 
0.002 
0.003 
0.004 
0.005 
0.010 
0.019 
0.033 
0.041 
0.050 
0.100 

13.20 
16.22 
17.99 
19.28 
20.30 
23.67 
27.05 
30.38 
31.84 
33.08 
38.13 

18.16 
21.66 
23.82 
25.42 
26.71 
31.00 
35.34 
39.65 
41.54 
43.15 
49.71 

1.870 
1.815 
1.799 
1.792 
1.788 
1.780 
1.775 
1.774 
1.773 
1.773 
1.772 

0.00 0.02 0.04 0.06 0.08 0.10 

SHEAR STRAIN y * 

Fig. 7 Calculated plastic, free-edge stress intensity factor Kp, as a func­
tion of nominal applied shear strain (n = 5, h = 0.125 mm) 

plot such results for effective and mean stress, respectively. 
Close to the interface corner, at a radial distance of 1.2 ^m 
(0.01 h) or less, the calculated angular dependence is in excellent 
agreement with that determined analytically for an interface 
corner singularity. This verifies the accuracy of the finite ele­
ment calculation, and also indicates that the asymptotic anal­
ysis did actually identify the dominate singularity. At a radial 
distance of 37 /xm (0.3 h), the calculated effective and mean 
stress begin to show a substantial deviation from that expected 
when the singularity dominates. Figures 9(a) and 9(b) compare 
the interfacial stresses ar6 and ag calculated by the finite element 
method with the one-term, singular asymptotic expressions 
over a distance h (125 /xm). These results suggest that interfacial 
normal stress is closely approximated by the one-term singular 
expression to a distance of roughly 0.25 h (30 ̂ m), while 
agreement between asymptotic and calculated interfacial shear 
stress is only fair at comparable distances. Finally note, when 
7* = 0.01, the calculated effective plastic strain is less than 
0.10 when distance from the interface corner exceeds 0.01 h 
(1 ixm). 

Fully Plastic Solutions 
. The relation for the plastic, free-edge stress intensity factor 

for a semi-infinite layer (i.e., L/h > 20) subjected to shear 
and at load levels such that elastic strains are negligible is taken 
to be of the form 

,Jp KJ; = o*hl-sBs(n) (10) 
r-fP ;„ where Ky is the fully plastic, free-edge stress intensity factor, 

a* is the nominal shear stress in the interior of the layer, 2h 
is layer thickness, s - 1 is the order of the stress singularity, 
and Bs(ri) is a function defined for shear loading. Note, Bs(n) 
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Table 3 Calculated values of the fully plastic, free-edge stress intensity factor Kff for various material 
and geometric parameters 

CASE 
2/i 

(mm) 
E 

(GPa) (MPa) (MPa) 
\K'f\ . 

(Mpa-mm' s) 

1 0.250 
2 0.250 
3 0.250 
4 0.250 
5 0.250 
6 0.250 
7 0.250 
8 • 0.125 

Note: y* = 0.10 in all cases; •> 

0.5 
0.5 
0.5' 
0.5 
0.5 
0.5 
0.1 
0.5 

v = (Or y)/E) 

69.0 
69.0 
69.0 
69.0 
69.0 
69.0 

100.0 
69.0 

and a* = 

11.5 
11.5 
11.5 
11.5 
11.5 
11.5 
5.0 

11.5 

= Ty(y*/(ayy))
u" 

3 
5 
7 
9 

11 
13 
5 
5 

84.0 
38.1 
27.1 
22.4 
19.9 
18.3 
29.0 
38.1 

when fully plastic 

82.1 
49.7 
41.2 
37.5 
35.5 
34.3 
37.9 
45.0 

Asymptotic Analysis 
Finite Element Solution 
r/h = 0.01 
r/h = 0.09 
r/h = 0.17 
r/h = 0.30 

_!_ I 

|9| (radians) 

Fig. 8(a) Variation of effective stress with angular position for 7* 
0.01. Note: iM = oJWi"-^). 

Finite Element Solution 
Asymptotic Solution ( a r 6 = K?S r 0(O)rs" ) 

0.50 

r/h 

Fig. 9(a) Comparison of finite element and asymptotic interfacial shear 
stress for y* = 0.01 

Asymptotic Analysis 
Finite Element Solution 
r/h = 0.01 
r/h = 0.09 
r/h = 0.17 
r/h = 0.30 

I _ l _ 
0.8 

|0| (radians) 

• Finite Element Solution 
• Asymptotic Solution ( a e = K? r s"1) 

Fig. 8(d) Variation of mean stress with angular position for 7* = 0.01. Fig. 9(/>) Comparison of finite element and asymptotic interfacial nor-
Note: im(S) = ^/(Kfr5-1). mal stress for 7* = 0.01 

and s - 1 depend only on hardening exponent n. As discussed 
above, Ilyushin's theorem indicates that K1} yaries as a* when 
the layer is fully plastic, consequently, Bs will not depend on 
a load-like parameter. Furthermore, Bs is independent of the 
material parameters a and ry since the stress solution for a 
specified a* does not depend on these parameters when the 
layer is fully plastic. 

Table 3 lists calculated values ofKf for eight different plane 

strain calculations. Cases 1 thru 6 examine the effect of varying 
the layer's hardening exponent. Case 7 changes yield strength, 
Young's modulus, and Ramberg-Osgood parameter a. Case 8 
reduces layer thickness by 50 percent. Tabulated results are 

for a shear loading where the nominal shear strain 7* at the 
center of the layer is 0.10. 

Finally, note that the value of Ky for different values of 
hardening exponent are not directly comparable since the order 
of the singularity is also a function of hardening exponent. 
Also note that the dimensions of Kff in Table 3 are MPa-

/ 

YSP The calculated values of Ky listed in Table 3 confirm Eq. 
(10). First consider the calculated results for layers with the 
identical hardening exponent, but with different Young's mod­
ulus and yield strength (Cases 2 and 7). As expected, the ratio 
of the calculated Kf's equals the ratio of their characteristic 
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Table 4 Quantities used to define the fully plastic, free-edge 
stress intensity factor Kff 

n 
3 
5 
7 
9 
11 
13 

1 - J 

0.2126 
0.1475 
0.1135 
0.0924 
0.0779 
0.0674 

Bs(n) 
1.52 
1.77 
1.92 

• 2.02 
2.10 
2.16 

shear stresses. This confirms that the function Bs does not 
depend on layer yield strength. As indicated by Eq. (10), 
Kf is expected to vary with layer thickness as h[~s when the 
hardening exponent and a* are held fixed. For example, when 
the hardening exponent equals 5, a 50 percent reduction in 
layer thickness should cause a 0.501475 = 0.903 reduction in 
Kff. This is confirmed by comparing Cases 2 and 8. Cases 1 
thru 6 define the dependence of Kj on the hardening exponent. 
These values have been used to define the function Bs(n) in 
Eq. (10) (see Table 4). 

Finally note that with proper interpretation, the fully plastic 
results presented here can be applied to steady, power-law creep 
by identifying strain with strain rate. 
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Fluid Flow and Heat Transfer in 
the Crescent-Shaped Lumen 
Catheter 
This paper presents a numerical investigation of fluid flow, frequency response in 
the fully developed region, and convective heat transfer in the entrance region of 
the crescent-shaped lumen catheter. The catheter is commonly used in the biomedical 
field to clinically diagnose heart disease and also to treat vessel blockage in surgery. 
The catheter is subjected to a constant wall temperature. The solution to discreti­
zation of the momentum and energy equations is obtained by using the numerically 
generated boundary fitted coordinate system. According to this method, the complex 
domain in the physical plane is transformed into a regular square domain in the 
computational plane. The control volume-based finite difference method is then 
used to discretize the transformed governing equations. Results for the thermal entry 
region flow, frequency response, and heat transfer are presented in graphical form. 
The representative curves illustrating variations of the flow rate, frequency response, 
damping coefficient, bulk temperature, and the Nusselt numbers with pertinent 
parameters in the entire thermal entry region are plotted. The optimized catheter 
design for diagnostic use in the medical industry is also presented graphically. 

Introduction 
The Dual Lumen Pressure Monitoring (DLPM) catheter is 

commonly used to diagnose heart disease in the clinic and also 
to treat vessel blockage in surgery (cf. Pepine et al., 1989; 
Intaglietta, 1987). A pressure measurement system used in 
clinical catheterization for a left heart study is shown in Fig. 
1. A catheter is attached via Luer connectors to a manifold 
that in turn is connected to a contrast medium (ionic diatri-
zoate) and pressure transducer. The transducer may be at­
tached directly to the manifold or via extension pressure tubing, 
as illustrated. The active element of the pressure transducer is 
a resistive bridge deposited on, or attached to, the diaphragm 
and connected, via isolation amplifiers, to the recording sys­
tem. This system is usually treated as a second-order instrument 
in biomedical engineering. For this instrument, designers as­
sume laminar flow in a circular tube, having the parabolic 
velocity profile characteristic of steady flow (cf. Doebelin, 
1990). Traditionally, the catheter is built with circular lumens. 
Both lumens are commonly used to measure pressure within 
the bloodstream. In measuring valvular gradients, the catheter 
is positioned across the aortic valve in such a way that the 
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distal end of the catheter exposes the larger lumen to the blood 
within the ventricles, thus allowing measurement of ventricular 
pressure. The smaller lumen is exposed to the blood contained 
within the aorta allowing it to measure aortic pressure. In 
addition, since the temperature of the fluid to be injected is 
different than the blood temperature, thermodilution tech­
niques have been extensively studied for almost 40 years. In 
this case, the indicator is "cold" and its "concentration" is 
on temperature. Distinct fluctuations in pulmonary arterial 
temperature related to cardiac and respiratory cycling result 
in a fluctuating thermal baseline. In some critically ill patients, 

potient isolat 

To Preamplif ier and Recorder 

Manifold 

syringe for contrast injection 

Fig. 1 Typical pressure measurement system used in clinical cathe­
terization 

Journal of Applied Mechanics SEPTEMBER 1993, Vol. 60 / 721 
Copyright © 1993 by ASME

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 2 Lumen cross-section and characteristic length 

these fluctuations approach the magnitude of the temperature 
change that follows a "cold" injection (cf. Brathwaite and 
Bradley, 1968; Weisel et al., 1975). Although electronic av­
eraging provides a more stable baseline, iced rather than room 
temperature injection must be used in patients to provide a 
sufficient signal-to-noise ratio. Thus, knowledge of tempera­
ture distribution in thermodilution cardiac output is very im­
portant. It is therefore important to numerically investigate 
the thermal properties of the catheter. 

The problem with this design is that when one tries to meas­
ure pressure through the smaller lumen, damping of the signal 
occurs. Obviously, this creates a problem since an ideal catheter 
design would have both lumens providing adequate flow char­
acteristics in independent, but equivalent, frequency response 
systems. In order to solve this problem and still be able to keep 
other characteristics of the catheter unchanged, it is proposed 
that the cross-sectional geometry of the smaller lumen be re­
placed with a crescent-shaped geometry, thus increasing the 
cross-sectional area of this lumen. Although this crescent-
shaped lumen geometry has provided excellent frequency re­
sponse and thermal properties, the medical industry strongly 
believes that the cross-sectional area of the lumen can be op­
timized to have the same flow as well as the frequency response 
characteristics of the larger lumen. Being able to approximate 
numerically the optimum lumen cross-sectional area is the 
problem. Most of the available mathematical models do not 
take into consideration anything other than circular geome­

tries. Therefore, these models are not able to calculate the flow 
rate and the frequency response of the crescent-shaped design. 
In fact, inspection of a literature survey by Shah and London 
(1978), Kakac et al. (1987), Eckert et al. (1989), Martynenko 
(1988), Eckert et al. (1990), and Pepine et al. (1989) indicates 
that no work has been cited in this area of study. At present, 
one must be able to predict the flow rate and frequency re­
sponse of catheters that have irregular lumen geometries. This 
must be accomplished through computer simulation since bench 
testing of these irregular designs is not practical due to the 
high cost involved in extrusion tooling. Therefore, the problem 
examined here is concerned with convective heat transfer in 
the entrance region of the catheter, Fig. 2. A uniform wall 
temperature boundary condition is considered. Additionally, 
the fully developed flow is considered to be laminar and the 
physical properties are also assumed to be constant (cf. Doe-
belin, 1990). The developing temperature in these ducts is de­
termined by solving the three-dimensional energy equation by 
applying the control volume-based finite difference method. 
The boundary fitted coordinate system (BFCS) by Thompson 
et al. (1974, 1977, 1982) is used to transform the crescent-
shaped physical lumen to the regular geometry of a rectangular 
tube. Thus, one can use regular geometric methods to inves­
tigate the process of the crescent-shaped lumen fluid flow. 
Those finite difference expressions at and adjacent to the 
boundary may then be applied using grid points only on the 
intersections of coordinate lines without the need for any in­
terpolation between points of the grid, Fig. 3. Avoiding in­
terpolation is particularly important for boundaries with strong 
curvature or slope discontinuities, both of which are common 
in physical applications. Likewise, interpolation between grid 
points not coincident with the boundaries is particularly in­
accurate with differential systems that produce large gradients 
in the vicinity of the boundaries. As a result, the character of 
the solution may be significantly altered in such cases. In many 
differential systems, the boundary conditions are the dominant 
influence on the character of the solution, and the use of grid 
points not coincident with the boundaries thus places the most 
inaccurate difference representations in precisely the region of 
the greatest sensitivity. Generation of a curvilinear coordinate 
system with coordinate lines coincident with all boundaries is 

N o m e n c l a t u r e 

a = characteristic length, a = r0 

A = cross-sectional area (m2) 
0/A; = frequency response 

cp = specific heat (kJ kg"1 k"1) 
Dh = hydraulic diameter (m) 

e = dimensionless center distance 

/ = 

h = 

J = 

k = 

m 
Nu 

P 

of the lumen, Eq. (24) 
dimensionless center distance 
of inner and outer arcs, L/r0 

skin friction factor, 
Dh(dp/dz) 

\/2pu2 

heat-transfer coefficient 
( W i r r 2 K - ' ) 
Jacobian matrix of transfor­
mation, Eq. (22) 
thermal conductivity (Wm^1 

K-1) 
mass flow rate (kg s ') 
Nusselt number, hDh/k 

Re 
T 
T, 

Tw 

u 
u 

u 

U 
x,y 

X, Y 

= pressure (N m ) 

Pr = Prandtl number, v/aT 

Ri = dimensionless inner arc ra­
dius, r-,/a 

R0 = dimensionless outer arc ra­
dius, r0/a 

Rr = dimensionless round corner 
radius, rr/a 
Reynolds number, uDi,/v 
temperature (K) 
inlet temperature (K) 
circumferential duct wall 
temperature (K) 
velocity (m,s -1) 
mean velocity (m s"1) 
dimensionless velocity, 

liu 

~L?h(dp/dz) 
dimensionless mean velocity 
transversal coordinates (m) 
dimensionless transversal co­
ordinates, x/a, y/a 

z = axial coordinate (m) 

dimensionless axial coordi-
z 

nate, £)ARePr 

Greek Symbols 

07-
a 

7 
8 

thermal diffusivity (m2 s~ ) 
coefficient, Eq. (15) 
coefficient, Eq. (16) 
coefficient, Eq. (17) 
dimensionless round corner 
of the lumen, Eq. (25) 

f = damping coefficient 
6 = dimensionless temperature 

(Tw-T)/(TW-Tj) 
6b = dimensionless bulk tempera­

ture (Tw-Tb)/(TW-Ti) 
H = dynamic viscosity (N s m ) 
v = kinematic viscosity (m2 s"1) 
p = density (kg m"3) 
^ = coefficient, Eq. (19) 

£, 17 = transversal coordinates in 
the computational plane 
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A 

Fig. 3 Grid configuration: (a) the physical plane, (b) the computational 
domain 

thus an essential part of a numerical solution. A BFCS is 
generated by solving a set of partial differential equations, 
which may be of the hyperbolic, parabolic, or elliptic type. 
We have used elliptic equations with Dirichlet-type boundary 
conditions requiring simplification of the physical coordinates 
for the end points of the curvilinear coordinate lines in the 
physical domain. The crescent-shaped cross-section is used in 
the transducer/tubing system. The results presented are in terms 
of isotherms, variations of the bulk temperature, and the Nus-
selt number in the entire thermal region of the crescent-shaped 
lumen catheter for various values of the dimensionless center 
distance of lumen, e, and the dimensionless round corner of 
lumen, <5. Also, in order to have the same flow rate in each 
lumen, the crescent-shaped lumen catheter is optimized based 
on some specific features of the biomedical equipment making 
different shaped lumens match each other, and the Nusselt 
number is graphically presented against the 8 values. It is be­
lieved that the availability to the medical field of such an 
analytical/numerical solution is essential for a better designed 
catheter. 

of the crescent-shaped lumen catheter; and X, Y, and Z rep­
resent the two dimensionless transversal coordinates and one 
dimensionless axial coordinate, respectively. Equations (1) and 
(2) are also subjected to the following boundary conditions: 

u* = 0, 0 = 0 

on the wall of the cresent-shaped lumen catheter (4) 

du* 

Jx = 0, 
dd_ 

dX 
= 0 on the symmetrical line 

and 
* 1 u = l , l, Z = 0 

(5) 

(6) 

Parameters of Interest 
The characteristics of fluid flow and heat transfer in the 

catheter can be represented by the product of the friction factor 
and the Reynolds number, the dimensionless bulk temperature, 
and the Nusselt number. 

/Re = 
2D2„ 
pM 

UddA 

dp 

dz 

UdA 

(7) 

(8) 

Accordingly, considering the energy balance in a control 
volume of length, AZ, the local Nusselt number may be com­
puted as follows: 

Nu Z,T~ J_ 
~46b 

Dl de, 

dZ' 
(9) 

Likewise, with a length of AZ, the mean Nusselt number is 
given by the relation 

l 
Nu m,T' AZ 

:ln0„ (10) 

where Z designates the length of the catheter. 

Basic Equations 
Consideration is given to laminar flow in a catheter having 

a crescent-shaped cross-section geometry, as shown in Fig. 2. 
The physical attributes are concerned with fully developed 
velocity and developing temperature, where thermal properties 
are assumed constant. Neglecting the axial diffusion term in 
the energy equation, the governing equations in terms of di­
mensionless variables are expressed as 

Momentum Equation. 

Energy Equation. 

av av 
dY2 + dX 

36 dzi 
u—-= 

r + l = 0 

d'e 
dZ dY2 + 3X2' 

(I) 

(2) 

where, in the above equations, 

D},(-dp/dz)' u = YJ-, XA 
a a 

U=X-(fRz)u* 
u 

Re 

T— T 

Te-T» 

v 
. . . , Pe = RePr. (3) 

In the above equations, u* represents the dimensionless velocity 
and is taken from the solution of the momentum Eq. (I); 6 is 
the dimensionless temperature; Dh is the hydraulic diameter 

Solution Procedure 

The difficulty with the complex nature of the quasi-crescent 
lumen catheter may be circumvented by a numerically gen­
erated coordinate system. The basic idea of the boundary fixed 
coordinate system (BFCS) is to have a coordinate system such 
that the body contour coincides with the coordinate lines. One 
of the methods often used to accomplish this goal was suggested 
by Thompson et al. (1974). The transformation between the 
physical coordinates (X, Y) and the boundary fitted coordi­
nates (£, i)) is achieved by solving two Poisson equations, 
namely, 

d2£ d2£ „ 
2-_i_ Z__ p 

dX2 3Y2 ' 
d2n 

8X2 dY2 y ' 

( i i) 

(12) 

where P and Q are nonhomogeneous terms, or contracting 
functions, for the grid distribution in the computational do­
main. Alternatively, it should be remarked that by using Eqs. 
(11) and (12), a problem arises about the proper algebraic 
representation of the irregular boundaries in the physical do­
main. Thompson et al. (1974) inverted Eqs. (11) and (12) into 
the transformed domain (J, 77), where the boundary is easier 
to specify. At the same time, using the method proposed by 
Thomas and Middlecoff (1982) for selecting P and Q, Eqs. 
(11) and (12) are inverted into 

d2X 8X 

3£ 
-28 — 

32X 

drj2 + •% 
dX 

9TJ 
= 0 (13) 
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Table 1 Grid independence test for the fully developed flow 

s 

0.0001 

0.001 

0.01 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.99875 

e = 0.10 

31x21 

file 

55.063 

55.129 

55.732 

61.287 

66.435 

70.497 

73.473 

75.384 

76.264 

76.109 

73.904 

71.075 

63.140 

""*.! 
2.189 

2.191 

2.216 

2.461 

2.740 

3.031 

3.334 

3.644 

3.948 

4.216 

4.391 

4.338 

3.669 

41*21 

file 

55.095 

55.168 

55.771 

61.339 

66.484 

70.538 

73.523 

75.462 

76.392 

76.316 

74.424 

71.673 

63.383 

NiVr 

2.196 

2.198 

2.223 

2.468 

2.747 

3.037 

3.339 

3.646 

3.946 

4.209 

4.387 

4.336 

3.664 

e = 0.19 

31x21 

ffle 

56.664 

56.715 

57.189 

61.550 

65.553 

68.651 

70.851 

72.181 

72.061 

72.350 

70.398 

68.744 

63.815 

Nu , T 

2.430 

2.432 

2.453 

2.660 

2.894 

3.134 

3.377 

3.618 

3.836 

4.013 

4.105 

4.037 

3.658 

41x21 

ffle 

56.682 

56.732 

57.208 

61.577 

65.581 

68.682 

70.894 

72.258 

72.527 

72.555 

70.942 

69.127 

63.929 

N-Vr 

2.437 

2.439 

2.460 

2.667 

2.901 

3.139 

3.381 

3.618 

3.837 

4.007 

4.105 

4.023 

3.656 

e = 0.40 

31x?.l 

ffle 

58.752 

58.777 

59.063 

61.657 

63.949 

65.644 

66.788 

67.434 

67.627 

67.392 

66.695 

65.136 

63.679 

N^- r 

2.844 

2.845 

2.860 

2.999 

3.150 

3.297 

3.437 

3.564 

3.672 

3.750 

3.788 

3.786 

3.663 

41x21 

ffle 

58.762 

58.787 

59.081 

61.672 

63.965 

65.667 

66.834 

67.497 

67.727 

67.537 

66.853 

65.271 

63.887 

NUiT 

2.851 

2.853 

2.867 

3.006 

3.157 

3.303 

3.441 

3.566 

3.671 

3.747 

3.783 

3.771 

3,658 

and 

where 

where 

\d2Y dY] 
"777 + 0 T T 
a£2 a? 

a2 Y 
- 2 / 3 - — - + 

3£3r; 

a = 
[dX] 

— 
drj 

2 

+ 

1~32Y dY] 
Y T T + * T~ 

071 drj 

dY] 

drj 

2 

a dXdX dY3Y 
p — — — + — — 

3£ dr) 3ij dri 

7 = 
~dX~] 

3£ 

2 

+ 
ay] 
a* 

2 

dXd2X dYd2Y 
3? 3£2 + 3£ 3£2 

<P- , - - , , , - _,, 

* = - -

dX 
3£ 

ay 
. ^ 

3Y32Y dXd2X 

dri dri dri dri 

3X 
dri 

+ 
dY 
drj 

= 0, (u; 

(15) 

(16) 

(17) 

(18) 

(19) 

under the conditions of the given grid distribution on the 
boundaries. The resulting grid construction is shown in Fig. 3 
for the case studied in this paper. 

Finite Difference Solution 

Equations (1) and (2) can be transformed as follows: 

JLfi 
3£ 7 

du du 
a~dJ-^ 

and 

dZ 3? (J 
30 

1 

dri ( 7 

30 
drj 

7 
3_t^ 

d-q -P 
du*_ 

3<f 
+ 7=0 (20) 

dri IJ 

30 30 
(21) 

7= 
3XdY dXdY 

(22) 
3£ drj dr/ 3£ 

Invoking a control volume-based finite difference procedure, 
the partial differential equations are reduced to a standard 
system of algebraic equations. The energy equation is then 
solved by a marching technique. The cross-derivative terms 
appearing in the above equations are treated as source terms. 
The presence of those terms necessitates the adoption of a 
marching procedure in conjunction with an iterative approach 
for calculation of the fully developed velocity field, u*, and 
the developing temperature field, 0, at each axial position, Z. 
The convergence criterion chosen for each dependent variable 
is given by the inequality, 

iFtf1--Itl -<\Q- (23) 

where F refers to the dependent variables, u* and 0, respec­
tively; k stands for the M i iteration, and Jl • H„ is the infinite 
norm. When the convergence temperature field is satisfied, the 
bulk temperature and the local Nusselt number are tabulated 
from Eqs. (8) and (9). 

To ensure the accuracy of the results presented, numerical 
tests were performed for the catheter to determine the effects 
of the grid size. The tabular results are given in Table 1. 
Comparison of these results indicates that for the case studied, 
the grid size has no effect on the results. Therefore, the results 
that are illustrated in the figures are based on a grid size of 
31 x21 . The axial marching step size of Az = 0.00025 is used 
in all the computations. 

Optimization Procedure 

The biomedical engineer requires an optimized design of the 
lumen catheter for diagnostic use in the hospital. The lumen 
geometry configuration will be optimized by certain constraints 
of some specific features of the biomedical equipment, making 
different shaped lumens match each other. This paper inves­
tigates all possibilities from a scientific point of view. At this 
point, the optimization procedure is a problem with no con­
straints. During a cardiac catheterization procedure, several 
different catheters are used. Since the contrast medium flowing 
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within the catheter must be heated, it is important for the 
engineer to find heat transfer and flow parameters of the quasi-
crescent lumen according to the regular geometry lumen that 
is matched with it. 

Two geometric parameters are defined for expressing lumen 
geometry changes. These are 

- * - < * • " * ' ) ( 24) 

and 
2Ri 

Rr 

" lR0-(R,-ec)]/2 (25) 

where, in the above equations, e and 5 represent the dimen-
sionless center distance and the dimensionless round corner of 
the lumen, respectively. Thus, the objective function in terms 
of e and 8 may be written as 

NuZi7-=Nu(e,5). (26) 

The function, Nu, is explored by the changes, e and 5. The 
Nuz T function curve is found and plotted and one can easily 
see the heat transfer characteristics from the graph. 

Results 
In this paper of primary importance are the results of the 

calculations of flow rate, frequency response, and damping 
coefficient of the fully developed velocity field, the bulk tem­
perature distribution, 6t,(z), the local Nusselt number, Nu,i7-, 
and optimization of the geometry parameters in the thermal 
entrance region of the crescent-shaped lumen catheter. The 
effects of three major parameters, namely the axial distance, 
Z; the dimensionless center distance of lumen, e; and the di­
mensionless round corner of the lumen, 5, are discussed in this 
section. In addition, the study of grid independence for the 
numerical solution has been executed by choosing different 
combinations of grid sizes and marching steps. This is shown 
in Table 1. The solution is terminated when the asymptotic 
solution is achieved. 

The crescent lumen in the dual lumen catheter has excellent 
features when compared with the double circle lumen. The 
crescent lumen provides more diversity than the circle lumen, 
if the main circle lumen is fixed. When the designer wants to 
obtain, as accurately as possible, the frequency response of 
the small lumen without any change in the catheter diameter 
and any alteration to the main circle lumen, the main advantage 
is obvious. It is a well-known fact that the maximum flow area 
is very limited due to the small circle lumen. This is because 
the small circle lumen diameter is severely limited by the main 
circle lumen and the catheter diameter. Therefore, the flow 
rate and frequency response improvements are limited. How-

A /A 

35 -

30 -

25 -

20 -; 

15 ~ 

1 0 ~\ 

5 -_ 

e 

e 

i I I 

= 0.10 

= 0.19 

= 0.40 

^ 
\ 
\ 

\ 

i 

0.2 0.6 

b) flat 

Fig. 5 Variation of the frequency response: (a) resonant, (b) flat 

ever, the crescent lumen can break these limits and can provide 
a larger flow rate. Therefore, the following section is devoted 
to the enhancement of flow rate and frequency response. 

Figure 4 illustrates the variation of the flow rate with respect 
to the dimensionless round corner of the lumen, <5, for different 
values of the dimensionless center distance of the lumen, e. It 
is observed that the flow rate is enhanced as e increases. This 
is due mainly to the large flow area, which causes a greater 
flow rate. It is also noted that the flow rate achieves an op­
timum value. In addition, the flow rate is not proportional to 
the area, because when the round corner is sharp, it will provide 
more resistance force. At the same time, when the round corner 
is less acute, the resistance force is smaller, which causes the 
flow rate to increase. However, at the same time, the flow rate 
decreases until 5 = 0.5 — 0.6, after which the effect of the flow 
area is dominant. Finally, the flow rate decreases as the round 
corner radius enlarges. 

Figure 5 illustrates that the frequency response increases as 
e-increases and 8 decreases. The flow area is dominated by the 
effect of the frequency response because more fluid is in the 
catheter, thus causing the elastance to be higher. 

Figure 6 shows the variation of the damping coefficient with 
respect to the dimensionless round corner of the lumen. In­
spection of this figure reveals that the damping coefficient of 
the crescent lumen decreases as parameter e increases. It also 
illustrates that when the crescent lumen flow area is wider the 
damping coefficient is lower. Also, one can find that the damp­
ing coefficient will not vary when 8 is less than 0.8, and changes 
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Fig. 9 Effect of & on the bulk temperature 

sharply as 8 rises higher than 0.8. When the 5 value is small, 
the lumen round corner is sharp, meaning more resistance, but 
also has more fluid and will produce more elastance to com­
pensate. Effects of resistance and elastance decline when 5 is 
smaller than 0.8. When 5 is greater than 0.8, resistance dom­
inates the effect because the flow area is too small to provide 
enough to compensate with elastance. 

Figure 7 represents the isotherms for a dimensionless center 
distance of e = 0.19 and a round corner of 5 = 0.0001. Inspec­
tion of this figure indicates that the temperature reaches a 
maximum value at the center of the medium and gradually 
decreases and reaches a minimum value, 0, at the inner section 
of the catheter. This corresponds with the boundary conditions 
specified by Eqs. (4) and (5). 

Figures 8 and 9 represent variations of the bulk temperature 
for different 5 and e parameters. Specifically, Fig. 8 represents 
the bulk temperature distribution versus the dimensionless ax­
ial coordinate of the catheter for 8 = 0.0001, with e = 0.10,0.19, 
and 0.40. Inspection of these curves reveals that the bulk tem­
perature is not strongly invariant with e at the entrance region 
of the catheter. However, as the medium passes through the 
catheter, the bulk temperature is dependent on the value of e. 
This should be obvious since more surface area is now avail­
able. 

Figure 9 represents variations of the bulk temperature with 
the dimensionless axial coordinate for e = 0.19, with 5 = 0.0001, 
0.5, and 0.8. Inspection of the curves in this figure indicates 
that the bulk temperature is dependent on the variations of 
the dimensionless round corners of the catheter. Comparison 
of Figs. 8 and 9 clearly reveals that the bulk temperature can 
be increased only by increasing the dimensionless center dis­
tance of the lumen, and is independent of the variations of 
the dimensionless round corners of the catheter. 

Figures 10 and 11 represent variations of the local Nusselt 
number for different e and 8 parameters. Specifically, Fig. 10 
represents variations of the local Nusselt number against the 
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Fig. 12 Optimization of the lumen catheter 

dimensionless axial coordinate for 5 = 0.0001, with various val­
ues of e = 0.1, 0.19, 0.4. Inspection of the curves in this figure 
clearly illustrates that the local Nusselt number increases dra­
matically at the entrance region of the catheter as the center 
distance of the lumen increases. This behavior is entirely dif­
ferent from that observed in Figs. 8 and 9. This is due mainly 
to the definition of the diameter. However, this variation de­
creases gradually until it reaches the asymptotic value of 3.66 
at the end of the catheter. 

Figure 11 illustrates variations of the local Nusselt number 
with the dimensionless axial coordinate for e = 0.19, with 
6 = 0.0001, 0.5, and 0.8. The explanation for Fig. 10 is also 
valid here. However, comparison of Fig. 10 with Fig. 11 reveals 
that the Nusselt number is strongly influenced by e, not 5. This 
conclusion is consistent with the one already mentioned in Figs. 
8 and 9. 

Finally, Fig. 12 represents variations of the fully developed 
Nusselt number with the dimensionless round corners of the 
lumen for the various dimensionless center distances of the 
lumen of e = 0.1, 0.19, 0.4, and 0.9. It is apparent from this 
figure that the same Nu z r is achieved at 5 = 0.46 for e = 0.1, 
0.19, and 0.4. 

Concluding Remarks 
Fluid flow, frequency response, in the fully develop region 

and convective heat transfer in the entrance region of the 
crescent-shaped lumen catheter is numerically analyzed for 
various parameters of dimensionless center distances and round 
corners of the lumen. The boundary fitted coordinate system 
is used to solve the difficulty induced by the computational 
domain. To prove the accuracy of the proposed methodology, 
an independent grid size test has been performed and the values 
are tabulated in Table 1. Thermally developing heat transfer 
with a fully developed velocity field, frequency response, and 

damping coefficient is obtained and presented in this paper. 
The results indicate that an optimum value of 5 = 0.9 exists, 
which gives a maximum local Nusselt number for a given value 
of e. The isotherms, bulk temperature, arid the local Nusselt 
number variations with the axial distance are graphically il­
lustrated. As expected, a large Nusselt number in the entrance 
region of the catheter is obtained, approaching asymptotically 
the fully developed value at a greater axial distance. 
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Momentum and Energy 
Approximations for Elementary 
Squeeze-Film Damper Flows 
To provide understanding of the effects of inertia on squeeze-film damper per­
formance, two elementary flow patterns are studied. These elementary flows each 
depend on a single generalized motion coordinate whereas general planar motions 
of a damper are described by two independent generalized coordinates. Momentum 
and energy approximations for the elementary flows are compared with exact so­
lutions. It is shown that the energy approximation, not previously applied to squeeze 
films, is superior to the momentum approximation in that at low Reynolds number 
the energy approximations agree with the exact solutions to first order in the Reynolds 
number whereas there are 20 percent errors in the first-order terms of the momentum 
approximations. 

Introduction 
Exact solutions for the response of squeeze-film dampers 

including the effects of fluid inertia do not appear to be ob­
tainable. A number of approximate solutions for the effects 
of fluid inertia in hydrodynamic bearings have been proposed. 
Smith (1964-1965) obtained approximate inertia force coeffi­
cients for journal bearings and concluded that the principal 
effect of fluid inertia was to introduce a virtual added mass 
to the rotor. Subsequent studies of inertia effects have generally 
employed methods which can be divided into three categories. 
The first category, in which a perturbation series in Reynolds 
number is used, is represented by the papers of Tichy and 
Winer (1970), Jones and Wilson (1975), and Reinhardt and 
Lund (1975). The second category, in which the inertia forces 
are averaged across the film, is represented by the papers of 
Constantinescu (1970), Szeri et al. (1983), and San Andres and 
Vance (1986). A third category represented by Tichy and Mod­
est (1978) is based on a stream function approach using a 
linearized momentum equation. Recently Ramli et al. (1987) 
compared the results of Smith (1964-1965), Reinhardt and 
Lund (1975) and Szeri et al. (1983) and concluded that they 
were in good agreement, especially for short bearings. 

In an attempt to clarify the mechanics of squeeze-film damp­
ers we identify two elementary flow patterns which are com­
bined in a complete damper. We study these mechanisms 
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separately and take advantage of exact solutions to compare 
energy and momentum approximations for the inertia forces 
developed. Both approximations rely on the fact, developed 
in the previous literature, that the introduction of fluid inertia 
in a thin film does not appreciably alter the velocity profile 
within the film in the low Reynolds number range of typical 
squeeze-film dampers. The fundamental approximation is that 
the velocity field with fluid inertia remains exactly the same 
as in the inertialess case. The pressure field and the force 
response do, however, change when fluid inertia is introduced. 
In the momentum approximation, the inertialess velocity pro­
files are introduced into the Navier-Stokes momentum equa­
tion and the equation integrated across the film to provide a 
differential equation for the pressure. Integration yields the 
pressure field and the force response. The energy approxi­
mation can generally be carried out by two procedures which 
lead to equivalent results. In the first procedure the Navier-
Stokes momentum equation is premultiplied by the flow ve­
locity (making each term represent power per unit volume). 
The inertialess profiles are then introduced and each term 
integrated across the film to provide a differential equation 
for the pressure. Integration yields the pressure field and the 
force response in a procedure similar to that followed in the 
momentum approximation. In the second procedure the in­
ertialess velocity profile is used to construct the fluid kinetic 
energy and dissipation function and then Lagrange's equation 
is used to obtain the force response. In systems with a single 
generalized coordinate, simple energy balance may also be used 
to obtain the force response. Both the momentum and the 
energy approximations fall in the second category of methods 
mentioned above. Most workers have adopted procedures es­
sentially equivalent to the momentum approximation. The en­
ergy approximation was introduced by El-Shafei (1988). For 
the elementary flow patterns studied here the energy approx­
imation gives more accurate results. 
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CHANNEL FLOW 
Z O N E 

:HANNEL FLOW 
ZONE 

Fig. 1 Inner cylinder of squeeze-film damper has displacement r and 
velocity v with respect to outer cylinder 

Fig. 2 Block has velocity x and acceleration x with fixed y. Pressure 
difference pi - p 3 causes return flow through channels of width h2 and 
/V 

Two Elementary Flow Patterns 
Consider the squeeze film damper sketched in Fig. 1. The 

outer cylinder is fixed. The inner cylinder, which contains a 
rolling element bearing and shaft, is free to move in the clear­
ance space. The annular space between cylinders is filled with 
liquid. The fluid film is taken to have a depth b normal to the 
sketch and the fluid flow is assumed to remain parallel to the 
plane of the sketch in accord with the long-bearing approxi­
mation of lubrication theory. At the instant shown the inner 
cylinder has arbitrary displacement r and arbitrary velocity v. 
The region of the fluid film toward which the velocity is di­
rected is identified as the squeeze zone. Directly opposite is 
the suction zone. Halfway between, where the film thickness 
is temporarily stationary, are the channel flow zones. At in­
termediate locations the film undergoes a combination of the 
squeeze-suction flow pattern and the channel flow pattern. 

To see the channel flow pattern in its pure form consider 
the square block of side 2R moving with velocity x in the 
chamber of width 2(7? + c) shown in Fig. 2. The clearance c is 
taken to be small compared to R(c/R = 0 (0.001) is typical 
for a squeeze-film damper). The pressures in the enlarged 
squeeze and suction zones are taken to be constants with the 
only pressure gradients occurring in the thin films of thickness 
hi = c—y and /i4=c+/.We shall study the force response (i.e., 
the force required to move the block with specified velocity 
x and acceleration x) for the system of Fig. 2 and compare 
the results of momentum and energy approximations with the 
exact solution. 

To see the squeeze-suction flow pattern in its pure form 
consider the square block of side 2R moving with velocity x 
in the chamber of length 2(R + c) shown in Fig. 3. Here the 
pressures in the enlarged flow zones are taken to be constants 
with the only pressure gradients occurring in the thin films of 
thickness h\ = c — x in the squeeze zone and hi = c + x in the 
suction zone. Despite the simplicity of this flow pattern, an 
exact solution accounting for the inertia in the fluid film is 
apparently unknown if there is no limitation on the displace­
ment beyond Ixl <c. Here we obtain an exact solution for the 
linearized limit of small displacement I x/c I — 0 and use it as 
a basis for comparing the results of momentum and energy 
approximations. 

It should be emphasized that the models shown in Figs. 2 
and 3 are introduced to clarify the mechanics of squeeze-film 
damper flows and not for any resemblance to practical devices. 
We believe that the energy approximation developed by El-
Shafei (1988) and applied here has not been previously applied 
to squeeze-film flows. In particular, the extension of La-

u,. q, 

Fig. 3 Block has velocity x and acceleration x with fixed y. Fluid ex­
pelled from squeeze zone enters enlarged channel flow zones while fluid 
from enlarged flow zones is drawn into suction zones. 

grange's equation to control volumes by means of Reynolds's 
transport theorem, as indicated by Eqs. (42) and (43) and 
Appendix B, is believed to be new. This approach has been 
applied to realistic squeeze-film damper models by El-Shafei 
and Crandall (1991). 

Elementary Channel Flow Pattern 
We focus our attention first on Fig. 2. The classical iner-

tialess flow is described and used as input to the momentum 
and energy approximations for the case where fluid inertia is 
included. The exact solution including inertia is then obtained 
and the approximations are compared against it. In classical 
lubrication theory a number of assumptions are made. The 
fluid film is taken to be incompressible with homogeneous 
viscosity n. Because the film thickness is so small and the 
pressure gradient across the film is 0(cVfl2) (El-Schafei, 1991), 
the pressure is assumed not to vary across the thickness. As a 
consequence all velocity profiles in a uniform channel are linear 
combinations of a linear profile (Couette flow) and a parabolic 
profile (Poiseuille flow). In squeeze-film dampers the velocities 
in the Couette component are of order c/R smaller than the 
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velocities in the Poiseuille component and hence may be ne­
glected. Another consequence of the thinness of the films is 
that the resultant of the wall shear stresses acting on the moving 
element are of order c/R smaller than the resultant of the wall 
pressures and hence can be neglected in calculating the force 
response. We assume that cavitation does not occur anywhere 
within the fluid. 

In Fig. 2 when the square block moves to the right, continuity 
requires flow to the left through the channels of width h2 and 
hA. To describe the flows we use local xh yt directed to the left 
(in the positive ^/-direction). The classical Poiseuille flow in 
the top channel has 

u2--
hlp2-p1 (yi A 

~h\ 2/x 2R \h 
(1) 

with v2 identically zero. The volume rate of flow through the 
channel of depth b is 

- I q2= u2bdy2 = 
24/J? (Pi -Pi)- (2) 

A parallel calculation for the bottom channel gives a similar 
for qA. Global continuity requires 

2Rbx = q2-q4 (3) 

which permits evaluation of the pressure difference^ —p3 and 
the force F required to move the block at velocity x 

, 96uR3b 
F= (P1-P3) 2Rb= , , , , x. 

hl + hl (4) 

In the case where the block is centered so that y = 0 and 
h2 = hA = c the fluid velocity (1) reduces to 

6q2 (y2 A\ , R hi A\ • ... 
"2 = T 7 \——3 = 6 T \——J. ) x (5) 

and the force response (4) becomes 

F=48li-jbx. 
c 

(6) 

We next consider approximate solutions taking account of fluid 
inertia when the block has acceleration x as well as velocity 
x. For simplicity of exposition we consider only the centered 
case, y-0. The case ^ ^ 0 is treated in Appendix A. 

Approximate Inertial Solutions for the Channel Flow 
Pattern 

In the momentum approximation we begin with the as­
sumption that the velocity profiles with inertia are the same 
as those for the inertialess case. Thus in the upper channel of 
Fig. 2 we insert the velocity (5) in the Navier-Stokes equation 
applicable when y2 = 0. 

dp_2 

'dx- = P 
du2 3«2 

dt 2 dx2 

d2u2 
(7) 

and integrate with respect y2 across the channel of width c. 
Under the assumption that the pressure gradient is independent 
of y2 we obtain, after division by c, 

dp2 , „ R • R .. 
- —— = 12u-^ x + p— x. 
dx2 c c 

(8) 

A similar result applies to the lower channel by symmetry. 
Integration of (8) along the channel of length 2R provides the 
pressure difference pi - p 3 and the force F required to develop 
the velocity x and the acceleration x, 

R3 

(Pl-p3)2Rb = 4Six-^b • p S 
x + n»x (9) 

This is the force response according to the momentum ap­
proximation. 

In this case there are three ways to obtain the energy ap­
proximation. The first procedure is parallel to the momentum 
approximation. We begin with the same velocity profile (5) 
but we first multiply each term of the Navier Stokes Eq. (7) 
by u2(y2). Then after integration across the channel width and 
division by the common factor Rx we obtain the pressure 
gradient 

dp2 

•dx2 

R . 12 R .. 
n>i7x+Top^x-

(10) 

Integration along the channel then leads to the force response 

R 
F=48^i — x + 

£C_ 
10/*' (11) 

according to the energy approximation. 
The second procedure makes use of Lagrange's equation. 

The kinetic energy in the two channels is 
„2R 

T=2b S Z.K nC 

dx\ 1 48 R3r 
: 2 1 0 P V -

-pu2dy2 

(12) 

if the inertialess velocity profile (5) is inserted for u2. The 
Rayleigh dissipation function is one-half the rate of dissipation 
of energy due to viscosity. For the two channels it is 

'\k D = 2b\ dx 

1
 AO

 R b - l 

du_2 

dy2 

dy2 

(13) 

if (5) is inserted for u2. Since the fluid is incompressible there 
is no potential energy. We now apply Lagrange's equation for 
the complete system of Fig. 2, neglecting the mass of the block 
while assuming that an external force F in the positive x-
direction acts on the block. Furthermore, since most of the 
fluid in the enlarged squeeze and suction zones is stagnant, we 
neglect the small contributions to the kinetic energy and dis­
sipation function located in the vicinity of the entrances and 
exists of the narrow channels. With these assumptions La­
grange's equation reduces to 

ao d_ df\ _dr 
dx dt \dxl dx' 

(14) 

When (12) and (13) are inserted in (14) the force response (11) 
is obtained directly. 

The third energy method makes use of simple energy balance. 
During time interval dt the work done by the external force F 
is partly dissipated by viscosity and partly stored as an increase 
in kinetic energy; i.e., on dividing by dt we have 

Fx = 2DA 
dt 

(15) 

When (12) and (13) are inserted in (15) and the result divided 
through by x, the force response (11) is once more obtained. 

There is a subtle point concealed in the preceding two energy 
methods which make use of the kinetic energy (12) in the two 
channels. The fluid in the channels does not remain a mass 
system of fixed identity. The identity of mass in a channel is 
continually changing as new mass enters one end and old mass 
departs at the other end. In the configuration of Fig. 2, how­
ever, the velocity profile of the fluid entering a channel is 
identical with that of the departing fluid so that the derivatives 
of the energy for the mass in a channel are also the same as 
those for a slug of fluid of fixed identity which is just passing 
through. This situation does not occur in the configuration of 
Fig. 3 and special steps must be taken to redress the difference 
between the derivative of the energy for a system of fixed 
identity and that for the energy within a control volume. 
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For a steady-state oscillation of the block in Fig. 2 with 
x=x0 sin wt the forces response (9) provided by the momentum 
approximation is 

R2 / Re 
—r I COSoit — 
c3 \ 12 

where Re stands for the squeeze Reynolds number 

= 4&fibx0w '• 3 sin wt (16) 

Re = 
pC2co 

(17) 

The corresponding response (11) provided by the energy ap­
proximation is 

R 
- 4%y.bxaw — 

Re . 
cosco/- — sin oit (18) 

Both (16) and (18) approach the inertialess response provide 
by (6) as the Reynolds number approaches zero. The coeffi­
cients of the inertia terms in (16) and (18) differ by about 20 
percent. 

Exact Solution for the Channel Flow Pattern 
We now obtain an exact solution to compare with the ap­

proximations (16) and (18). By "exact" we mean that it is the 
correct leading term in an expansion in powers of the clearance 
ratio c/R. It is, however, valid for arbitrary Reynolds number 
as long as the flow remains laminar, and valid for arbitrary 
amplitude of motion within the limits imposed by the geometric 
requirement of uniform channel thickness. 

An exact solution for the pressure and velocities in the /-th 
film must satisfy the continuity equation 

du; dv: n 

dXj dy. 

the thin film momentum equations 

_d£i 

dXj 

du, du, duA 2 

dpi 
0, 

(19) 

(20) 

(21) 

and the appropriate boundary conditions. In the upper channel 
of Fig. 2 with h2 = c, the assumption that v2 vanishes identically 
requires that du2/dx2 also vanishes if (19) is to be satisfied. 
This leaves only the following linear version of (20) 

d£2 
dx2 

du2 

~dt 

d2u2 (22) 

and the boundary conditions u2 = 0 at y2 = 0 and y2 = c to be 
satisfied. For steady-state oscillation at frequency o>, x(t), u2 (y2, 
t), P2(X2, t), and F(t) are taken as the real part of -ix0e'"', 
U2(y2)ei'"< P2(x2)e

io" and Foe'"', respectively. Straightforward 
solution leads to 

u2(y2) = 
\_dPj 
s1 dx7 fL 

[ 1 - ^ 0 2 , C)] (23) 

with 

<M>2, c)-
sinh sy2 + sinh s(c-y2) 

sinh sc 

where s is the complex root in the first quadrant given by 

(24) 

• i = ; R e . 
M 

(25) 

The solution for C/4 (y$) is of the same form as (23) when the 
block is centered so that application of the continuity require­
ment (3) yields the pressure gradient and the amplitude of the 
force response 

Fig. 4 Real and imaginary parts of complex amplitude U2(y2) of velocity 
profile for Re = 10 (A), Re = 25 (B), and Re = 50 (C) 

dP R 
F0= - 4R2b --1 = 4nbx0o> 

dx2 c3 1- He) 
with 

Hc) = 
2(cosh sc- 1) 

sc sinh sc 

(26) 

(27) 

Note that in the exact solution the pressure gradient is inde­
pendent of x2 which implies that the velocity profile (23) is 
uniform along the length of the film. The shape of the velocity 
profile does, however, vary with the Reynolds number Re. For 
small Re(0 < Re < 10), the velocity (23) does not deviate 
apprecibly from the parabolic profile (5). In Fig. 4 the real 
and imaginary parts of the complex velocity amplitude (23) 
are displayed for Re = 10, Re = 25, and Re = 50. At Re = 10 the 
deviation of the real part from the parabola (5) is not visible 
with the line width employed in drawing Fig. 4. What is ap­
parent is the emergence of a small imaginary part which has 
little effect on the velocity amplitude but does indicate a de­
parture from uniform phase. At Re = 25 and Re = 50 the de­
viations from a parabolic uniform phase profile become 
increasingly evident. 

The complex force response (26) also depends on the Reyn­
olds number. The low Re approximation to (26) obtained by 
expanding numerator and denominator of (27) in powers of 
sc and retaining terms up to the sixth power is 

F0-
R 

- 48nbx0o> — 
, / R e \ (28) 

Note that the real part of F0e'"' using (28) is the same as the 
inertialess solution (6) and that the imaginary part is the same 
as the energy approximation (18). We call the real and ima­
ginary parts of (26) the amplitudes of the viscous and inertial 
responses, respectively. The viscous force has the same phase 
as the velocity phasor x0oie'°" while the inertial force has the 
same phase as the acceleration phasor ix0oi2e'wl. The exact am­
plitudes obtained from (26) are plotted as functions of the 
Reynolds number in Fig. 5 along with the corresponding am­
plitudes given by the momentum approximation (16) and the 
energy approximation (18). We note that for small Reynolds 
number, the response is primarily viscous, while for large Reyn-
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Fig. 5 Viscous and inertial force response to oscillation with displace­
ment amplitude x0 and frequency u by exact solution (A), by energy 
approximation (B), and by momentum approximation (C) 

olds number, the response is primarily inertial—the crossover 
occurring at Re = 10. The energy approximation for the inertial 
response is quite accurate in the range < Re < 50. Both 
approximations underestimate the viscous response while the 
inertial response is overestimated by the energy approximation 
and underestimated by the momentum approximation. 

The inertial response of the energy approximation (18), 
<Fin= -4&nbxoo> (Re/10) sinco/, can be decomposed into the 
product 

12 R 
F-m = -rz — ma 

10 c 
(29) 

where m = 4R2bp is the mass of the fluid displaced by the block 
and a= -*oM2sin wt is the acceleration of the block. The ef­
fective virtual mass of the fluid in the two narrow channels in 
Fig. 2 is thus l.2mR/c, which is about three orders of mag­
nitude greater than the mass of the fluid displaced by the block 
or about two orders of magnitude greater than the mass of 
the block itself if the fluid is lube oil and the block is metal. 
Note that as the clearance c is diminished we have the para­
doxical situation that the virtual mass increases as the actual 
mass of the fluid in the channels decreases. 

Elementary Squeeze-Suction Pattern 
We turn to the configuration of Fig. 3 where the film on 

the right is being squeezed while the film on the left undergoes 
suction. The inertialess flow is described and used as input to 
the momentum and energy approximations for the flow with 
inertia. The results here are nonlinear in the displacement x 
due to the varying film thickness (h\ = c — x and hi = c + x) and 
nonlinear in the velocity x due to the convective terms in the 
fluid acceleration. An exact solution for these nonlinear effects 
is unknown. We obtain an exact solution for a linearized small 
amplitude oscillation and find as in the channel flow case that 
the energy approximation is superior to the momentum ap­
proximation. 

In the squeeze film at the right in Fig. 3 there is small 
transverse velocity Vi (yit t) of order x and large longitudinal 

velocity ux (x,, ylt t) of order xR/c. With large constant pres­
sure reservoirs at top and bottom the film flows are inde­
pendent of the fixed value of y. The longitudinal flow pattern 
is symmetric about the block center with the flow upward in 
the upper half and downward in the lower half. The symmetry 
of the squeeze and suction flows implies that p2=P4- Global 
continuity applied to those films shows that the flow rates 
away from the block center in the squeeze film, and towards 
the block center in the suction film, must increase linearly with 
the distance xt from'the block center. The profile of the lon­
gitudinal velocity in the squeeze film of thickness hi in the 
inertialess case has the parabolic form (5) but must have linearly 
increasing flow rate qx (xi) in order to satisfy the global con­
tinuity requirement 

qi(xl)=xlbx. 

The resulting velocity field 

_6<?i (y±_y± 
"' bhx l/z, h\ 

, • *i_ y±_y± 

(30) 

(31) 

varies linearly with xx and parabolically with yx and also de­
pends linearly on the block velocity x and nonlinearly on the 
block displacement x = c — h\. The transverse velocity which 
satisfies the local continuity requirement (19) and the boundary 
conditions Vi (0) = 0 and vl(h{)= —x is 

M ^ - 6 * ^ - ^ 
y\ y\ (32) 

The film pressure px which satisfies the inertialess versions of 
the momentum Eqs. (20) and (21) along with (31) and (32) is 

Pi(xl)=6li 
A. h] 

+ P2- (33) 

A parallel analysis applies to the suction film at the left of Fig. 
3 so that the force F required to impart the velocity x to the 
block is 

F=b\ \pi(xu hi)dxi-p}(x3, h3)dxi] 

= StxbR2 _1_ _1 
h] + h[ 

x. (34) 

Note that when hi = h^ = c the force required in the inertialess 
squeeze-suction case here is one-third the corresponding chan­
nel flow force (6) for the same block velocity x. The force 
here is linear in the block velocity x but nonlinear in the block 
displacement x. 

Approximate Inertial Solutions for the Squeeze-Suction 
Pattern 

In the momentum approximation for the squeeze film at the 
right of Fig. 3 we begin with the longitudinal momentum Eq. 
(20) and insert the inertialess velocity profiles (31) and (32). 
Assuming that the pressure gradient is independent of yx we 
integrate with respect to yx across the channel of width hx and 
divide through by h\ to obtain 

dPi 
- — = x, 

OXi 

, u . p .. 12 x 
I2js X + J-X + —-2 

hi hi 5 h\ 
(35) 

Taking Pi(R, h{)=p2 and pi(-R, hi)=p4=p2 we integrate 
(35) to get 

P\-Pi = -
R2-x] 

12 
. p .. 12 r 

x + — x + —-w h. 5 h\ 
(36) 

After a parallel analysis for P3-P2, the force F required to 
move the block with velocity x and acceleration x according 
to the momentum approximation is 
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F= b {p\dx\ -Pidxi) 

= %bRi 

P / l 1 
H —+ — 

12 \h, h-. 

x+-
5 \h 

1 1 
(37) 

The first two terms are linear in the block velocity and accel­
eration while the final term arising from the two convective 
terms in (20) is quadratic in the velocity. When p = 0, (37) 
reduces to the inertialess result (34). 

There are again three ways to obtain the energy approxi­
mation. In the first procedure the longitudinal momentum Eq. 
(20) for the squeeze film at the right of Fig. 3 is premultiplied 
by uu the velocity profiles (31) and (32) are inserted, each term 
is integrated with respect toyi across the channel, and divided 
by xxi to obtain 

dP\ 
' dx~ 

••xi 1 2 
h\ 

x + 
6 p .. 102 p 

hi
X + -35 h 

(38) 

in place of the momentum approximation (35). The subsequent 
integrations for the pressure and the required force follow the 
same path as outlined above and lead to the energy approxi­
mation 

F= SbR1 "[k+h x+m w k ) x 

17/0/1 1 
+ 70 W %;X 

(39) 

derivatives required in Lagrange's Eq. (14) it is convenient to 
use the relations (see Appendix B) 

dt\dx J dt \dx J Jsdx 

37> 

dx ' 

dTC0 

dx 

dv" wc 
T—rdS 

s dx 

(42) 

(43) 

where Tcv is the total kinetic energy (40) in the control volume, 
and T is the kinetic energy per unit volume at points on the 
surface S of the control volume where the normal component 
of fluid velocity, out of the control volume, is vn. For the 
control volume enclosing the squeeze and suction films in Fig. 
3, the two regions where fluid is being expelled extend from 
^i = 0 to yt = hi at X\ = -R and at X\ = R and the two regions 
where new fluid is drawn into the control surface extend from 
y3 = 0 to y3 = h3 at x3= -R and at x3 = R. These four regions 
contribute to the second term on the right of (42). In each 
region the kinetic energy per unit volume is of the form T = -
1/2 puf &nd v„ = M,sgn Xi where U\ is given by (31) evaluated at 
X\ = ±R and u3 is given by the corresponding inertialess suction 
profile 

u3(x3,y3, t)= -6x — 
«3 

X} yi 

<3 

A 
~h\ 

(44) 

evaluated at x3- ±R. The total contribution to the second 
term on the right of (42) is 

2pbx2 

Jo [_ hi \ 

J0 [ hi \ 

hi 
A dyi 

dy: 
108 

: 35 
pbR?x2 1 1 

(45) 

in place of (37). 
The second energy procedure uses Lagrange's Eq. (14). Since 

the transverse velocity is of order c/R smaller than the lon­
gitudinal velocity the kinetic energy in the squeeze and suction 
channels may be taken as 

-b\ dx1 
n -pu\dyx + b 

r.R pA3 

zpu\dy3 

4<+i " 
and the Rayleigh dissipation function may be taken as 

(40) 

=^J(ri) i2- (41) 
The kinetic energy (40) is that of a fixed identity of fluid mass 
which occupies the two channels at a particular instant of time. 
It is convenient to set up a control volume congruent with the 
boundary of this fluid mass at a particular time t. As time 
evolves the control volume remains fixed in space while the 
fixed identity of fluid mass changes its shape: the squeeze film 
gets thinner and the suction film gets thicker. Some of the 
fluid of fixed identity near the ends of the squeeze film is 
expelled from the control volume and some new fluid, not part 
of the mass of fixed identity, is drawn into the control volume 
at the ends of the suction film. In order to evaluate the energy 

The corresponding evaluation of the second term on the right 
of (43) leads to a result which is just one half of (45). With 
these results included, the use of (42) and (43) to evaluate the 
energy derivatives when Lagrange's Eq. (14) is applied to (40) 
and (41) leads directly to the required driving force (39). 

The third energy method is based on the energy balance 
statement (15). Here again it is necessary to realize that the 
kinetic energy involved is that of a system of fixed identity. 
To compute its time derivative using a control volume, it is 
convenient to use the relation (see Appendix B) 

dTji 

dt 

dTcl 

dt 
rv„dS (46) 

for the control volume enclosing the squeeze and suction films 
in Fig. 3. The second term on the right of (46), evaluated like 
the corresponding terms in (42) and (43), has the value 

&RW 
1 1 

(47) 

When (15) is applied to (40) and (41), with the derivative 
evaluated by use of (47), the result, after division by x, is 
precisely the same driving force (39) as obtained by the other 
two energy methods. 
, For steady-state oscillation of the block in Fig. 3 with x = x0 

sinatf, the force response (37) provided by the momentum ap­
proximation becomes 

I6iibx0u — 
1 + 3e2sin2co? 

( l - e ^ h r W ) 3 

Re sinatf 

12 1 - e2sin2co/ 

cosutf 

1 - -
24 e2cosW 
5 1 - e2sin2ut 

(48) 

where e = xQ/c. The energy approximation (39) becomes 
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F= 16 f̂oc0co
 : 1 + 3e sin tof 

(1 - e2sin2co03 

Re sin wt 

"To I 

COS ait 

- e2sin2cot 

34 
7 1-

(49) 

under the same circumstances. Both these approximations re­
duce to the inertialess result obtained from (34) when Re = 0. 
The discrepancies in the coefficients in the inertia terms of the 
two approximations are of the order of 20 percent. 

Linearized Solution for the Squeeze-Suction Pattern 
An exact solution to the momentum Eqs. (20) and (21) and 

the continuity Eq. (19) for squeeze-film geometry must include 
the nonlinear contributions of the convective acceleration terms 
and satisfy boundary conditions on the moving channel walls. 
The low Re approximations furnished by (48) and (49) suggest 
that these two phenomena contribute 0(e2) effects to the force 
response where e=x0/c is a measure of the smallness of the 
motion. Here we obtain a linearized solution correct to first 
order in e, but not restricted to low Re, by neglecting the 
convective acceleration terms in (20) and by satisfying the 
boundary conditions at the average locations of the moving 
channel walls. 

For steady-state oscillation at frequency co, x(t), F(t), and 
the fluid film parameters in the squeeze film at the right of 
Fig. 3, «i(xi, yu t), vx{y\, f), and P\(x\, t) are taken as the 
real parts of -ix0e

io", F0e
,u", Ui(xu yde'"', Vx(y{)e'"', and 

PiixOe""', respectively. The longitudinal velocity amplitude 
profile U\ which satisfies the global continuity requirement 
(30) as well as the linearized version of the longitudinal mo­
mentum Eq. (20) is 

xi \-4>(yu c) 
Ui = x0u — j - — (50) 

c 1 - yp(c) 

where the functions 4> and \p are defined in (24) and (27). The 
transverse velocity amplitude V\ (.vO which satisfies the con­
tinuity Eq. (19) and the boundary conditions F!(0) = 0 and 
V\(c)= -X0OJ is 

cosh 5(c-3 ' 1 ) -cosh y^i-cosh sc+ 1 
V,= 

' l - t f ( c ) c scsinh sc 

(51) 

The pressure amplitude Pi (x^ which satisfies both the lon­
gitudinal and transverse momentum equations, (20) and (21), 
is 

P\ = 
IVCQOJ s*c2 

2c I-He) 

R'-x2' 
+ P, (52) 

A parallel calculation provides the pressure amplitude P3 in 
the suction film so that the force amplitude F0 required to 
maintain the oscillation is 

- ! " • 
J-R 

4 R* s2c2 

b (Pidxi - Pidxj) = -/ifooco -j l _ ,.y (53) 

This force applies to any Reynolds number so long as the flow 
is laminar, but is only valid to first order in e = x0/c. The low 
Re approximation to (53), obtained by expanding \p(c) up to 
the sixth power in sc, is 

R I, -Re 
F0=l6ixbx0u— I 1 + ' " ^ 

(54) 

note that this is equivalent to the force provided by the energy 
approximation (49) when terms of order e2 are neglected. For 
small e, the relative accuracy of the momentum and energy 
approximations as functions of Reynolds number for the 
squeeze-suction flow pattern is the same as that for the channel 
flow pattern displayed in Fig. 5. 

Conclusion 
Two elementary flow patterns, which are combined in prac­

tical squeeze-film dampers, were analyzed separately. Mo­
mentum and energy approximations for inertial flows, based 
on the assumption that the inertialess velocity profiles remained 
unaffected by the presence of inertia forces, were presented. 
These approximations were compared with an exact solution 
in the case of the channel flow pattern, and with an exact 
linearized solution-, valid for small amplitude oscillation, in 
the case of the squeeze-suction flow pattern. It was verified 
that in these cases the velocity profile with inertia does not 
deviate much from the inertialess profile in the Reynolds num­
ber range 0 < Re < 50. The force responses are satisfactorily 
estimated by either momentum or energy approximations in 
this range. The energy approximations are, however, more 
accurate (see Fig. 5). They agree to first order in Re with 
expansions of the exact solutions in powers of Re whereas the 
momentum approximations have deviations in the inertial 
components of the order of 20 percent. 

For films of comparable dimensions and with small dis­
placements of the block from the central position, the viscous 
and inertial components of the force response for the elemen­
tary channel flow pattern are about three times greater than 
the corresponding components of the force response for the 
squeeze-suction flow pattern, and these components are nearly 
linearly proportional to the block velocity and acceleration, 
respectively. The magnitude of the inertial component in­
creases nearly linearly with Re and crosses over the magnitude 
of the viscous component at about Re =10. For larger dis­
placements the force response becomes nonlinear as indicated 
by (A9) for the elementary channel flow pattern and by (49) 
for the squeeze-suction pattern. 

The momentum approximation and the first method of ap­
plying the energy approximation involve substantially similar 
calculations. The second energy method using Lagrange's 
equation can be significantly simpler, although care must be 
exercised to distinguish between a system of fixed identity and 
the changing contents of a fixed control volume (see Appendix 
B). In systems with more than one generalized coordinate, 
energy balance does not provide a complete solution. However, 
for the elementary flow patterns considered here with the single 
generalized coordinate x, energy balance does provide a com­
plete solution with slightly less calculation than Lagrange's 
equation. 
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A P P E N D I X A 

Channel F l o w Pat tern W h e n h2 ^ h4 

For the momen tum and energy approximations the velocity 
profiles of the inertialess case are taken as 

« 2 : 
6<?2 
bh2 ho 

u4 = -
6<74 (yA y* 

bh4 \h4 h\ 
(Al ) 

When these are inserted in (7) and in the corresponding equa­
tion for «4, and the equations integrated across the films, and 
divided by the film thicknesses, the momen tum approximation 
yields 

2R 
= 12 MQ2+mq2~- l2bkq4~fc*+ (A2) 

The flow rates q2 and q4 and their derivatives are eliminated 
between the two equations of (A2) and the continuity Eq . (3) 
to obtain a linear differential equation for the pressure dif­
ference p\ -pi as a function of the block velocity x{f). The 
force F(t) — 2Rb(px-p2) required to produce this motion 
satisfies the differential equation 

M P 
h\ \2h2 dt + { hj+l2h4dt 

\h2 I2h2 dt hi I2h4 dt 
(A3) 

according to the momen tum approximation. 
The energy approximation starting from (Al ) proceeds in a 

parallel manner . All three energy techniques lead to a pair of 
equations similar in form to (A2) but with coefficients of 
12/10 before the q2 and q4 terms (compare Eqs. (8) and (10) 
for the corresponding different when h2 = h4). The force re­
quired, according to the energy approximat ion, thus satisfies 
the differential equation 

r/v i+ 

[\hl 
p 

10/I2 

d \ — dt) + /V "̂  + \hl 
p 

10/24 

d \ \ — dt) \ 

= 96K3* ( £ + P d 

h\ I0h2 dt 
t? + 

Wh4 dt 
(A4) 

Note that (A3) and (A4) reduce to the simpler relations (9) 
and (11) when h2 = h4 = c. 

Within the channels 2 and 4 the exact solution (23) for the 
velocity amplitudes are 

1 dP 

(U.T dXj 
(A5) 

where the subscript / takes the value 2 or 4 corresponding to 
the channel. The corresponding flow rate amplitudes 

l = b\ U, Uidy, (A6) 

hh- dP 
Qi=~—2^11-Uh,)] . (A7) 

ixs dXj 
where the \p function is defined in (27). If these flow rates are 
inserted in the continuity Eq . (3) and the equality of the pres­
sure gradients in the two channels is noted, the pressure drop 
amplitude -Pi - P3 and the force ampli tude F0 are obtained as 
follows: 

8nbR3x0us1 

F=2Rb(Pi-P3)=-, (A8) 
2c-h2\p(,h2)-h4^{h4) 

This is the exact solution for the complex force amplitude 
required to oscillate the block in Fig. 2 at frequency 01 and 
amplitude x0, taking account of the inertia and viscosity in the 
channels of width h2 and h4. Note that it reduces to (26) when 
h2 = h4 = c. The small Reynolds number approximat ion, ob­
tained by expanding the i/' functions up to the sixth power in 
shj, is 

F0 = 96ixbR3X(p) 

l + i 
Re/i_2 
10 d 

. Re hi 
1 + 'To? 

*(i + if^
+* 

, Re hi 
(A9) 

which is equivalent to the energy approximation (A4) for the 
special case when x(t) is the real part of -ix^e'"". 

A P P E N D I X B 

Contro l V o l u m e Eva luat ion of Energy Derivat ives for 

a Sys tem of F ixed Ident i ty 

Let 4>{qi <7«> Qu • • • » Qn) be the density of some 
extensive fluid property that depends on n generalized coor­
dinates qi{t) and n generalized velocities qi{t), / = 1, . . . , n. 
Let the total mass of fluid within an enveloping surface S/, 
constitute a system of fixed identity. As time evolves, the 
volume Vfi enclosed by Sf, will, in general, change its shape 
and move about . At a particular t ime t let Vf, coincide with a 
stationary control volume V with boundary surface S which 
coincides with the system envelope S/,-. At this instant the total 
system property corresponding to the density </> is 

$ 
•'Vf, 

cj>dV= <j>dV=ics. (Bl) 

The time rate of change of $/,• at this same instant can be 
evaluated by using Reynolds t ransport theorem (Shames, 1982) 
which accounts for the rate of change of 4> within the control 
volume and for the t ransport of matter across the control 
volume surface S. If the vector particle velocity at an element 
dS of the surface S is r and n is the unit outward normal 
vector, Reynolds theorem may be written in the form 

or as 

d*j, d$cv r 

-dT=-dt-+t4'v"dS (B3) 

where v„ is the outward normal component of fluid velocity 
on S. The density function </> may stand for the kinetic energy 
per unit volume, T, in which case (B3) reduces to (46), or <j> 
may stand for the derivative of the kinetic energy density with 
respect to a generalized velocity, dr/dq, in which case (B3) 
becomes the justification for (42). 
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The concept underlying the Reynolds theorem for the 
evaluation of time derivatives can be extended to derivatives 
with respect to generalized coordinates. When a generalized 
variable has a differential increment dq„ the vector displace­
ment r of a particle on the surface 5 has the differential in­
crement 

dr = -—dq;. 
dc/i 

(B4) 

The derivative of the system property $fi with respect to qt at 
time / is obtained by summing dfy/dq; over the control volume 
and accounting for the transport of matter across its surface 
S as follows: 

a = itdV+<D4>n-T- dS. 
dq,- Jydqi Js dqt 

By inserting the classical identity (Goldstein, 1959) 

3r __ dr 

dqi dq-

and introducing u„ = n»r we write (B5) in the form 

dq. 
a*c + <b ^ ds. 

(B5) 

(B6) 

(B7) 

With <f> representing the kinetic energy density T and qt rep­
resenting the block displacement x in Fig. 3, (B7) reduces to 
(43). 
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Contact With Friction Between 
Two Elastic Half-Planes 
In the present paper the problem of contact with friction between two elastic bodies 
is formulated in the form of variational inequalities using half-plane assumptions 
for the elastic behavior. The formulation fits directly into a computational method 
developed in a previous paper and some numerical examples investigating the effects 
of using dissimilar elastic constants in the bodies and of using different load paths 
in the application of the external forces are given. 

1 Introduction 

The purpose of the present paper is to give a variational 
formulation of the contact with friction between two elastic 
half-planes with dissimilar elastic constants. The contacting 
half-planes are assumed to be linearly elastic and isotropic so 
that their elastic behavior is given by Flamant's solution for 
a point force on the edge of an elastic half-plane. For the 
contact interface we assume unilateral contact conditions in 
the normal direction and Coulomb's law of friction in the 
tangential direction. These assumptions can of course be ques­
tioned from both a physical-experimental and from a math­
ematical point of view. These issues are, however, not addressed 
in the present paper. The stated constitutive laws are assumed 
to be valid, and the analysis proceeds from that point. 

An inherent difficulty when treating contact problems using 
half-plane assumptions is the arbitrary constants present in the 
force-displacement relations (see Eqs. (1) through (3) and com­
ments in Johnson (1985) and in Gladwell (1980)). In three-
dimensional problems using half-space assumptions this dif­
ficulty does not occur since it is possible to determine the rigid-
body constants by assuming that displacements and rotations 
at points infinitely distant from the applied load are zero. But 
in the plane case this removes only the constants associated 
with rigid-body rotation and not the constants associated with 
rigid-body translation; and making an arbitrary choice of con­
stants cannot be readily interpreted as fixing a particular ref­
erence point. In previous works where contact problems have 
been solved using the Flamant solution for a point force on 
an elastic half-plane, this difficulty has been circumvented by 
differentiating the relations to obtain a system of integral equa­
tions involving the surface gradients of the displacements. 

In the present paper it is shown how the difficulty of the 
half-plane case can be avoided by calculating the displacements 
relative to a point on the contact surface itself and how the 
contact between two elastic half-planes can thus be given a 
reciprocal variational formulation. This formulation is for-
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mally identical to the formulation used by Johansson and 
Klarbring (1992) for a rigid punch problem and the numerical 
method developed in this paper can be used directly. Thus a 
method is obtained which solves half-plane contact problems 
very accurately yet is completely general in the choice of elastic 
constants, initial gap between the bodies, and load-path, and 
which also includes a rotational degree-of-freedom and a mo­
ment in the loading. 

In Johnson (1985) solutions are given for some two-dimen­
sional cases, without coupling between the normal and tan­
gential directions, by using integral equations based on relations 
between the contact tractions and the derivatives of the dis­
placements. Important progress with formulations of this type 
was made by Spence (1973) who solved the case of normal 
indentation with friction of a flat or power-law profiled punch 
into an elastic half-plane. This line is followed by No well et 
al. (1988), where the coupled case is solved for a case with 
second-order initial gap and normal and tangential loading 
using a method involving numerical solution of integral equa­
tions. A similar approach is also followed by Bjarnehed (1991) 
for the normal indentation of a rigid punch into a prestressed 
orthotropic half-plane. 

2 Governing Equations 
Consider two elastic bodies that are pressed together by some 

external forces, Fig. 1. The problem is considered as two-
dimensional and the bodies are modeled as elastic half-planes. 
Quantities associated with the lower half-plane will be denoted 
by superscript 1 and quantities associated with the upper half-
plane by superscript 2. The displacement fields of the bodies, 
in the coordinate directions, will be denoted by v\- and v\ in 
the x-direction and vl

N and v% in the .y-direction. 
' The bodies are assumed to be in contact on some segment 

Sc of the plane y = Q and the traction on the bodies in this 
segment can be represented by the components pT and pN in 
the x and .y-directions, respectively. These tractions are equal 
in magnitude but opposite in direction for the upper and lower 
body, respectively. Here the convention that pN and pT are 
positive when acting in positive coordinate directions on the 
lower body is chosen. The externally applied loads M, N, and 
Twill be defined at the end of Section 2, and are positive when 
acting in positive coordinate directions on the upper body. 
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body displacement and rotation of each half-plane depending 
on pN, and a'T, b'T, and dT will give rise to a rigid-body dis­
placement and rotation depending on pr- Similar constants 
occur in three-dimensional problems in which case it is cus­
tomary to determine these constants by prescribing that the 
displacements and rotation should be zero at points infinitely 
distant from the applied surface load. In the two-dimensional 
case, if we prescribe that the rotation w = l/2[(dvN/dx) - (dvj/ 
dy)] is zero as x, y tend towards infinity, we find that c^ — Cj 
= 0. The remaining constants, however, cannot be determined 
in this manner. Next we specialize Eqs. (2) to points on the 
surface y = 0 and introduce d'N=bl

N — (l -v')/irE' and dj=b'T 
and also put c'N=cl

T=0 to obtain 

Fig. 1 Contact between two elastic half-planes 

In the following discussion the origin of coordinates will be 
used as a reference point and referred to as x0. This point is 
conveniently chosen to be the point where contact first occurs 
but can also be any other point of the x-axis. 

For a homogeneous isotropic linearly elastic half-plane in 
plane stress, the relations between displacement and normal 
pressure and tangential traction on the boundary can be written 
as 

vl
N(x,y)=\ gl

NN(x,S)pNtt)dt+\ ghrix, i)pTtf)dZ 
sc (la) 

vkx,y)=\ gTN(x,H)pNtt)dH+\ gWix, topAZW 
" S S 

(lb) 

vN(x, y) = gNN(x, $)pN(i)dt+ J g'NT(x, t)pA$)d$ 

(lc) 

vl(x, y) = g2
TN(x, Z)pN(Z)d£ - grAx, Z)pT(i)dZ. 

(Id) 

Here 

gNN — 
irE' 

-2ln(r/d) - ( l - t V ) - ^ - ^ -
r 

+ b'N + c'N(x-!i), 1=1,2 (2a) 

S'TT-^I -2ln(r/d)-(l + v')^-1 
r 

+ b'T+clry, 1=1,2 

- ( - ! ) ' 
gTN- - / 

wE 

( - 1 ) ' 
gNT~ ^ T 

•KE 

r \ y 
+ a,

N-c,
Ny, 1=1,2 (2c) 

(1 + v)^^L + (1 - Cretan (^ 

+ JT-Mx-$), 1=1,2 

r=l(x-Z)2+y2)[n 

(2d) 

(2c) 

where E?, 1=1, 2 are the Young's moduli for the lower and 
upper body, respectively, and v', 1=1, 2 are the Poisson's 
ratios. In Eqs. (2), a'N, bN, c'N, a'T, b'T, and Cj-are undetermined 
constants, with 1=1 for the lower half-plane and 1=2 for the 
upper half-plane. In Eqs. (2a) and (2b), d is a constant inserted 
to give the logarithm a nondimensional argument. This con­
stant will be assumed to have the value of one in the units the 
coordinate values are measured in, and will be dropped below 
without loss of generality. 

Constants with subscript N will be multiplied by pN in Eqs. 
(1) and constants with subscript T will be multiplied by pT-
Combining (2) and (1), a'N, bk, and c'N will give rise to a rigid-

gNN~ -—y/HlX-f l+r f jV . / = L 2 
•KE 

g'TT= -—gln\x- •Z\+dl
T, 1=1,2 

1-v' 
2E1 + a'N, x<£, 

gTN~^l-v< 
1=1, 2 

(3a) 

Ob) 

(3c) 

2£ / + a'N, x>£, 

glNT = 

1-v1 

2E1 + a'T,x<£ 

1-v' 
1=1,2 (3d) 

2E 
r + a'T,x>t 

The Green's functions ghN and gm can be interpreted as the 
normal and tangential displacement at x due to a unit normal 
force at £. Thus, these Green's functions can be deduced from 
the Flamant Solution of a concentrated normal force at the 
edge of an elastic half-plane (see Gladwell (1980), Timoshenko 
and Goodier (1982), and Johansson (1990)). Similarly, g'Trand 
ghT can be deduced from the solution for a concentrated tan­
gential force. The same results can be obtained from equations 
derived in, for example, Muskhelishvili (1963), without the use 
of a point force. 

The relations between deformation of the surfaces of the 
bodies and traction on the surfaces implied by Eqs. (1) and 
(3) can be written compactly using an operator notation as 

V[N= Gl
NN(x, pN) + G[

NT(x, pT) +Dl
N(pN) +A1

T{PT) (4a) 

vl
T= Gl

TN(x, pN) + Glrr(x, pT) +A1
N(PN)+DT(PT) (46) 

(26) v2
N=-G2

NN(x,pN) + G2
NT(x,pT)-D2

N(pN)+A2
T(pT) (4c) 

v\= G2
TN(x, pN) - G2

TT(x, pT) +A2
N(pN) -D2

T(pT). {Ad) 

In this notation the operators G'NN( •,•), 1=1,2 correspond to 
the integration of the first term to the right in (3a) multiplied 
by PN(£) and similarly for G'TT( •, •), G'NT( •, •) and G'TN( •, •)• 
The operators D'N(-), 1=1, 2 correspond to the integration 
along Sc of the second term to the right in (3a) multiplied by 
PN(^), that is the integral of PN(^) multiplied by the constant 
d'N, and similarly for D'T( -),A'N(-), and A'T( •). Note that the 
operators D'N(-), Dl

T(-), A ' N ( - ) , &nAA'T(-), 1=1, 2 do not 
depend on the coordinate x and thus give the same contri­
butions at every point along Sc. 

The displacements v'N and v'T, 1=1,2 can only be computed 
to within arbitrary constants due to D^{ •), Dr( •), AN( •), 
and A'T( •), but if we compute the relative displacement be­
tween two points on one of the half-planes, the contributions 
from D'N( -),D'T( •), A'N( • ) , and A'T( •) will cancel. Thus, the 
displacement of an arbitrary surface point relative to x0 can 
be written as 

vk= G[
NN(X, pN) + G{

NT(x, pT) - [Gl
NN(x, pN) 

+ G1
NT(x,pT)]\X0 (5a) 
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vT= Gl
TN(x, pN) + Gl

TT{x, pT) - {Gl
TN(x, pN) 

+ G1
TT(.X,PT)]\X0 (56) 

v2
N= - G2

NN(x, pN) + G2
NT(x, pT)~[- G2

NN(x, pN) 

+ G2
NT(x,pT)]\X0 (5c) 

VT= G2
TN(X, pN) - G2

TT{x, pT) - [G2
TN(x, pN) 

GTr(x,pT)]\ (5d) 

where the notation \XQ means that the preceding term is eval­
uated at XQ. 

If the surface of the lower body modes in the positive y-
direction and the surfaces of the upper body moves in the 
negative /-direction, the gap between the bodies will become 
smaller. This closure of corresponding surface points on the 
upper and lower half-planes is the displacement relative to x0 

in the positive /-direction of a point on the lower half-plane 
plus the displacement relative to x0 in the negative /'-direction 
of the corresponding point on the upper half-plane plus the 
closure at x0. Thus 

uN=vl
N-vi

N\xn-[vN-vj,\ 1 ' -' - - • ' -2 
*0 l"/V VN>X(,1+UNO—VN—VN+UMO 

= G'NN{x, pN) + G2
NN(x, pN) + G'NT(x, PT) ~ G2

NT(x, pT) 

- [GNN(X, pN) + G2
NN(x, pN) + G\,T{x, pT) 

X,PT)VX0 + UNO (6) 

where uN0 is the closure at x0- When the bodies are in contact 
at x0 we have uNO = 0. 

Next we define 

uN=GNN(x, pN) + GNN(x, pN) 

P=[G[
NN(x, pN) + G2

NN(x, pN) + Gl
NT(x, pT) 

X, pT) - G2
NT{X, pT) (la) 

-G2
NT(X,PT)]\X0-UNO (lb) 

so that uN is expressed compactly as 

uN=uN-p. (8) 

We have now made definitions necessary to express the ki-
nematical impenetrability condition between the bodies. The 
closure of corresponding surface points must be smaller than 
the initial gap s(x) plus any increase in the gap due to relative 
rigid body rotation d of the bodies. Thus, 

uN(x)-P^s{x)\dx. (9) 

The assumptions of unilateral contact can now be expressed 
as 

# v < 0 (10fl) 

pN(uN-(3-s-dx)=0 (106) 

i.e., the contact pressure is always compressive and (106) holds 
since (9) is always fulfilled with equality if p N ^ 0 . 

Next we will study the tangential direction. To this end we 
will compute the relative speed between the two surface points 
corresponding to the same .^-coordinate—one at the surface 
of each body. If the bodies are in contact at this x-coordinate 
this will be the slip speed. The relative speed is the speed of a 
point on the lower plane relative to the speed of the lower 
plane at Xo minus the speed of the corresponding point on the 
upper plane relative to the speed of the upper plane at XQ plus 
the relative speed at x0. Thus 

\T=i)l
T- vT\X0~[vT~ VT\X0] + \TO 

= Gl
TN(x, pN) - G\N(x, pN) + GTT(X, pT) + G2

TT(x, pT) 

- [GTN(x, pN) - G2
TN(x, pN) + GTT(X, pT) 

+ G2
TT(X,PT)]\X0+\TO (11) 

where X r o is the relative speed at x0. Here and elsewhere in 

this paper a superposed dot denotes the time derivative. We 
now define 

UT=GTN(X, pN)-G2
TN(x, pN) 

+ Gl
TT(x, pT) + G\T(x, pT) (12a) 

a = GrN(x, pN) - G2
TN(x, pN) + GTr{x, pr) 

+ G2TT(X,PT)]\X0~\TO- V2b) 

We can now write (11) as 

/\7-=«7--a. (13) 

For the frictional behavior we assume Coulomb's law, i.e., 

\pT{x)\^y.\pN{x)\^T(x) (14a) 

\pT(x)\<T(x)=>iiT(x)-a = 0 (146) 

PT(X)=T(X)^UT(X)-U<0 (14c) 

pT(x)= -T(x)~uT(x)-a>0. (Ud) 

That is, there is a friction bound T(X). If the absolute value 
of the tangential traction is below this bound, there is no slip, 
and if it is equal to this bound, the sign of the slip is opposite 
to the sign of the tangential traction. 

Finally, the externally applied forces, which give rise to the 
contact traction, are characterized by their resultants at xQ. 
Thus 

N=\ pNdx (15a) 

T= pjdx 
sc 

M= I xppjdx. 
•>sc 

(156) 

(15c) 

3 A Variational Inequality Formulation 

As a basis for time and space discretizations the problem 
will be formulated using variational inequalities. First, let E^ 
be a space of sufficiently smooth fields of contact pressures, 
and define a convex set of admissible such fields: 

S'N=)qNZ'EN: qN(x)<0, N(t)=\ q„dx, 

M(t)= xq/^dxi. 

Here, N and M are regarded as prescribed functions of time. 
Then, letting uN and pN satisfy the relations of Section 2, 

we have for all qN^S'N 

(uN-s)(qN-pN)dx=\ (uN-s-P-dx)(qN-pN)dx 

+ P\ (qN-pN)dx + e\ x(qN-pN)dx>0. (16) 

The inequality follows since the last two integrals vanish 
when both qN andpN satisfy (15a) and (15c) since they belong 
to SN, and the first integral can not be negative because of (8) 
and (10). Note that (3 can be moved outside the integration 
since it is independent of x according to its definition (76). 

Similarly, let LT be a space of fields of tangential tractions, 
and define a convex set of admissible fields 

S'T(jPN)=\qT^T. \qT(x)\<n\pN(x)\,T(t)=\ qTd> 

Note that this set is dependent on the field pN£S'N. Letting 
uT and pT satisfy the relations of Section 2 we have, similarly 
to (16) for all qT£ST(PN), 
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uT(qT-pT)dx = (uT-a)(qT-pT)dx 

+ a\ (qT-pT)dx>0. (17) 

The inequality follows since the last term vanishes, since qT 

and pT belong to ST(PN) and the first integral to the right is 
found to be non-negative by considering different slip situa­
tions according to (14). Note that a can be moved outside the 
integration since it is independent of x according to (126). 

Finally, introducing (7a) and (12a) into (16) and (17) we 
obtain the following problem: 

Problem V. Find pN: [0, T\~S'N and pT: [0, T\~S'T{pN) 
such that for all qNtS'N, qT^S'ApN) and r€[0, 7] 

(GNN (x, pN) + GNT(x, pT) -S) (qN-pN)dx>0 (18a) 

{GTN(x, pN) + GTT(x, pT))(qT-pT)dx>0 (186) 

where 
GNN( • > •) = GNN( •, •) + GNN( • 

GNT( •,-) = GNT( •,-) + GNr( • 

GTN( • >-) = GTN( •,-} + GTN(' •) 

GTT{ • > •) — GTT( •, •) + GTT( • i •) 

(19a) 

(196) 

(19c) 

(19rf) 

with appropriate initial conditions prescribed. Here [0, T\ is 
some time interval during which we are investigating the prob­
lem. 

4 The Computational Method 
Equations (18) are identical to the equations obtained in 

Johansson and Klarbring (1992) except that the flexibility op­
erator now contains contributions from both bodies according 
to Eqs. (19). The computational method deviced in Johansson 
and Klarbring (1989), which will be outlined as follows, can 
therefore be used directly, if the calculation of the discrete 
counterparts of these flexibility operators are modified. 

The problem V is first discretized in time by introducing a 
backward finite difference for the time derivative 

i>N(ti) = 
PNUI)-PNUI-I) (20) 

It is then assumed that the tractions are piecewise constant in 
space over intervals of length h'. The integrals over £ in Eqs. 
(1) can then be performed in closed form. Finally, the integrals 
over x explicit in Eqs. (18) are evaluated using a one point 
Gauss integration with the midpoints of the intervals h' as 
integration points. We then have problem V discretized in time 
and space as follows: 

Problem V?. Find PNe Sh
N and P r e 5^(PN) such that for all 

QNZSh
NandQTzSh

T 

(GNNFN+GNTVr-s)'(QN-¥N)zO (21a) 

(GTNPN+GTTPr) ( Q r _ P r ) 

> ( G w P A , ( ^ l ) + Gr 7 'P7-(^- i ) ) ' (Qr-Pr) (216) 

where 

S i ^ l Q w I Q U O , y = l , ...,M,N(t)=\'QN, 

M(t)=x'QN] (22a) 

ST-(PJV)=IQT-I \Qi
T\<ix\Pj

N\, 

j=l,...,M, T{t) =l'QT). (226) 

Here the product G/VAPJV of a square matrix and a column 
matrix results in a column matrix of displacements and is the 

discretized counterpart of the notation GNN(X, pN) used in the 
continuous case above. Column matrices PN, Pr, s, and x are 
the values of the functions pN, pT, s, and x at the Gauss 
integration points mentioned above and I is a column matrix 
of ones. 

Finally it can be shown (Johansson and Klarbring, 1992) 
that the problem V/ is equivalent to the following problem: 

Problem V". 
73 such that 

Find P r , PN , XN, XT1, X n , <£,, <t>2, yu 72, and 

0 
0 
0 
0 

XN 

- * 1 

. ~ ^ 2 _ 

= 

"A" 
T 

M 
N 
s 
0 

. ° . 
V3JJ 

V 
0 
0 

GNT 

I 
- I 

- 1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

— x 
0 
0 

0 
0 
0 
0 

- 1 
0 
0 

GjTV 

0 
x' 
1' 

GfJN 

p.1 
fll 

-I f 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0_ 

" - P r " 
73 

72 

7 i 

-P/v 
Xn 

. ^T2 _ 

(23a) 

XN>0 -P /v>0 X^,PN = 0> 

Xn^0 -0 ,>O X'n̂ i = 0J 

A = GTT¥-j{ti-1) + GTNPN(1/- 1) 

(236) 

(23c) 

where I is the identity matrix. 
It is possible to make physical interpretations of the various 

multipliers in Eqs. (23). Thus Xri and X72 are related to the 
slip speed between points in contact and 72 can be identified 
as the rotation - 6. 71 and 72 can be identified with the relative 
rigid-body motions of the bodies, but of course this interpre­
tation is useless in the present case since there are no definite 
reference points for this motion. (See Johansson and Klarbring 
(1992) for more details on these interpretations.) 

The solution of Eqs. (23) provides the contact forces at time 
t/provided that they are known at time t^\. Thus, to proceed 
with the solution we assign loads N, T, and M to the times t{, 
. . . , ti-i, th . . . , tN, in agreement with the previous time dis­
cretization. The problem is then solved as follows: 

(1) Find P r , PN ) \N, Xr i, X n , <A,, <j>2, yu 72, and 73 such that 
(23a) and (236) is satisfied for A = 0, N=N(t,), T=T{tx), 
M=M(tl), s. 

(2) Compute A (A). 
(3) Find P r , PN, XN, Xn, Xn, <l>u <j>2, 71, 72, and 73 such that 

(23a) and (236) are satisfied for A = A ( M , N=N{t2), 
T=T(t1),M=M(ti),8. 

(4) Repeat steps (2) and (3) for t = tt until t=tN. 

To obtain a solution to problem \) we note that this is a 
linear complementary problem (in the second statement of the 
problem), save for the fact that the unknowns of the first four 
equations are not required to satisfy inequality constraints and 
complementary conditions. To obtain an LCP the first two 
equations are eliminated with a simple Gauss elimination. The 
following two equations cannot be eliminated in this manner 
since this would imply the inversion of a singular matrix, but 
a more involved rearrangement suggested by Canarozzi (1980) 
can be used. The remaining equations are then solved as an 
LCP. We then Obtain ~PN directly, and P r i s obtained by noting 
that the last two equations imply 
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2000. i — J 

- M <r. •* ; j 

Fig. 2 Nonproportional loading 
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x/a 

Fig. 3 Comparison between present algorithm and Cattaneo solution 

P r = 
<j>l+(j>2 (24) 

Finally it is noted that in the implementation of the foregoing 
method, numerical problems were encountered due to large 
differences in absolute value between elements of the Eqs. 
(23a). These problems were overcome by multiplying the first 
and fifth equations of Eqs. (23a) with a large but arbitrary 
factor. Thus A, 67-7-, GTN, s, GNT, and GNN were multiplied 
by this factor when setting up the problem, and 7!, y2, 73, XN, 
An, and A72 appeared in multiplied form in the solution. 

5 Numerical Examples 
The first example concerns the contact between two half-

planes with the same elastic constants, so that no coupling 
between the normal and tangential directions occur. The initial 
gap was taken as s(x) = x2/R, i.e., a Hertz-type problem. The 
half-planes were first pressed together by a normal force — N 
per unit thickness and then subjected to a tangential load 
r=0.5- / i - \N\ (see Fig. 2). The friction coefficient was taken 
to be ix = 0.4. For this case a closed-form solution due to Cat­
taneo exists (see Johnson (1985)) and this solution is compared 
to the solution with the present algorithm in Fig. 3 where 

Po = ~ 
2)N\ 

•wa 

a = 
4\N\R 

TTE 

(25a) 

(25b) 

-1—r 1 r—1 r 

— • 

q=0 (rigid punch) 

q=0.5 

q=l 

_L J_ 
-20. -10. 10.0 20.0 30.0 0.0 

[mm] 

Fig. 4 Normal pressures and tangential tractions due to normal and 
tangential loads with proportional loading 

Here, E = EX = E2 is the common modulus of elasticity and R 
is defined above. In Fig. 3 and in the other examples in this 
section the normal pressures were multiplied by a factor - 1 
to obtain positive pressures. 

It is noted in Fig. 3 that the two solutions are almost in­
distinguishable, except for a small discrepancy in tangential 
tractions at the point where the solution changes from stick 
to slip conditions. This discrepancy is in part due to the par­
ticular discretization chosen in the calculations for the example, 
since the approximate solution must necessarily break off at 
a discretization point, and it does so at the discretization point 
immediately outside the point where the Cattaneo solution 
changes from stick to slip conditions. 

Next a few examples with no known closed-form solution 
will be studied. In particular, the dependence of contact trac­
tions on the load path and on the difference in Young's moduli 
E1 and E2 between the bodies will be investigated. To this end 
we introduce S as a measure of combined flexibility and q as 
the quotient between the Young's moduli of the bodies 

S=h+J2 

q = El/E2. 

(26a) 

(26b) 

It is seen from Eqs. (3) and (19) that GNN and GTT will not 
change if the Young's moduli are changed provided S is kept 
constant. The changes in contact tractions will then depend 
only on the coupling terms between the normal and tangential 
directions, i.e., on GNT and GTN. In the following examples 
the value of S was kept constant at the value obtained with 
El =E2 = 205000 [MPa]. A value of q was then chosen and El 

and E2 were calculated from Eqs. (26). Poisson's constants 
were ul = v2 = 0.3 in all cases. In the examples the initial gap 
was taken to be s = ex4 with c such that s (34 mm) = 0.5 [mm]. 
The half-planes were discretized over a 69 [mm] wide segment 
into 69 elements of equal width, the circular markers on some 
of the curves indicating the midpoints of these intervals. The 
friction coefficient was taken to be ^ = 0.4. First, the tractions 
due to a normal force of N= - 100000 [N ] per unit thickness 
and a tangential force of T= 0.6^ IN I were investigated. In 
Fig. 4 the results are shown when the tangential load was 
applied proportionally to the normal load as indicated in Fig. 
5. The normal pressures show the typical saddle form of a 
fourth-order problem. It can be noted that the tangential trac­
tions are much more dependent on the value of q than the 
normal pressures. 
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Fig. 5 Proportional loading 
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Fig. 6 Normal pressures and tangential tractions due to normal and 
tangential load with nonproportional loading 
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Fig. 7 Normal pressures and tangential tractions due to normal load 
and applied moment with proportional loading 

Fig. 8 Normal pressures and tangential tractions due to normal load 
and applied moment with nonproportional loading 

Figure 6 shows the corresponding results when the normal 
load was first applied and the tangential load was applied after 
the normal load had been applied as indicated in Fig. 2. Com­
paring Figs. 4 and 6 it is seen that the tangential traction is 
heavily load-path dependent, and this is also the case with the 
same elastic constants in both half-planes. 

In the final example a normal load of N= - 80000 [n] and 
a moment of M= -400000 [Nmm] were applied. Figure 7 
shows the result when the normal load and the moment were 
applied proportionally, analogously to Fig. 5, and Fig. 8 shows 
the result when the normal load had first been applied and the 
moment was applied after the normal load had been applied 
analogously to Fig. 2. Again the tangential tractions are much 
more dependent of the value of q than the normal pressures, 
but does not show the large degree of load-path dependence 
as when a tangential force is applied. Note that no tangential 
tractions at all occur when q=\ with this loading. 
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Stress Field due to a Dislocation 
on the Interface Between Two 
Quarter Planes 
Solutions are found for the state of stress obtaining along the interface between two 
bonded quarter planes, induced by an edge dislocation located at an arbitrary point 
on the interface. Explicit asymptotic expressions are given for the stress at points 
close to the free surfaces. 

1 Introduction 
The characteristics of dislocations located at interfaces are 

of great interest in applied mechanics; first, they enable us to 
describe the motion, stability, and self-stress associated with 
"real" dislocations, in the sense of lattice flaws, and secondly, 
they provide a useful Green's function for the solution of 
cracks located at the interface. The now classical solution of 
Dundurs and Sendeckyj (1965) giving the solution for the be­
havior of an edge dislocation at or near an elastically dissimilar 
circular inclusion embedded in an infinite matrix has been used 
as the starting point for many crack solutions. For example, 
it is ideal for use as a Green's function for solving the problem 
of a crack between bonded semi-infinite planes (Gautesen and 
Dundurs, 1987), for cracks at or near circular inclusions (Er-
dogan et al. 1974) or for cracks in a half-plane near a free 
surface (Nowell and Hills, 1987). The state of stress for an 
edge dislocation at the junction of two half-planes has also 
been found by Hui and Lagoudas (1990). A further funda­
mental problem which is of great practical interest is that of 
an interface dislocation in the neighborhood of a free surface 
(Fig. 1). As well as adding to the repertoire of solutions de­
scribing the behavior of real dislocations, the solution provides 
the means of solving the surface breaking interface crack. This 
problem is of great fundamental interest, as failure of inter­
faces may often be initiated at the edge of the joint, where, 
for some material pairs, a singularity in the stress field occurs. 
This singularity may be relieved by localized plasticity or by 
immediate failure of the bond, both of which promote the 
development of an edge-initiated interface crack. 

2 Formulation 
Consider two quarter planes (Fig. 1(a)), region " 1 " , x > 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OP MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 

MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Pro­
fessor Lewis T. Wheeler, Department of Mechanical Engineering, University of 
Houston, Houston, TX 77204-4792, and will be accepted until four months 
after final publication of the paper itself in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Nov. 11, 
1991; final revision, May 14, 1992. Associate Technical Editor: R. Abeyaratne. 

© 

««<|««<S 

I © 

© 

^ ^ 

© 

Fig. 1 

(b). (c). 

Geometry of the problem 

0, y < 0 and region "2" , x > 0, y > 0 bonded along the 
interface x > 0, y = 0 with a dislocation having Burgers vectors 
bx, by located at a position (d, 0). 

The primary purpose of this paper is to determine the stress 
field a due to the dislocation and this may be found by the 
superposition of two solutions (as was done by Keer et al. 
(1983) for the case of a dislocation in a quarter plane). These 
are as follows: 

(i) the stress field a which is itself a composite of two solutions, 
viz. the state of stress induced in two perfectly bonded half-
planes by a dislocation having Burgers components bx, by 
located at (d, 0), and the state of stress induced by an image 
dislocation, having Burgers components - bx, - by located 
at (-d, 0), Fig. 1(b). 

(ii) a stress field a intended to clear the boundary x = 0 of 
any remaining tractions, Fig. 1(c). 

The net stress is then given by 

o(x,y)=d(x,y) + o(x,y). (1) 
We shall be primarily interested in the stress arising on the 

interface y = 0, x > 0, where the stress a may be readily 
derived from the Airy stress function of a dislocation at the 
junction of two half-planes given by Dundurs and Mura (1964). 
Thus1 

'The normal and shear stresses are continuous across the interface, but the 
x stress component is discontinuous. 
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If 

c 

}xx (x, or 
a%!0c, 0) 

Oyy{X, 0) 

°xy(x, 0) 

= *; 

(- 2 + P)w5(x-d)\ 

+ (2-j3)7rS(x-d) 1 

* -p-wd(x-d) 

1 1 1 
V x-d x+d J . 

+ V 

r 
(1+2|3) 

(1-2/3) 

1 1 

x-d x+d 

1 1 
x-d x+d 

1 1 
x-d x+d 

Pw8(x-d) 

y,x>o (2) 

where 5(*) is the dirac delta function, 

2/*i(l+a) 2,12(1-
C=-

• a ) 

-P2)' 
(3) 

(K, + 1 ) ( 1 - / 3 Z ) ( K 2 + 1 ) ( 1 

and a, P are the Dundurs elastic composite parameters defined 
as (Dundurs, 1969) 

r(«, + l ) - ( K 2 + l ) 
P = 

r ( K , - i ) - ( « 2 - i ) 

roc + D + fe+i)' M r(«,+ i) + («2+1)* 
(4) 

and KJ = 3 - 4^ (/' = 1, 2) in plane strain, «y = (3 - vj)/(\ 
+ vj) in plane stress and T = pi2//*i where cy, ^ are, respectively, 
the Poissons' ratio and shear modulus of material j . (The 
superscripts on the stress components in Eq. (2) and in what 
follows refer to regions " 1 " , "2" . ) 

Similarly, the stress arising along the intended free surface 
x = 0 due to the dislocation pair is 

;P> (o,y) 
ZL ^ 3%W,y))=bx 

*p> (o,y). 

o 
o 

[^ (y2(l+2P)-d<) 

+ bv 

f 2d , ,, 
— (y2-d2 (1+2/3)) 
' i 

2d , , 
-— 0>2(3 + 2/3) + tf2) 

0 

(5) 

where r2 = y1 + d1 and 

of(Q,y\P) = ~of(Q,y; -P). (6) 

The choice of image dislocations has, of course, already 
rendered the x — 0 line free of direct tractions for the case of 
a dislocation bx and free of shear tractions for a dislocation 
by. Thus, from Eqs. (5), we need now to apply direct tractions 
FN(y) and shear tractions Fs(y) along the x = 0 line in order 
to satisfy the free boundary conditions, where these distri­
butions are given by 

f®(/•;» = o®(r, TT/2) = - by) - ^ [r2-d2(1 + 2/3)] 

i f ' (r; |8) = a$(/-, TT/2) = - 6, J ̂  [r2 (1 + 2/3) - d2] 

^1 )(r ; /3) = ff<1)(/-, -ir/2) = F]2)(n -p), i = N, S (7) 

where along x = 0, y2 = r2, r2 = r2 + d2 and we have now 
employed a polar coordinate set (Fig. 1(a)). 

The next step is to deduce the state of stress induced by the 
tractions FN, Fs, and the most convenient way to do this is to 

transform the problem into the complex plane by employing 
Mellin transforms. The Merlin transforms of r2FN, r Fs are 
defined as 

Fi(s;p)=\ Fi(r; py+'dr, i = N, S. (8) 

Substituting in from Eqs. (7) the transforms of the applied 
loads may be found explicitly (Erdelyi et al. 1954), and are 

^ ( s ; / 3 ) = 
Cbyds+l 

sin(i,7r/2) 
l(s+l) + Ps},Fi^(s;P) = Fiff(s; -p) 

f§\s;P)=- . f lis+1) +P(s+ 2)}, 

/$»(*; 0) = /^>( j ; ~P). (9) 

Once the transforms of the applied loads are known, the 
transforms of the stress field along the interface y = 0 due to 
these loads may be found from results given by Bogy (1970). 
Let the transforms of r2om{r, 6), r2arS(r, 6), r2an(r, 6) obtaining 
along the interface (0 = 0) be 

aM(s, 0) = bxom (s, 0) + bySyee (s, 0) 

ard(s, 0) = bxaxre(s, 0) + bySyre(s, 0) 

o™(s, 0+) = b^r(s, 0+) + byd™(s, 0+) 

8™(s, 0-) = bAlrUs, 0-) + bydyPr(s, 0-) (10) 

so that each stress component is made up of two contributions, 
one for each component of the Burgers vector. Then, from 
Bogy (1970, Eqs. 3.14, 3.15): 

Cds+1 

oaeis, 0) = — - ( - (1 - a|8)(a - P)(s + l)4 

A(s) 

+ a(l - P2)(s + l)[(s + l)2 - cos2(sir/2)] + /3COS2(STT/2) 

• [a2p - (a - 2/3 + aP2)cos2(sir/2)](s + I)2 

Oyee(s, 0) = 
Cds+lcos(sir/2) 

(a-pfys+l)4 
A(s)sin(sir/2) 

+ [1 - a2 - P2 - (1 - 2aP + P2)COS2(.STT/2)](S + l)2 + /32cos2(j7r/2) 

°xre(s, 0) = owls, 0) 

Cds+l 

Oyre(s, 0) = 
Ms) 

i + (\-ap){a-P){s+\T 

+ a(l - P2)(s + l)[(s + l)2 - cos2(sir/2)] - /3COS2(STT/2) 

+ [a2/3 - (a - 2/3 + a/?2)cos2(s7r/2)Ks + l)2 

Sffls,0-) = 
Cd 4 

Ms) 
(a - P)(S + 1)4[(1 - P)(2p - a) + (1 - a)] 

+ (1 - /32)(a - 2P)(s + l)[(s + l)2 - cos2(sw/2)] 

+ (s+ l)2[2a(a - 1) - a/3(a - 2/3) + (a - 4jS(a - P) 

+ P2(a - 2/3))cos2(s7r/2)] + /3(1 - 2(3)cos2(57r/2)) 

C^+ 'cos(^7r/2) 

'*"*''" ' ' A(s)sin(S1r/2) 
Oy'>r(s, 0" ) = - l(a-P)2(l-2p)(s+l)4 

+ 2(a - 1)(1 - P2)(s+ 1)[1 - COS2(5TT/2)] 

+ ( s + l ) 2 [ - ( a - l ) 2 + /3(/3-2) + 2/3(a2-a/3 + /32) 

+ (1 - 2a + 2(3(1 + a) - /32(3 - 2(3 + 2a))cos2(sir/2)] 

+ /32(l-2/3)cos2(i'7r/2)j 

agks, 0 + ; a, P) = ~ (-ox%, 0"; - a , -/3)) 
1 - a 

a<2,-V, 0 + , a, P) = ~ ( + oy%, 0"; - a , -/S))' 
1 —a 

(11) 

and 

A(s) = ( a - /3 ) 2 (5+ 1)4+ [2/3(a-|3)cos2(57r/2)-a2](5+ l)2 

+ [((32- l)cos2(i'7r/2) + l]cos2(5ir/2). (12) 
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To obtain the stresses in the physical problem, we apply the 
inverse transform, namely 

o,tr,0) = —\ <Jij(s,e)r-<s+2)ds. (13) 

The transformed stresses agg(s, 0), ar6(st 0) and orr(s, 0) are 
regular at 5 = - 1 and so we may use the path of integration 
in (13) defined by c = - 1 . To convert Eq. (13) into a line 
integral2 we make the substitution - (s + 1) = <p + /£ and 
integrate along the <p = 0 axis which yields, in terms of the x 
- y cartesian coordinate set 

i f™ r i x\ 
AxU(£; a, ftcoslglog--axij(x, 0) = 

+ Bxiia,a, /3)sin U l o § 3 

7T _ 

c <Jy,j(X, 0) 
x j 0 

Ayjj(%; a, ftcos U l o g -

+ flw,-(£; a, ftsin flog 

c?f (14a) 

rff (146) 

where 

A ™ = [ - ( l - a f t ( < * - f t £ 4 

+ [a2(3 + (a - 2/3 + a|32)sinh2(£ TT/2)]£ 2 

-/3sinh2(£7r/2))/A(£) 

B 

yyy — 

• w - , - a ( l - 0 W - s i n t f ( $ i r / 2 ) ] ) / A ( $ ) 

sinh(^7r/2) 
flj,"~coshttx/2) 

( a - / 3 ) Y + [ l - a 2 - / 3 2 

A — A 

+ (1 - 2a/3 + j32)sinh2(£7r/2)]£2 

+ /32sinh2(^/2))/A(?) 

^» "xxy~&yyy> -<*yxy~~ ~^-xyy> "yxy~&xyy 

^ = f ( a - / 3 ) [ ( l - / 3 ) ( 2 / 3 - a ) + ( l - a ) ] r t 

- 0(1 - 2(3)sinh2(f TT/2) - f 2[2a(a - 1) - a(3(a - 2(3) 

- (a - 4/3(a - /3) + /32(a - 2ft)sinh2(£ TT/2)] ) /A(£) 

B{ <i) - (a - 2ft(l - /32)£ [£2 - s inh2(^/2)) /A«) 

^ = " " w l ' ^ f 2 ( « " i)^1 - ^ t 1 + smh2(?7r/2)])/A(£) cosh(57r/2) 

^ = ̂ ^ i i - ( « - / 3 ) 2 ( l - 2 ^ 
^ cosh(?Tr/2) 

+ 2j3(a2 - a/3 + j32) - (1 - 2a + 2/3(1 + a) 

+ /32(1 - 2ftsinh2(£ir/2) + £2[ - (a - 1)2 + /3(/3 - 2) 

- /32(3 -2(3 + 2a))sinh2(£ ir/2)] J /A(£) 

A%l(l;;a,P)=-A£>c(b - a , - f t , 

fl^(f;a, ft=-fl^(S; - a , - 0 ) .(i) 

4(2) £;a, ft = ̂ ( f ; -a , -ft, 

and, in terms of the new variable £, 

A(|) = (a - ft2?4 + [2/3(0! - ftsinh2(£7r/2) + a2]? 

(15) 

,2l)-2 

+ [(J32 - l)sinh2(f TT/2) - l]sinh2(?7r/2). (16) 

The integrals contained in Eqs. (14) are, perhaps not sur-

See Pipes and Harvill (1971), Chapter 1, for further information regarding 
integrals of the type given in Eq. (13). 

3In the following expressions, (1), (2) have been added as in the earlier equa­
tions to denote the half-plane in which the result applies. 

prisingly, intractable analytically. However, a useful check on 
the algebra to this point may be made by specializing the elastic 
constants to render a = /3 = 0, i.e., make the quarter planes 
similar, whereupon the integrals do become feasible and we 
are able to recover the solution for a dislocation in a homo­
geneous half-plane. In this case, the only nonzero functions 
in Eqs. (15) which remain are 

.Byyy(^) - BXXy ( £ ) : 
-2£2 

sinh(7r£) 

Byxx(i) — 

Using the integrals 

1? 4£ 
sinh(ir?)' Ayxx{^' sinh(7r£)' 

(17) 

00 g2sin[glog(*/cQ] ,„ I d 2 la 
• w ^ di= " o ^ T tanh -

0 sinh(7r£) 2 da \2 
p ScosElog(x/d)] 1 d t / a 

J0 sinh(7rf) 2 da \2 
(18) 

where a = log(x/d) and from Eqs. (1), (2), (3), and (14), we 
find that the stress field due to a dislocation in a half-plane a 
distance d from the surface is given by 

7 T ( K + 1 ) 

2„ 
Oyyy{X, 0) = 

T T ( K + 1 ) 

2(1 
y{X, 0) 

2d Ad2 

~x-d x + d (x + d)i+ (x + df ( 1 9 a ) 

«•(«+!) 
J.x,0) = 

1 1 6c? Ad2 

2n -^-"' -' x-d ~x+d^\x+d)2 (x + d)" (l9b) 

which agrees with the general stress field given by Nowell and 
Hills (1987). 

3 Numerical Solution 
For dissimilar pairs of materials the integrals in Eqs. (14) 

must be solved numerically. It will be noted that the integrals 
are all of the form 

J0 \ s i n / 
Slog 3 \di. (20) 

These integrals are difficult to evaluate efficiently since, as 
x/d —• 0, the argument of the trigonometric functions can be 
quite large resulting in rapidly oscillating integrands. Special 
care is needed with the numerical quadrature and a procedure 
due to Filon (see Tranter, 1956) is utilized. First, we write the 
integrals as 

. I V 

* iog- K J0 \sm/ \ x) J0 \ s m / V 

+£m)^{^-xh (21) 

The second term on the right-hand side of (21) can be made 
arbitrarily small for sufficiently large N, since the functions 
Akij and BkiJ — order 0(£2e~f,r) or less as £ —• oo. Considering 
the first term and dividing the interval [0, N] into 2n equal 
parts of length h, we have (Tranter, 1956) 

M 0 f ^ s ^ l o g ^ J - [af(N)sin(Mog^ 

^ / ( 0 ) + S / ( S 2 / ) c o s ( | 2 , l o g 3 + ^ / ( A 0 c o s ( M o g ^ 

+ 7 2^ (^2''- l )cos(^2'- l los^ 
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A f 
X J„ 

/(€)sin(flog-)rf€ 

h 
= - <a /(0)-/(TV)cos(/Vlog-

S/(?2/)sin( ?2,log *) + ̂ /(TV)sin('Mog 3 

+ 7 J]M2i-,)sin[Z2i^log fj ] (22«, 6) 

where £,• = //!, 

a = [92 + GsinGcosG - 2sin29]/e3 

J8 = 2[9(1 + cos29) - 2sinecos9]/e3 

7 = 4[sin0-9cos9]/93 (23) 
and 9 = h • \og(x/d). Also, by examining Eqs. (15) in the 
limit as £ —• 0 we find that in Eqs. (22) we have 

Axyy(0;a, 13)=+13, Ayxy(0; a, |8)= - 0 

A wn m 2a(a - 1) + «fl(2|8 - a) + M l - 2fl)/4 
^(i)Aaa(0; a, /3)= 2 rr; 

a — 7r / 4 

41^(0; a, |8) = T(l-a)(l-fl2) 
a2-7r2/4 

^ ( 0 ; a , j 8 ) = - ^ ( 0 ; 

4i(0;«. /?)=4«(0; 

•a, - f t , 

-a, - 0 ) 
(24) 

with the remaining functions Akij, B^j — 0 as £ — 0. Con­
vergence of Eq. (21) was obtained with TV = 12, n = 50 for 
x/d > 0.01, but values of x/rfdown to 1.0 x 10~7 demanded 
n be set as high as 300. 

4 Asymptotic Analysis 
As {x/d) -~ 0 the characteristics of the solution are domi­

nated by the well-known asymptotic behavior at the apex of 
two bonded quarter planes (Bogy, 1970). (The most general 
problem, i.e., the asymptotic behavior at the apex of two 
bonded wedges of arbitrary angles has been investigated sep­
arately (Bogy, 1971; Kelly et a l , 1992)). 

The asymptotic behavior of the stress field along y = 0 due 
to the prescribed tractions FN, Fs is obtained by evaluating the 
most dominant terms of oy(r, 6) in Eq. (13). This is achieved 
by carrying out residue computations at the poles of the in­
tegrand in Eq. (13). An elementary example of the procedure 
is outlined by Bogy and Sternberg (1968). Three kinds of be­
havior may be anticipated depending on the combination of 
elastic constants obtaining: 

I a(a - Iff) > 0. The stress field is in this case singular 
with the asymptotic behavior of the stress field being given by 
the residue of the integrand in (13) at the simple pole s = S\, 
where .$. is the zero of A(s) in the range - 2 < s < - 1. Thus, 

vd 
°kij(x, Q)-

hu(su 0)A(Si) 
A'(Sl) 

x 

+ 0 (25) 

where X = Si + 2. X can take values in the range 0 < X < 
0.41 depending on the values of a and /3 (Bogy, 1970). These 
material combinations also have a simple pole ats = - 2, and 
the residue there gives a bounded second term to the above 
expansion. These terms are presented in Case III. 

II a(a - 2/3) = 0. These combinations of materials give 
rise to the possibility of a logarithmically varying stress field 
(Eqs. 4.6, 4.7 Bogy, 1970). However, it transpires for the 
present problem the stress field is bounded as x/d — 0 with 
the asymptotic behavior given by 

_ , „x 167ra(l-/i2) C 
axyy(x, 0) = 2 2 jT -—,+ ° (!) 

16/3 + 7r (1 - a ) ltd 

2C 
oyyy(x, 0) = — + o(l) 

^xyy stress 

Fig. 2 Variation of the stress component ryy with position along the 
interface for a dislocation having a Burgers vector in the xdirection 

i m 

Lyyy, xxy stress 

Fig. 3 Variation of the stress component ryy with position along the 
interface for a dislocation having a Burgers vector in the /direction 
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2C 
oxxy(x, 0) = — + o ( l ) = -Fs(0, P)/bx 

••yxy 

dw 

•wd . 
uyxy • U,0) = 

-ird 
a(1) ircl 
>xxx(x,0) = —ox

2l(x,0) = 0(1) 

^>jav^» " a'1..1.. 
2C 

' ) = — ( l - 2 0 ) + o(l) = 
air 

+ 7# )(0, fl/6, 

r<2> / 
2C 

",*£(*, 0 + ) = ̂  (l + 2|8) + o(l)= + / ^ ( 0 , p-)/by. (26) 

These expressions take on the values of the applied clearing 
tractions FN, Fs at x = 0, 6 = + ir/2. (see Eq. (7)). Note that 
the expressions in Eqs. (26) agree with those considered by 
Bogy but include one further term in the series expansion. 

Ill a(a - 2/3) < 0. Here, again, the stress field is not 
singular with the stress components having the same values as 
for Case II above except axyy, which is of order o(l) as (x/d) 
- 0. 

5 Results 

Using normalized dimensionless stress components defined 

as 

Tkij(x/d, 0) = 
dir 

Cbl 
aku(x/d,0), i,j,k = x,y, (27) 

Figs. 2, 3, 4, 5, and 6 show, respectively, the stresses rxyy, Tyyy 

— Txxy> Tyxy, TXXX and Tyxx along the interface y = 0 as given 
by Eqs. (1), (2), (14), and (27) as a function of (x/d) for the 
material combinations, i.e., (a, j8) values, listed in Table 1, 
column 2. The labels on the graphs refer to the numbers in 
column 1 of the table while column 3 refers to the asymptotic 
nature of the stress field as defined in Section 4. 

The graphs display the nature of the stress field as (x/d) —• 
0 as given by Eqs. (1), (2), (25)-(26). For example, with (a, 
(3) = (.5, 0) (Case I) we find that, in Eq. (25), X = 0.147 and 
the following asymptotic stress fields arise: 

- 0 . 1 4 7 

v—1.2651 - J +o( l ) 

-•Tyyy- "0.3561 ~ 

T W - 0 . 1 0 0 

T ( 1 > -
1XXX 

„(>) 

•0.544 

-0.153 

T & - -0.898 

T£L-0.253 

+ o(l) 

+ o(l) 

+ o(l) 

+ o(l) 

+ o(l) 

+ o(l). (28) 

These one-term expansions agree with the full numerical so-

Since the strain in the x direction, e„, is continuous across the interface, 
\x may be derived from rJil- by use of Hookes law and is omited for brevity. 

0.15 0.2 

x / d 

Fig. 4 Variation of the stress component ixy with position along the 
interface for a dislocation having a Burgers vector in the ydirection 

_(1) 

'-xxx (1) stress 

Fig. S Variation of the stress component T „ in body " 1 " with position 
along the interface for a dislocation having a Burgers vector in the x-
direction 

lution for material combination 1 (see Table 1) for values of 
(x/d) < .001. For some stress components, the asymptotes 
remain reasonably accurate up to much larger values of x/d. 
However, the range of validity of these asymptotes depends 
on the (a, /3) values of the material pair under consideration 
and under the stress component under consideration. Similar 
expressions to those given by Eq. (28) can be obtained for 
material combinations 2, (a, /3) = ( - . 6 , - . 2 ) , and 3, (a, (3) 
= (.3, .1), for which X = 0.0929 and X = 0.0239, respectively. 
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L yxx ( t ) stress 

Fig. 6 Variation of the stress component T „ in body " 1 " with position 
along the interface for a dislocation having a Burgers vector in the y-
direction 

Table 1 

1 

2 

3 

4 

5 

6 

(<x,P) 

(.5,0) 

(-.6,-.2) 

(.3,.l) 

(.5,-25) 

(.1,-3) 

(0,0) 

asymptotic 

case 

I 

I 

I 

II 

III 

Homogeneous 

Power singularity 

Power singularity 

Power singularity 

Bounded stress 

Bounded stress 

Bounded stress 

For material combinations satisfying a(pt - 2/3) < 0, all 
stress components T are of order o(l) except rxyy which goes 
to either 167ra(l - (32)/(16/32 + TT2(1 - a2)) (Case II) or o(l) 
(Case III). 

The values have been plotted for x/d < 0.3 as this is the 
region of greatest interest, where the influence of the free 

surface is strong. Remote from the free surface the bonded 
half-planes solution given by Eq. (2) is recovered. 

For the material pairs chosen (Table 1) the influence of the 
free surface becomes very small by the time x/d reaches 0.5 
for all the stress components except Tyxx. In the case of this 
stress the influence of the surface persists up to x/d ~ 1.0. 

6 Conclusions 
The burden of. this paper is to deduce the display the influ­

ence functions for an edge dislocation at the interface of two 
bonded quarter planes. This has been achieved through Eqs. 
(1), (2), (14), and (27), but inevitably closed-form expressions 
are not attainable although the case of similar quarter planes; 
i.e., a half-plane can be evaluated and is shown to agree with 
earlier results. Further, we have investigated carefully the be­
havior of the stress field very near to the surface of the solid 
and given explicit asymptotic expressions for this case. The 
intended principal use of the results is to provide a Green's 
function for the solution of an interface crack breaking a free 
surface. 
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A Computational Model for Fe 
Ductile Plastic Damage Analysis of 
Plate Bending 
This paper presents a computational model for the finite element plastic damage 
analysis of ductile flexural plates. The phenomenological damage model proposed 
by Lemaitre is adopted here. The damage effect parameters of a cross-section are 
defined and employed to account for the damage effect across the thickness of a 
bending plate. Similar to the effective stresses used in many damage models, the 
effective stress couples are introduced in this work and used in the yield function. 
The damage criterion is defined in terms of damage strain energy release rates. Based 
on the damage node model proposed here, the elastoplastic-damage stiffness matrix 
of element is derived. When the corresponding elastic stiffness matrix is given 
explicitly, the resulting elastoplastic-damage stiffness matrix can be evaluated with­
out use of numerical integration. The feature of the expicit form of element stiffness 
matrix makes the computational model proposed here very efficient. Several nu­
merical examples of ductile plastic damage analysis of plates are also given in this 
work to demonstrate the validity of the computational model. 

1 Introduction 
A ductile material is capable of undergoing large plastic 

deformations. The accumulated plastic deformation can in­
duce the changes of microstructures of the material through, 
for example, the nucleation, growth, and coalescence of mi-
crovoids. These changes in material microstructures are the 
irreversible thermodynamic processes and result in a progres­
sive degradation on the material properties. The process of the 
initiation and growth of microvoids and other microdefects 
induced by plastic deformations in ductile solids is called the 
ductile plastic damage. The primary interest of the ductile 
plastic damage is to study the influence of microvoids resulting 
from plastic deformations on the degradation of material prop­
erties. The changes on material properties can be studied by 
either a phenomenological damage model or a micromechan-
ical damage model. A number of damage definitions and meas­
ures were proposed for both the models (vide the review papers 
of Krajcinovic, 1984, 1989; Chaboche, 1988; among others). 
Within the framework of phenomenological damage model, 
the damage of a material can be measured in macroscale by 
the deduction of mechanical properties, such as the elasticity 
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constants (Lemaitre et al., 1979). Moreover, the changes of 
the macromechanical properties can be characterized by the 
damage effect parameters which are able to be determined 
from experiments (Lemaitre, 1985). These damage parameters 
are the internal state variables in thermodynamics. The phe­
nomenological damage model in conjunction with thermo­
dynamics is not only simple in material modeling, but also 
quite accurate for the representation of a damage process. 
Therefore, the phenomenological model is very attractive in 
the practical application of the damage mechanics for engi­
neering structures. The present study is based on the phenom­
enological damage model. 

Quite a large number of papers on continuum damage me­
chanics have been published (see the references given in reviews 
of Krajcinovic, 1984, 1989; Chaboche, 1988). However, the 
ductile plastic damage of plate bending has received little at­
tention up to now even though some damage models for the 
bending analysis of brittle beams have been proposed, e.g., 
Krajcinovic (1979). The flexural plates made of ductile metals, 
a very important type of structure, may undergo large plastic 
deformations under certain boundary and loading conditions. 
The large plastic deformations in a metal plate can induce the 
initiation and growth of microvoids and consequently cause 
the deterioration of the mechanical properties of the plate, a 
damage process. The load-carrying capacity of the damaged 
plate is lower than the one predicted from the elastoplastic 
analysis. Therefore, the ductile plastic damage analysis can 
provide a useful tool for a safe design of metal plates. 

The objective of this paper is to present a computational 
model for the ductile plastic analysis of plates. The application 
and numerical examples of the proposed model is also pre­
sented in this study. 
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In the present computational model, the damage effect pa­
rameters of a cross-section are introduced from irreversible 
thermodynamics to take into account the damage effect across 
the plate thickness. Analogous to the concept of effective 
stresses, the effective stress couples are defined for plate bend­
ing problems. The yield function is then defined in the effective 
stress couple space. The evolution law of ductile plastic damage 
proposed by Lemaitre (1985), in which the damage evolution 
is a linear function of the equivalent plastic strain, is adopted. 
The concept of the plastic node model presented by Shi and 
Voyiadjis (1992a) is extended here to discretize the distribution 
of the damage matrix in an element. Finally, by using the 
principle of virtual work together with the damage node model 
proposed here, the elastoplastic-damage stiffness matrix of 
element is derived. The resulting element stiffness matrix can 
be obtained explicitly as long as the elastic part of the element 
stiffness matrix is given explicitly. Consequently, the com­
putational model presented here is very simple and efficient 
for the damage analysis of elastoplastic bending plates. 

The damage-related matrices in the elastoplastic-damage 
stiffness matrix are dependent on the damage effect matrix (or 
tensor). The damage model used for the application presented 
here is the scalar isotropic damage model which is the simplest 
and most widely used model for the one-dimensional and iso­
tropic phenomenological damage (vide, e.g., the review papers 
of Chaboche, 1988; Krajcinovic, 1989). In this model, the 
change of macromechanical properties of a material caused 
by microdefects is described by a simple scalar variable: a 
damage parameter. A new damage strain release rate proposed 
by the authors (Shi and Voyiadjis, 1992b), in which the influ­
ence of damage on the plastic deformations is taken into ac­
count, is used in this work. This damage strain release rate 
can be defined in the effective stress couple space. 

The four-noded quadrilateral (12 degree-of-freedom) C° 
strain element for plate bending developed by the authors (Shi 
and Voyiadjis, 1991) is employed here to evaluate the elastic 
stiffness matrix. This assumed strain plate element is based 
upon the shear deformable plate theory proposed by Voyiadjis 
and Shi (1991a) and the quasi-conforming element method 
presented by Tang et al. (1980). Unlike most C° plate elements 
where the element stiffness matrix is evaluated by numerical 
integration, the element stiffness matrix of the C° plate element 
used here is given explicitly. Consequently, the assumed strain 
C° plate element presented by the authors is very computa­
tionally efficient. Furthermore, this four-noded quadrilateral 
(12 degree-of-freedom) C° plate element possesses a linear 
bending strain field and is free of shearing locking and nu­
merical ill-condition. Therefore, this finite element is capable 
of giving reliable and accurate results for both thick and thin 
plate analysis. 

Several numerical examples of the ductile plastic damage 
analysis of plate bending are presented in this paper to dem­
onstrate the validity of the proposed computational model. 
The damage analysis results are compared with the elastoplastic 
analysis results. 

2 Ductile Plastic Damage in Plate Bending Problems 
The damage analysis presented here is based on the phe­

nomenological method. As mentioned earlier, so far there is 
not much information about the ductile plastic damage analysis 
of plate bending in the literature. As an earlier step towards 
the ductile damage analysis of plates, the following assump­
tions are adopted in the present study for simplicity: 

(1) The damage process in ductile plastic damage is induced 
by plastic deformations. 

(2) Tension and compression have the same influence on 
the damage development (Lemaitre, 1985). 

The first assumption is reasonable for ductile materials since 
the degradation of elastic modulus in elastic range is really 

Fig. 1(a) The variation of elastic modulus 

Rupture 

O.I 0.2 0.3 0.4 0.5 0.6 K 

Fig. 1(b) The damage curve for annealed 30CrMnSi (Li et al., 1990) 

Fig. 1 Ductile plastic damage in the extension of a bar 

negligible. The second assumption is similar to the plastic be­
havior of ductile materials. It has some limitations in appli­
cation. Nevertheless, when the degradation of mechanical 
properties of a ductile material is primarily induced by micro-
voids rather than by microcracks, this assumption will be quite 
feasible. 

In order to demonstrate the ductile plastic damage of plate 
bending more easily, the corresponding one-dimensional case 
will be examined first. 

2.1 Ductile Plastic Damage of Beams. Within the frame­
work of the phenomenological damage, the measure of damage 
can be characterized by the degradation of the elastic modulus 
of the material (Lemaitre, 1985; Voyiadjis, 1988), as shown 
in Fig. 1 (Li et al., 1990). If one lets E0 be the Young's modulus 
of the material in the undamaged state (virgin material), then 
the instantaneous Young's modulus E can be determined by 
the damage effect parameter d (0 < d < 1) as 

E={\-d)E0. (1) 

Since the stress induced by bending is nonuniformly distributed 
along the thickness direction z, the damage parameter d, in 
general, varies through the thickness of a beam , i .e.,d = d(z)-

Let te{z) be the elastic axial strain of the cross-section of a 
beam, a(z) be the corresponding axial stress. According to 
the assumption of the plane cross-section, ee(z) can be ex­
pressed in terms of the elastic rotation of cross-section </> as 

ee(z)=—z. 
dx 

(2) 

The corresponding stress then is given by the Hooke's law as 
follows: 

a(z)=Eee = (l-d)E0ee .(l-d)E0^z 
dx 

(3) 

where x is the coordinate in the axial direction of the beam. 
It should be noted that a(z) might be nonlinear across the 
thickness since d(z) can also be a function of z-

The elastic bending strain energy density of the beam, We, 
is of the form 

PA/2 , a , f V 2 x d(j> 

azdz = ~-^M (4) 
J _!,/-> I OX 

W„ = -
bdcj> 

eeadz = ~ 
-hn 2 ox 

with 

750 / Vol. 60, SEPTEMBER 1993 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



i
/j/2 *, , nh/2 

azdz = b~E0 [l-d(z)]z2dz (5) 
- A/2 "X J - A/2 

in which /; and b are, respectively, the thickness and width of 
the beam. If one lets 

a = E0ee = - .a 
\ - d c l-d' 

then the stress couple also takes the form 
»A/2 e/i/2 

M=b [\-d(z)]ozdz'=M-b 
-ha 

(6) 

d(z)azdz (la) 
-A /2 

with 
r.A/2 

M=ft azdz = bE0 —-
A/2 dx 

z2& = 
90 M^ 
to 12' 

(7ft) 

a in Eq. (6) is the so-called effective stress. The quantity M 
defined in Eq. (lb) can be considered as the effective stress 
couple. In the beam bending problem considered here, the 
product of a and z does not change its sign across the beam 
thickness -h/2 < z < h/2. Therefore, by using the weighted 
mean-value theorem for integrals, the last term in Eq. (la) 
can be expressed as 

pA/2 pA/2 

b d(z)ozdz = bd($) azdz = d(£)M 
J - A / 2 •> -A /2 

= d*M for some £ in [ - h/2, h/2]. (8) 

The parameter d* in the above equation is the mean value of 
damage parameter d(z) across the beam thickness. In the 
present study, d* is taken as the damage effect parameter of 
a cross-section of the beam. The determination of d* will be 
presented later. Substituting Eq. (8) into Eq. (7a) gives 

M=(\-d*)M. (9) 

The rate form of Eq. (9) can be written as 

M^(l-d*)M-d*M (10) 

where the symbol " ' " signifies the material rate. 
Similar to the strain energy release rate in fracture mechanics 

which is used for the fracture criterion, a damage strain energy 
release rate associated with a unit damage growth is defined 
in damage mechanics (Lemaitre, 1985). From thermody­
namics, there is an internal variable, named D here for a one-
dimensional problem, corresponding to the damage strain en­
ergy release rate - Y. By taking the free-energy ^ as the ther­
modynamic potential, the damage strain energy release rate 
- Y of a beam can be defined as 

3jF 

~8D' (11) 

In general, the free energy ^ is the function of elastic strains 
ee, equivalent plastic strain ep, internal variables d, and absolute 
temperature T, i.e., 

9 = -9l(eaep,d,T). (12) 

SF can also be expressed in terms of effective stresses a as 

* = *2(?,ep,A,T). (13a) 

For the one-dimensional problem considered here, the above 
equation takes the form 

* = *(M,KP,D,T) (136) 

where KP is the plastic curvature. In damage mechanics, the 
internal variables d are the damage effect parameters. It should 
be noted that both elastic and plastic strains in a damaged 
material are associated with the damage parameters d, even in 
the case where the elastic and plastic free energies can be 
decoupled. 

The damage evolution D can be determined by the normality 
property of the dissipation potential. By defining a suitable 
dissipation potential, Lemaitre (1985) proposed a damage ev­
olution model for ductile plastic damage as follows: 

j A So 

D=\ — \ ep (14) 

with 

- Y D > 0 

D = 0 when - Y< Yc 

(15) 

(16) 

D = DC ruptured (17) 

in which So and sQ are the material constants; Yc is the critical 
value of the damage strain energy release rate - Y; Dc is the 
critical value of the damage parameter D. Both Yc and Dc are 
material constants and can be determined from experiments. 
The damage parameter D then can be evaluated from D by 
integration. 

When the stresses rather than stress resultants are used, Eq. 
(11) takes the form 

Y=-
3J> 
3d' 

(18) 

Because of the analogy between Eqs. (6) and (9) as well as 
between Eqs. (18) and (11), it is feasible to assume d* = D. 
From now on, d* will be used to represent the damage pa­
rameter of a cross-section determined from the free energy in 
terms of stress couples. 

2.2 Ductile Plastic Damage of Plate Bending. In the plane 
stress problem of plate bending, the in-plane strains e and 
stresses a can be written in the matrix forms, respectively, as 

(19) 

*~xy J I ®xy J 

For a linear elastic, isotropic material, the stresses a and elastic 
strains ee in the undamaged state have the following relation: 

a=S0ee 

with 

S0 = 

1 

"o 

0 

"o 

1 

0 "o 

(20) 

in which y0
1S the Poisson's ratio of the undamaged material. 

After the material is subjected to damage, the corresponding 
damaged elasticity matrix S(d) can be written as (Krajcinovic, 
1989) 

S(d)=[I-D(d)]S0 (21) 

where I is the identity matrix and D(d) signifies the damage 
effect matrix (or tensor) which is symmetric and composed of 
damage parameters d. The expression of D(d) can be deter­
mined from suitable micromechanical models (Krajcinovic, 
1989). The evolution of the damage parameters d can be eval­
uated from the free energy as described earlier. 

The stress-strain relation in a damaged state takes the form 

a = S(d)ee = [I - D(d)]S0£e = [I - D(d)]a (22) 

with the introduction of the effective stresses a defined as 

<r = S0ee. (23) 

The increment of a can be expressed as 

A<r = [I - D(d)] AS - AD(d,Ad)S (24) 

in which AD is the increment of D and is composed of d and 
Ad. 
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Under the assumption of the plane cross-section, the elastic 
strains te across a cross-section.can be expressed as 

dx 

te=< 
ay 

d<t>xe , 3 0 

>• Z=K<Z (25) 

dy dx 

where 4>xe and 4>ye are the generalized elastic rotations of the 
cross-section at x = constant and y = constant, respectively, 
and Ke signifies the elastic curvatures of the plate. The incre­
mental form of Eq. (25) is as follows: 

dx 

Ae„= •< >- Z = AK^Z. (26) 
dA<t>ye 

~3y~~ 

dA4>xe dAcf>y 
^ dy dx j 

Consequently, the increment of the elastic bending strain en­
ergy density of a plate, A We, can be expressed as 

< MI . MI 

AWe = - AejAodz = - AKI 
2 J-ft/2 2 

Ad*=Ad(£) = AD,= f — F i 0 ) A " 

1 AK„ 
(32) 

where Anp is the increment of the equivalent plastic curvature. 
Let AKW, AKyP, and Anxyp be the increments of plastic curva­
tures, then AKP can be expressed as 

2 
~ I A v* 4- A i - ' -1~ A„ M" = 3' n (AKXP + AKyp + AicmA 

2 ,/A)m. (33) 

Following the concept used in the three-dimensional problem 
presented by Lee et al. (1985), the damage criterion of a plate 
can be written as 

Fd(V,l3) = ~(YT3Y)V2- [B0 + B(p)] = 0 (34) 

in which J is a symmetric matrix; B0 is the initial damage 
threshold; B(/3) is the damage threshold strengthening; and /3 
is a overall damage parameter. The determination of J can be 
found in Lee et al. (1985) and Chaw and Lu (1989). B0 and 
B(B) can be obtained from experiments (Chaw and Wang, 
1988). The increment of /3 can be expressed as (Lee et al., 1985) 

1/2 

A0 = ••2[-AD}3AD, (35) 

The following expression can be used as a rupture criterion 
(Lee et al., 1985) 

j3 = EA(3 = /3c (36) 

where /3C is the critical value of overall damage which is a 
material constant and can be obtained from experiments (Chaw 
and Wang, 1988). 

X [(I - D)A5 - ADo]zdz = ): AKZ 

X [ ( I - D * ) A M - A D * M ] = - A K J A M (27) 

in which the right superscript T signifies the matrix transpose 
and 

»A/2 
/73 

A M = ( Aazdz = ^S0AKe = Sb0AKe (28) 

Ml 

D*AM = D(d(^))AM= D(&{z))Aozdz> (29) 

some £ in [ - h/2, h/2] 

A D * M = AD*(Ad(£) ,d«))M=J AD(d(z),Ad(z))czdz. 
h/2 

(30) 

In Eqs. (29) and (30), the weighted mean-value theorem for 
integrals is utilized. The parameters d(£) and Ad(£) are the 
mean values of damage parameter d (z) and its increment Ad (z) 
along the plate thickness, respectively. d(£) and Ad(£) are de­
fined as, respectively, the damage effect parameter and its 
increment of a plate at the point of the plate under consid­
eration. Similar to the one-dimensional problem, Ad(£) and 
d(£) can also be evaluated by the internal variables D/ corre­
sponding to the damage strain energy release rates — Y. For 
plate bending problem, - Y takes the form — Y_= { Y\, Y2], 
and is given by the free energy of the plate "^(M, Hp, D / ; T) 
as 

' d D / 
(3D 

The increments of the damage effect parameters of a cross-
section, Ad(£), are given by 

3 A Damage Node Model for Ductile Plastic Damage 
of Plate Bending 

A new plastic node model for the finite element plastic anal­
ysis of plates and shells was presented in the authors' previous 
paper (Shi and Voyiadjis, 1992a). In this plastic node model, 
the yield function, in terms of stress couples and stress re­
sultants, is checked only at the element nodes. When the stress 
couples and stress resultants at a node satisfy the yield function, 
the node of the element is considered to become a plastic node. 
The plastic deformations are developed only at these plastic 
nodes, and the interior of the element is always elastic. The 
concept of plastic nodes is extended to damage analysis in the 
present work. That is, the damage criterion is only checked at 
the element nodes and it is assumed that the damage only 
undergoes at the damaged nodes. 

Because of the nonlinear nature of the plastic analysis, the 
incremental scheme is used in the evaluation of the elastoplastic 
stiffness matrix. It is assumed in this work that the incremental 
bending strains of a plate, i.e., incremental curvature AK, can 
be decomposed into two parts: elastic parts Ane and plastic 
parts AK^, i.e., 

AK = AK,, + AKP. (37) 

Similarly, the incremental nodal displacement vector of an 
element Aq takes the form 

Aq = Aq(>+AqfJ. (38) 

In the finite element modeling of plate bending using the gen­
eralized displacement method, AKE in an element can be ex­
pressed in terms of the strain-displacement matrix B and the 
nodal elastic displacement vector of the element Aqe as 

A/ce(x,j)=B(x,j)Aqe = BAqe. (39) 

If one lets Sb be the flexural rigidity matrix, the element stress 
couples AM are then given by 
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AMX 

AM (x,y) = j AMy } = SbAKe (x,y) = SABAqff. (40) 
^AMX} 

Consequently, the elastic stiffness matrix of an element, Ke, 
can be written as 

(41) 

5AqrAf= 

Kc= B'SbBdxdy 

where fi denotes the element domain. 
The plastic curvatures can be obtained from the yield func­

tion and the associated flow rule. If one lets F,-(M,-) be the yield 
function, and c?A,- be the plastic proportionality parameter at 
node /, then by recalling that the plastic deformations are only 
developed at the plastic nodes, the increment of the plastic 
curvature KXP in an element is given by 

&Kxp(x,y) = ^ S(x-xhy-yi)d\ 
dMri 

(42) 

in which NPN denotes the number of plastic nodes in the 
element under consideration. 

By using the variational principle to determine d\, in terms 
of elastic nodal displacement vector Aq (Shi and Voyiadjis, 
1992a), then the elastoplastic stiffness matrix of a finite ele­
ment, Kep, takes the form 

Ke„ = Kf [I - a(a TKea + H)" 'a TKe] (43) 

where a is the plastic nodal displacement matrix which is as­
sociated with the yield function in terms of the stress couples, 
and H is a matrix related to the plastic stiffness of the given 
material (Shi and Voyiadjis, 1992a). 

It is worthwhile to mention that Kep presented here can be 
evaluated explicitly, i.e., without numerical integration, when 
the elastic stiffness matrix Ke can be given explicitly. This 
feature makes the present plastic node model very computa­
tionally efficient and attractive. 

When a material is subjected to a damage process, the me­
chanical properties of the material are degraded. Conse­
quently, the yield stress of the damaged material decreases as 
the damage increases. However, when the stresses a are re­
placed by the effective stresses ~o which are associated with the 
virgin material, the yield function of the virgin material can 
be used for the damaged material. For example, in the plastic 
damage analysis of plates, the yield function takes the form 

F(M,ayd(D),k)=F(M,oyo,ko)=0 (44) 

where M is the stress couple vector of the plate; ayd(D) is the 
yield stress of the damaged material which is the function of 
the damage tensor D; M is the effective stress couple; ayo is 
the yield stress of the virgin material; and k and k0 are the 
strain hardening parameters of the damaged and virgin ma­
terials, respectively. 

From the associated flow rule, the incremental plastic cur­
vatures at node / are given by 

dF,- „ 3M, dFt 

' dM,- dM,- dM,-
„ * i dF, (I-D'> m ^ (45) 

(no summation on /) 

in which Eqs. (22) and (27) are used. It should be noted that 
there is no summation on the repeated indices in this work. 

For an element in the damaged state, corresponding to a 
virtual nodal displacement vector 5Aq = 5Aqe + 8Aqp and a 
virtual bending strain field 8AK = 5AK<, + 8AKP, the principle 
of virtual work for the element gives 

8AnTAMdxdy 

= (8AKl+8AKp~)[(l-D*)AM-AD*M]dxdy 

= [5AKJAM + 5 A K J ( I - D * ) A M - 5 A K J D * A M 

-8AKT
eAH*M-8AKT

pAY>*M\dxdy (46) 

where Af represents the increment of the internal nodal force 
vector of the element. In Eq. (46), D*(x, y) and AD*(x, y) 
are yet undefined fields. 

Similar to the concept of the plastic nodes, a damage node 
model is proposed here to construct D*(x, y) and AD*(x, y). 
In this damage node model, the damage is assumed to be 
developed at the element nodes only, and the interior of the 
element is always in the undamaged state. Consequently, the 
damage matrix or tensor in an element D* and AD* can be 
expressed as 

NDN 
D * < * ^ = S Hx-Xj,y-yj)Dj (47) 

; = i 

NDN 

AD*(x,y) = J] 8(x-Xj,y-yj)AD* (48) 
y'=i 

where D/ and AD/ are the damage matrix and its increment 
at node j of the element under consideration; and NDN rep­
resents the number of damage nodes of the element. Substi­
tuting Eqs. (41), (45), (47) and (48) into Eq. (46) leads to 

SAq rAf = 5Aq jKeAqe + 8d\THd\ 

5AKIJD AMJ + SAKejADj My 

+ 8dXj%t-Q~^rTA^Mj (49) 

In the above derivation, the consistency condition of yield 
function 

dF! dF, 
^•dMi=-—^dk0l = Hid\i dM, dk0i 

is also utilized. It follows from Eqs. (39) and (40) that the 
elastic bending strains and stress couples at node j of the 
element can be written as 

Anej = AKe(Xj,yj) =B(Xj,yj)Aqe = BnjAqe (50) 

AM,- = SMAKe (Xj,yj) = SftoB -̂Aq,. (51) 

After some mathematical manipulations, one can obtain 
NDN 

2 5A4D*AM ; = 5AqfB,yD*Sfe£„Aq(> (52) 
y'=i 

in which B„ is the matrix consisting of Bnj (j = 1, 2, NDN), 
D* is the damage matrix of the element, and Sbe is the enlarged 
diagonal matrix of SA0. D* takes the form 

D, 
o, 
0 
0 

0 

0 

0 
0 
* 

™NDN 

(53) 

In the ductile plastic damage, the increment of the damage 
tensor AD/ at node/' is the function of the damage parameters 
Ad/ at the node, and Ad/ depends on the increment of the 
equivalent plastic curvature AKPJ shown in Eq. (32). By using 
Eqs. (33) and (45), AD/(Ad/) can be transformed into 

Journal of Applied Mechanics SEPTEMBER 1993, Vol. 60 / 753 

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



AD; (Ad; ) = D,(A%) = D2(d\j). (54) 

Therefore, in the case when AD/ is a linear function of Ad/, 
after a simple rearrangement the last two terms in Eq. (49) 
can be written as 

NDN NDN 

^ SAKIJAD*MJ= J] 8AKJjD2(d\j)Mj = SAqjBjl(DM)dX 
, /= i y'=i 

(55) 
NDN D"B T 
x—i OJ^ I * T * 

E ^ g ^ C I - D y r ' A D / M ; 
y = i y 

= 5c/X7"(DF)7'(ID)(DM)rfX (56) 

with 

d\T=[d\ud\j,d\NDN). (57) 

By substituting Eqs. (52), (55), and (56), Eq. (49) becomes 

<5Aq rAf = 5AqjKeAqe + 8dXTHdX - 5Aq JB jD*SteB„Aqe 

- 5AqjBl(OM)d\ - 8dXT(DF) r(ID)(DM)tf X 

= &Aql[(Ke-B];D*SbeB„)Aqe-Bl(I)M)d\] 

+ 5tfXr[Hfi?X-(DF)7(ID)(DM)tfX]. (58) 

By recalling Eqs. (38), Eq. (58) can be rewritten as 

<5Aq r[K*(Aq - adX) - B„r(DM)tfX - Af ] 

+ 8dXT[HdX - (DF) r(ID)(DM)rfX - a rK*(Aq - adX) 

+ aTBt(DM)dX] = 0 (59) 

where a is the modified plastic nodal displacement matrix be­
cause of the damage and K* is the modified elastic stiffness 
matrix. Matrix a gives the plastic nodal displacement vector 
as (Shi and Voyiadjis, 1992a) 

Aqp = adX (60) 

K* is of the form 

K* =Ke-B^Sbe^n- (61) 

Since 5Aq and 8dX are independent of each other and arbitrary, 
Eq. (59) then gives the following two equations: 

K*(Aq-a<iX)-B^(DM)tfX = Af (62) 

AdX-aTK*eAq = 0 (63) 

where A is the nonsingular square matrix and of the form 

A = H + a rK*a + a^B^DM) - (DF)r(ID)(DM). (64) 

Equation (63) gives 

rfX = A_1a7'K*Aq. (65) 

Substituting Eq. (65) into Eq. (62), one finally obtains 

K(J]W/Aq = Af (66) 

in which Kepd is the elastoplastic-damage stiffness matrix of 
an element and takes the form 

K£,/,d = K*(I-a rA^1a7*K*)-Bj(DM)A^1a rK/. (67) 

It should be noted that Kepd is, in general, unsymmetric in the 
presence of damage. It can be seen that Kepd reduces to Kep 

when the damage tensor is null which results in D* = 0, (DM) 
= 0 and (ID) = I. Similar to Kep, Kepd can also be evaluated 
explicitly as long as the elastic stiffness matrix K„ is given 
explicitly. A four-noded strain element with the explicit stiff­
ness matrix for the elastic plate bending analysis can be found 
in the paper of Shi and Voyiadjis (1991). 

4 Application 

4.1 Scalar Isotropic Damage Model for Bending 
Plates. Based on Kachanov's pioneering work (1958), the 
scalar isotropic damage model has been widely used by many 
researchers (e.g., Chaboche, 1988; Krajcinovic, 1989; Le­

maitre, 1985). In the scalar isotropic damage model, it is as­
sumed that the degradation of macromechanical properties 
induced by microstructural changes of a material can be rep­
resented by a scalar parameter. For the plate bending problem 
considered here, the damage will be quite isotropic if the prin­
cipal stress couples at any point of the plate are quite close in 
magnitude. Under such a model, if one lets Sb0 be the elastic 
flexural rigidity matrix in the undamaged state, then the flex-
ural rigidity matrix Sb in a damage state can be expressed as 

Sb = (l-d*)Sb0 (68a) 

or 

Sb = (l-d*I)Sb0 (68ft) 

where d* is the scalar damage parameter of the plate. This 
scalar isotropic damage model is very attractive because of its 
simplicity. However, this damage model implies that the dam­
age process has no influence on the Poisson's ratio. It was 
shown that even for an isotropic material, the Poisson's ratio 
changes as the microstructures of the material change (Sumarac 
and Krajcinovic, 1989; among others). Consequently, the sca­
lar isotropic damage model is too restrictive. Nevertheless, it 
is feasible to employ this simple damage model here to dem­
onstrate the validity of the computational model presented in 
this work. 

Within the framework of scalar_ isotropic damage model, 
the effective stress couple vector M takes the form 

M = M/(l-c?*). (69) 

By recalling Eq. (68), the damage effect matrix at node j of 
an element D/ defined in Eq. (29) can be expressed as 

D*(d*)=d*l (70) 

where d* is the damage parameter across the plate thickness 
at node j . 

The damage strain energy release rate of a system is derived 
from the free energy of the system. The assumption that the 
elastic and plastic parts in the free energy are uncoupled is 
widely used (Lemaitre, 1985; Lehmann, 1991). This assump­
tion is also adopted here even though it is not necessary. How­
ever, it should be noted that in a damage state, both elastic 
and plastic parts in the free energy are associated with the 
damage parameter. Consequently, Eq. (12) can be rewritten 
as 

* = <te(ee,d,T) + *p(Ip(d),T) (71) 

where ep(d) represents that the equivalent plastic strain ep also 
depends on the damage parameter d. Under isothermal con­
ditions, the scalar isotropic damage gives the free energy in 
tensor form as (Lemaitre, 1985) 

Ve = \(l-d)ee:S0:ee (72) 

in which te is the elastic strain tensor; S0 is the elasticity tensor 
in the undamaged state; and symbol " : " signifies the tensor 
contraction. 

Substituting <pe from Eq. (72) into Eq. (71) leads to 

* = ^(l-d)ee:S0:ee + *p(Ip(d),T). (73) 

The free energy defined here is different from the one presented 
by Lemaitre (1985) in which d^p/dd = 0, although the elastic 
part is identical. By accounting for the influence of damage 
on the plastic deformations, a new damage strain energy release 
rate proposed by Shi and Voyiadjis (1992b) is as follows: 

'Y=~Td='{-3d+^)={l-d)tA^ (74> 
For the plate bending problem considered here, the elastic 

bending strains Ke can be expressed in a matrix form as 
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In Eqs. (83) to (84), Ke is the elastic part of the element stiffness 
matrix; B„ can be constructed by Bb (see Eqs. (87) and (94)); 
matrices H, a, and DF, associated with plastic deformations, 
were presented in Section 3. 

The finite element considered here is the four-noded quad­
rilateral plate element shown in Fig. 2. The assumed strain C° 
element for the thick/thin plate analysis developed by the au­
thors (Shi and Voyiadjis, 1991) is employed in this work for 
the elastic stiffness matrix. The element stiffness matrix of this 
element is of the form 

Fig. 2 A typical four-noded quadrilateral plate element 
Ke= ( Bl(x,y)SbBb(x,y)dxdy + \ Ejl.B.dxdy (86) 

Ke = Sb
lM = S i 0 'M/(l - d*) = Sft0'M (75) 

where Eqs. (68) and (69) are utilized. Therefore, the damage 
strain energy release rate - Y of a bending plate canjbe ex­
pressed in terms of the effective stress couple vector M as 

- Y=(l-d*)MTSbo
TSboSbo

lM = (l-d*)MTSbjM. (76) 

By substituting Eq. (76) into the damage evolution law given 
in Eq. (32), one obtains 

Ad* = AD,= [(1 - d* )MTS;o
lM/S0Y°AHp. (77) 

If one lets kdJ be the damage parameter of node j at config­
uration k, then the damage parameter at configuration k + 1 
can be written as 

ld} = *dJ+M}. (78) 

Making use of Eqs. (33) and (45) and recalling Eq. (70), the 
increment of equivalent plastic curvature at node j from con­
figurations k to k + 1, ARpj, takes the form 

AH 
1 

with 

dFml--

ij- k*urmjui\j yuu nui 

\dMXJJ \dMyj) 

+
 d3 3 + 
dMXj dMyj 

(* VA1 

(79) 

(80) 

Therefore, the increment of damage parameter at node j of a 
plate from configurations k to k + 1 can be written as 

Ad*=Ajd\j (81) 

with 

A/=[(l-*flT, )*M/Stol*Mj/S0Y° —J-T dF, 
1 dj 

(82) 

Equation (81) indicates that the increment of damage param­
eter at a nodal point is a function of the plastic proportionality 
parameter of the same node. 

4.2 Elastoplastic-damage Stiffness Matrix of Element 
Based on the Scalar Isotropic Damage Model. The incre­
mental form of Eq. (67) at configuration k, which gives the 
elastoplastic-damage tangent stiffness matrix at configuration 
k, can be expressed as follows: 

kKepd=K*e(I - I r (*A- ')alC) - B ^ D M ^ A - ' l a ^ * (83) 

where the left superscript k denotes configuration k, and K* 
and *A are of the form 

KP =K„ -B„ (De)S6eB„ (84) 

in which fl signifies the element domain; Sb and Ts are the 
customary flexural and transverse shear rigidity matrices, re­
spectively; B;, and Bs are the bending and transverse shearing 
strain-displacement matrices, respectively. The quasi-con­
forming element method gives Bb and B^ as 

Rb(x,y)=Pb(x,y)Ab
]Cb 

B.S = C,/A 

(87) 

(88) 

where Vb (x,y) is the interpolation function matrix for element 
bending strains; Ab, Cb, and Cs are matrices independent of x 
and y; and A represents the area of the element. Pb, Ab, Cb, 
and Cs for the element shown in Fig. 2 can be found in the 
authors' previous paper (Shi and Voyiadjis, 1991). Substituting 
Eqs. (87) and (88) into Eq. (86) gives 

Ke = C[A6-' Pl(x,y)SbPb(x,y)dxdyAb
[Cb + C^sCs/A. 

(89) 

It is worthwhile to mention that the element stiffness matrix 
presented here can be evaluated explicitly since the integrands 
appearing in Eq. (89) are only simple polynomials. 

In order to illustrate the validity of the proposed compu­
tational model by solving some numerical examples, the de­
rivation of D*, DM and ID will be presented for the scalar 
isotropic damage model in this section. 

By substituting Eq. (70) into Eq. (53), the damage effect 
matrix of an element at configuration k can be expressed as 

*D; 

(V)i 
0 

0 

0 

( ^ ) i 
0 

0 

0 

( dNDN)\ 

(90) 

in which NDN represents the number of damaged nodes in the 
element under consideration. 

The incremental form of Eq. (70) takes the form 

AD/ (d*)= Ad*l = AjdXjI (91) 

By comparing the above equation with Eq. (54), one can obtain 

D2(d\j)=Ajld\j. (92) 

According to the definition given in Eq. (55) 
NDN 

6Aq[B^(DM)rfX=2 5A4D 2 (d \ ; )M; (93) 

together with 
j=i 

B„ 
BmUiJ' i) 
*nj(Xj,yj) 

RnNDN ( XNDN^NDN) 

(94) 

A = H + arKea + a 'Br(DM)-(DF)" c(ID)( ' rDM). (85) m a t r ix DM at configuration k can be written as 
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*DM = 
M*i 

0 

0 

kMyX 

0 

0 

kMx 

0 

0 

xy\ 

"Mx, M • 

0 

M 

0 MXNDN M„NDN My 

0 0 

0 0 

yNDN MxyNDN 

Ai 0 0 
0 Ay 0 
0 0 ANDN 

• (95) 

By recalling Eq. (56) 

5rfX7'(DF)7'(ID)(DM)rfX = 
^ dff 
S^^CI-D,)-y = i 

rAD,-M;, 

(96) 

matrix ID at configuration £ takes the form 

" 1/(1-*d*) 0 0 
fID = 0 1/(1-*£(*) 0 . (97) 

0 0 1/(1-%DN)_ 

D*, DM, and ID are the only matrices associated with damage. 
Having obtained these matrices related to damage, the elas­
toplastic-damage stiffness matrix of an element given by Eq. 
(83) can be evaluated easily. It is worthwhile to emphasize it 
again that the elastoplastic-damage stiffness matrix presented 
here is given explicitly. 

4.3 Numerical Examples. Three numerical examples of 
the damage analysis of elastoplastic plates are presented in this 
section. The computer program NAPSASE (Nonlinear Anal­
ysis of Plates and Shells by Assumed Strain Elements) devel­
oped by the authors (Voyiadjis and Shi, 1991b) is used here. 
The updated Lagrangian formulation is adopted in NAPSASE. 
The yield function in terms of the stress couples is employed 
here. The notations of the yield function used in this section 
are of the form 

— 1M1 
F(M) = — - - 1 = 0 

M0 

F(M,k) = 
\M\ Y„(k) 

Mn 

F(M,a) = 
\M\ 

F(M,a,k)-

aM0 

\M\ 

aM0 

ol 

1=0 

Y„(k) 

with 

\M\- {M2
xi + M2

yi •MxiMyi+3Miyi) 

M0 = <To/r/4 

(98) 

(99) 

(100) 

(101) 

(102) 

(103) 

where aa is the uniaxial yield stress of the virgin material; h is 
the thickness of the plate; a (2/3 < a < 1) is the plastic 
curvature parameter used to take into account the progressive 
development of plastic deformations across the plate thickness 
in plate bending problems (Crisfield, 1981); and k represents 
the strain hardening of a material. A linear hardening with 
plastic stiffness H' = E/9 is used in all the examples presented 
here. The material constants appearing in the damage evalu­
ation of Eq. (80) and the rupture criterion of Eq. (17) are taken 
as 

.s0 =1.0, S0=YC, £>c = 0.2 (104) 

in which Yc is the critical value of the strain energy release 
rate. Different values of Yc are used in each example. 

Since not much information about the ductile plastic damage 
analysis of bending plates is available for comparison, the 
numerical study of the damage analysis presented here is less 
ambitious. 

Example 1. Clamped Circular Plate Under a Uniform 
Load. A clamped circular plate subjected to a uniformly 
distributed load is considered in this example. Because of the 
symmetry, only one-quarter of the plate is analyzed here and 
the finite element layout is depicted in Fig. 3. The critical value 
of strain energy release rate used in this example is Yc = 1a\h/ 
4E. The curves of central deflections versus the load for both 
elastoplastic and elastoplastic-damage analysis are illustrated 
in Fig. 4. In this example, the edge of the plate becomes a 
plastic hinge line first. The collapse load given by the plastic 
analysis with F = F(M) is very close to the lower bound 
obtained by Hopkins and Wang (1954). When the yield func­
tion F = F(M) is used, the result of the elastoplastic-damage 
analysis is almost identical to that of the elastoplastic analysis. 
Corresponding to yield function F = F(M, k), the difference 
between the load-deflection curves with and without damage 
is not considerable either. Nevertheless, when the damage ef­
fect is taken into account, the load-carrying capacity of the 
plate is lower than that of the plate without damage, since the 
damage parameter can cause the plate to become unstable even 
though the damage parameter is much lower than the critical 
value. In the present example, the plate becomes unstable when 
the damage parameter at the central point of the plate is of 
the value d* = 0.0315. 

Example 2. Circular Plate Subjected to a Central 
Load. The clamped circular plate considered in the previous 
example is studied here again, but in this case, the plate is 
subjected to a central load. The elastoplastic analysis of this 

Fig. 3 Element mesh of a quarter of circular plate 
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Fig. 4 Central deflections of clamped circular plate under a uniform 
load 
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structure was solved in the authors previous paper (Shi and 
Voyiadjis, 1992a) for various yield conditions. The progressive 
development of the plastic curvatures across the plate thickness 
is taken into account here. The critical strain energy release 
rate in this example is taken as Yc = 3<JO/J(1 _ v)/AE where v 
is the Poisson ratio. The element mesh shown in Fig. 3 is 
employed here again. The load-deflection curves at the plate 
center are depicted in Fig. 5. The plastic deformation pattern 
in this example is that the center of the plate becomes a plastic 
node first. As shown in Fig. 5, the damage process causes the 
plate to become softer. Furthermore, if no strain hardening is 
considered, the damaged plate becomes unstable when the 
damage parameter at the plate center is of the value d = 
0.057. If the strain hardening is considered, the plate is rup­
tured when the damage parameter at the central point reaches 
the given critical value Dc = 0.2. 

Example 3. Clamped Square Plate Subjected to a Central 
Load. This example concerns a clamped square plate with 
an aspect ratio of L/h = 20 where L is the length and h is the 
thickness. In order to have considerable damage effect, the 
centrally concentrated load is considered here. Making use of 
the symmetry, only a quarter of the plate is studied, and a 
4 x 4 mesh is used for the finite element descritization. As 
illustrated in Fig. 6, eight triangular elements are used along 
the diagonal connecting the center and the corner, and twelve 
rectangular elements are employed elsewhere. There is no an­
alytical solution for the critical load of the clamped square 
plate considered here. For such a plate made of elastic per­
fectly plastic material, one of the upper bounds of the critical 
load obtained from the limit analysis is Pc = 4irM0 (Johnson 
and Mellor, 1973). The present critical load given by yield 
functionF = F(M, a) is about Pc = 10M0. Two_yield functions 
are_used for the damage analysis, i.e., F = F(M, a) and F = 
F(M, a, k). The damage load-deflection curves depicted in 
Fig. 6 indicate that in both cases, the damage processes reduce 
the plate stiffness considerably, which is similar to the results 
presented in the previous example. Corresponding to F = 
F(M, a), the solution becomes divergent when the damage 
parameter ofthe plate at the center is of the value d* = 0.0482. 
For F = .F(M, a, k), the solution becomes unstable when d* 
= 0.0861. In both cases, the solutions fluctuate somewhat 
when the damage parameters are close to the values corre­
sponding to the points where divergence occurs. 

Fig. 6 Central deflections of clamped square plate subjected to a cen­
tral load 

5 Summary and Conclusions 
A computational model for the finite element damage anal­

ysis of elastoplastic bending plates is presented in this paper. 
This computational model can account for the degradation of 
the mechanical properties resulting from microvoids induced 
by plastic deformations in ductile plates. When the elastic part 
of the element stiffness matrix is given explicitly, the elasto­
plastic-damage stiffness matrix resulting from the proposed 
computational model can also be evaluated explicitly. The 
explicit form of the tangent stiffness matrix presented here 
makes the resulting element very attractive in computation. 

The proposed model is based on: 

(1) the ductile plastic damage model presented by Lemaitre 
(1985); 
(2) effective stress couples introduced in this work; 
(3) damage effect parameters of a cross-section of bending 
plates defined here which can also be extended to account for 
partial damage of the cross-section; and 
(4) the damage node model proposed here. 

The introduction of effective stress couples for bending anal­
ysis is the natural extension of the effective stresses. The pur­
pose of the use of the effective stress couples is to construct 
the yield function in the effective stress space which is asso­
ciated with the virgin materials. The mean values of the damage 
parameters across the plate thickness are taken as the damage 
effect parameters of a cross-section, and these parameters are 
the conjugate variables of the damage bending strain energy 
release rates in the irreversible thermodynamics. The damage 
node model is employed to discretize the damage effect mat­
rices in the element domain. The use ofthe damage node model 
makes it possible that the elastoplastic-damage stiffness matrix 
can be evaluated easily. 

The assumption that compression and extension have the 
same influence on the initiation and growth of microvoids in 
a ductile material is used in the present computational model. 
Even though this assumption has certain limitations, it is quite 
feasible in ductile plates when the macrodefects induced by 
plastic deformations are dominated by microvoids rather than 
by microcracks. 
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The application of the proposed computational model is also 
given in this work. Because the purpose of this paper is merely 
to demonstrate the validity of the proposed model by solving 
some numerical examples, the widely used scalar isotropic 
damage model is adopted here. The four-noded quadrilateral 
C° strain element for plate bending presented by the authors 
is employed to evaluate the element stiffness matrix. Since the 
element stiffness matrix is given explicitly in this four-node C° 
strain plate element, the elastoplastic-damage stiffness matrix 
presented here can also be evaluated explicitly. Compared with 
the elastoplastic analysis, only a little additional computational 
effort is needed in the corresponding damage analysis. 

Three examples are solved here to demonstrate the proposed 
computational model. The numerical results show that the 
influence of damage on the deformation and load-carrying 
capacity of flexural plates depends on the boundary condition, 
loading condition, and material properties. Generally speak­
ing, the damage induced by the plastic deformations has con­
siderable influence on the plates subjected to concentrated load 
and those made of hardening materials. 

It should be pointed out that the ductile plastic damage 
affects the dynamic response of bending plates more signifi­
cantly than it does on the static response. This is because the 
damage process considerably influences the energy dissipation 
induced by the plastic hysteresis loop and the energy dissipation 
is a very important source of damping in the plastic dynamic 
analysis. The present computational model can be extended to 
the dynamic damage analysis of ductile plates undergoing plas­
tic deformations. 
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A Doubly Periodic Rectangular 
Array of Fiber-Matrix Interfacial 
Cracks Under Longitudinal 
Shearing 
The antiplane strain problem of a unidirectional fiber composite consisting of a 
doubly periodic rectangular array of fibers containing interfacial cracks in an infinite 
matrix is considered. The interfacial cracks are assumed to exhibit the same peri­
odicity as the fibers. The periodicity of the geometry allows the use of a unit cell 
in the formulation of the problem. The governing weakly singular integral equation 
of the mixed boundary value problem permits an explicit solution which contains 
a set of unknown constants. The unknown constants are then determined by sat­
isfying the boundary conditions on the external surfaces of the unit cell through the 
method of least squares. The stress intensity factor is calculated for various crack 
lengths, fiber volume fractions, and fiber spacings. Unlike the plane strain or plane 
stress deformation, the oscillations in stress and displacement around the interface 
crack tip are absent in the current antiplane strain problem. 

Introduction 
In this paper we consider longitudinal shearing of a unidi­

rectional fiber composite consisting of a doubly periodic rec­
tangular array of fibers with interfacial cracks in an infinite 
matrix. The interfacial cracks are assumed to exhibit the same 
periodicity as the fibers. A unit cell consisting of a circular 
fiber and a surrounding rectangular region of matrix material 
is employed in the formulation of the problem. The resulting 
mixed boundary value problem leads to a Fredholm integral 
equation of the first kind with a logarithmically singular kernel, 
which can be reduced to the airfoil integral equation that per­
mits an explicit solution. The solution contains a set of un­
known constants which are determined by satisfying the 
boundary conditions on the external surfaces of the unit cell 
through the method of least squares. 

Although studies of periodic arrays of cracks in homoge­
neous materials have been carried out by many authors, for 
example, Delameter, Herrmann, and Barnett (1975), and Nied 
(1975), few solutions exist for periodic arrays of interface 
cracks. Comninou (1979) has given a solution for a periodic 
array of cracks at the interface between two half-planes. 
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The problem of a rectangular array fiber composite with 
perfect interface subjected to longitudinal shear has been solved 
by Adams and Doner (1967) and Chen (1970). The analysis of 
interface crack problems related to fiber composite materials 
based on the treatment of a single fiber in an infinite matrix 
has been given by a number of authors (Erdogan and Ozbek, 
1969; Smith, 1969; Toya, 1974). 

Formulation of the Problem 
Consider a doubly periodic rectangular array of fiber-matrix 

interfacial cracks subjected to a remote longitudinal shear stress 
T0 as illustrated in Fig. 1. The fibers are of radius a, and the 
fiber spacings in the x and /-directions are 2b \ and 2b2 re­
spectively. Both the fibers and the matrix are taken to be 
homogeneous, isotropic, and linearly elastic, with shear moduli 
of Gf and G,„, respectively. It is assumed that the cracks are 
located symmetrically at the top and the bottom of the fibers 
as shown in Fig. 1. The assumption is made on the physical 
grounds that for a rectangular array of fibers with perfect 
interface under longitudinal shear, the magnitude of the in­
terfacial shear traction attains its maximum at both the top 
and the bottom of each fiber (Adams and Doner, 1967), sug­
gesting that cracks, if they do develop, are more likely to occur 
at these locations. 

The periodicity of the problem allows us to confine the 
analysis to a unit cell as shown in Fig. 1. The problem is that 
of the antiplane strain deformation. The extent of the cracked 
interface is defined by a<d<ir-a and a + ir<0<27r-tv, with 
the half crack length given by c = uca, where ac = ir/2-a. 

The symmetries of the problem imply that the analysis can 
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be limited to the first quadrant defined by 0 < x < &!, 0<j>< Z?2-
Due to the symmetry and periodicity, the boundary conditions 
on the sides of the first quadrant of the unit cell are 

7^ = 0, x = 0 ,0 <j><&2 (1) 

Txz = 0,x=bu0<y<b2 (2) 

w = 0,y = 0,0<x<bl (3) 

w=w0,y = b2,0<x<bl. (4) 

In (4), w0 is an unknown constant. In addition, we have the 
following equilibrium condition: 

pfci 

Tez{r,Q)dr=bxro. (5) 
Jo 

The stress component TXZ can be expressed in terms of rn and 
rezas 

Txz = Trzcos6-T6zsm6. (6) 

For the boundary conditions at the interface, we have 

T/
n = iZ,r = a, 0 < 9 < a (7) 

7^ = 7^ = 0, r = a, a<6»<ir/2 (8) 

wf=wm, r = a, O < 0 < a (9) 
where the superscripts/and m refer to the fiber and the matrix, 
respectively. 

The longitudinal displacement w(r, 6) can be represented 
by the following series: 

v/=a ^ 
< 

sinne,0<r<a,0<e<ir/2 (10) 

*"-£ s AA-) +B, 
a, 

sin nd, 

r>a, 0<x<bu0<y<b2. (11) 

And the stress components can be expressed as 

Tf
rz = Gj 2 nA„\-\ sin nd, 

4z = Gf Y) nAn[-

0<r<a, O < 0 < T T / 2 (12) 
I 
cos nd, 0<r<a, 0<d<ir/2 

(13) 

1 = 1 . 3 , . 

TBz = 

A,, -Bh sin nd, 

<f'Mi"' 
r>a, 0<x<bu 0<y<b2 (14) 

cos nd, 

r>a, 0<x<bu 0<y<b2. (15) 

Notice that the Cartesian coordinates (x, y) are related to the 
polar coordinates (r, d) by x = r cos d, y = r sin 8. 

For the shear traction to be continuous across the interface 
one has 

B„=An-GfA„,n=l,3,... (16) 

The boundary conditions (1) and (3) are identically satisfied. 
The remaining boundary conditions (9), (8), (2), and (4) lead 
to the following series equations (17), (18), (19), and (20), 
respectively. 

00 

G,„ 2 A„ sin nd 
n = l , 3 , . . . 

2 

Fig. 1 A doubly periodic rectangular array of fiber-matrix interfacial 
cracks under longitudinal shearing 

2 nA„ sin nd = 0, a<0<7r /2 (18) 

Gf S " 
»=1,3, . . . 

. " + 1 

a \ — A„ cos" + [6 sin (n+l)d+ J] nA„ 

*i \"~ ! s in( / i - l ) f l / « x " + 1 

cos"" '0 \bi 

n+ 1 
# \ — 

cos"+l0sin (n+l)d = 0, 

O<0<0O (19) 

»=iX. . . V2-
n - l 

G / E ( r ^„sin"0sinfl0 + 2 ^» 
»=1,3, . . . 

b2\" ' sin nd / a ' 
~ ) • „n + \-r} sin"0 sin 
a I sm"d \b2I 

» + i 

: G„,7o, 

do<d<ic/2 (20) 

where X = G//G„„ 0O = tan~i(b2/bl), and Y„ = w0/b2, the average 
shear strain. The equilibrium condition (5) can be written as 

fi=l,3, . . 6iy 

E 
" = 1 , 3 , 

, \ « - l / \ / j + l 

b\\ (a A„ = T0. 

(21) 

Solution of the Series Equations 
Let H(d) denote the shear traction along the uncracked por­

tion of the interface. From (8) and (12) we have 
oo r 

Gf > , nAn sm nd= { (22) 
„ = f X . . {0, a<d<Tr/2. K ' 

The Fourier coefficients A„ are then given by 

A„ = - H(4>) sin n<j>d4> 

X+l 
2 Ansmnd = 0, O < 0 < a (17) 

irGfn j 0 

« = 1 , 3 , . . . (23) 

Substituting (23) into (17), (18), (19), (20), and (21), and chang­
ing the order of integration and summation, we arrive at the 
following coupled integral-series equations: 
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H(<t>)Ki(6,4>)d<t> = --?-— 
0 Z ( A + 1 ) 

2 A„ sin «0, O < 0 < a 
«=1,3, . . . 

(24) 

H(<j>)K2{6,4>)d4> + j f ] nA„ 
n=l.i. . . 

, \ ft- 1 . , - ^ . ^ / \ fl + 1 

Z?i \ sm(«- l )0 a cos"+10sin(«+l)0 

#(0)*3(fl,*)d*-J E »̂ 
H = l , 3 , . . . 

fr2\"~ sin«0 (a\"+ . „ , 
I —"ST+ I " sm"0sm«0 o / sin 0 \ 6 2 / 

H{<t>)KA{<t>)d<t> 

where 

"A 2LJ 

/ r , ( f l ,«)=-iog 

I 

O<0<0O (25) 

+ 4 Gm7o = 0, 

0 O < 0 < - (26) 

A„ = -r0 (27) 

tan log tan- (28) 

K2(d,<t>)=-pi(e)[i-Pi(e)]cosB 

cos (0 + </>) 
~l-2p2(0)cos2(0 + </>) + pl(0) 

sin (0 + 0) 

cos (0 - 0) 

l-2p?(0)cos2(0-<M + pf(0) 

+ -pf(0)[l+pf(0)]sin0 

sin (0 - <j>) 

1 - 2pf (0) cos 2(0 + <£) + pf(0) 1 - 2pf (0) cos (0 - 0) + pft0) 

(29) 

* (0 JA - 1 " log 1 + 2pM C0S ( g ~ 0 ) + Pl(d) 
3 ,<W 8 fc2

 g 1 - 2p2(0) cos (0 - 4>) + PI(6) 
_!_£_, l + 2 p 2 ( 0 ) c o s ( 0 + 0) + p2(0) 

8 b2 ° 8 l - 2 p 2 ( 0 ) c o s ( 0 + 0) + p|(0) 

1 2{a/b\) sin < 

with 

W ) = 2 t a i r T^7ft,)2 

P I ( 0 ) = T - c o s e > P2(fi) = — sin( 
Ol »2 

(30) 

(31) 

(32) 

Equat ion (24) is a Fredholm integral equat ion of the first 
kind with a logari thmic singularity. We can write its solution 
as 

77(0)= 
2X 

ir(X+l) 
S AnH„(6) (33) 

n = l , 3 , . 

where H„(6) are the solutions to the following integral equa­
tions: 

4 r 
-2 -1 Hn(d)Kx(e,4>)d4> = sinnd,Q<e<a 
•K J 0 

«=1,3, . . . (34) 

It can be shown tha t by differentiating bo th sides of (34) with 
respect to 0, the integral equat ions (34) can be reduced to the 
integral equat ions of the airfoil type and permit the following 
explicit solutions: 

H„(6)--
sin 20 p (sin2q-si 

Jn sin20 - s (sin a - sin 0) ^0 

«=1 ,3 , . . . 

sin2</>)1/2 

-r-, cos n4>dcb 
sin <j> 

(35) 

The integrals in (35) are to be interpreted as Cauchy principal 
value integrals. Since H,,(0) = 0, it follows from (33) that H(6) 
satisfies the end condition H(0) = 0 as demanded by the sym­
metry of the problem. 

Substituting (33) into (25) and (26) leads to a system of 
equations 

S A„M0)=M, O < 0 < T T / 2 

n = l , 3 , . . . 

for A „ , where 

, (fn_(^\e), o<0<0o 

/m--
o, O<0<0o 

-4 Gmy0, d0<dsir/2 

(36) 

(37) 

(38) 

CT) = - « 

s i n ( « - 1)0 / a 

+ 
x̂ r „ 

x(X+l) Jo " 

cos"+ '0sin(«+l)0 

(<l>)K2(6,<t,)d4> (39) 

#?(*) = 
b2\" sin n6 (a 

~~a) sin"0 + W^ 
sin"0 sin«0 

' « f t + i ) i " r(X+l) .0 

Substituting (33) into (27), we obtain 

(0)AT3(M)d*. (40) 

0 0 

TO 

where 

IT 2x r „ 
" T ( A + D J„ " 

(41) 

WK4(<t>)d<l>. 

by 

(42) 

Following Smith (1969), the stress intensity factor is defined 

K= lim \l2ira(a-e)Trz(afi). (43) 

Notice tha t rrz (a,6) in (43) is the shear t ract ion H(d) on the 
uncracked por t ion of the interface as given by (33). It can be 
shown that the stress intensity factor can be expressed as 

TS \ / do \ 

-j= = —-V2sin2a U , + V A,,Kn) (44) 

with Kn given by 

2 [a cos n<j) 
Kn = ~n 7T-1 . 2,,\nd<t>- (45) 

7r J0 (sin a - s i n 4>) 

Unlike the plane strain or plane stress deformation, the 
oscillatory behavior of stresses and displacements around the 
interface crack tip does not appear in the antiplane strain 
deformation (also see Smith, 1969). 

For a single fiber in an infinite matrix, we have a/bx = 0, 
a/b2 = 0, and it can be easily shown that A I = T0, A„ = 0 for 
n^\ so that Smith's close-form solution (1969) is recovered. 
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V,=0.55 

b,/b2=1.0 

0.4 , 0.6 
2c/;ca 

Fig. 2 Stress intensity factor versus crack length, V,= 0.55, for various Fig. 4 Stress intensity factor versus crack length, G,/Gm = 20.0, V, = 0.4, 
values of G, I Gm for various values of b,/b2 

2c/na 

Fig. 3 Stress intensity factor versus crack length, G , /G m = 20.0, for 
various values of Vf 

Some of the results for the stress intensity factor are pre­
sented in Figs. 2-4. The values of number TV used in the com­
putations range from 6 to 40. In general larger values of N 
are needed when fibers are more closely packed. 

Figures 2-4 show that the value of K first increases, then 
decreases with crack length. Figure 2 shows that the stress 
intensity factor increases as fibers become stiffer. It is of in­
terest to note that with perfect interface, the local stress con­
centration factor also becomes higher when the fiber stiffness 
increases (Adams and Doner, 1967). Thus, high composite 
stiffness may well result in low strength. As observed from 
Fig. 3, for small to medium crack lengths, increase in fiber 
volume content will decrease the stress intensity factor whereas 
for large crack lengths, higher fiber volume content tends to 
magnify the stress intensity factor. This suggests that the fiber-
reinforcing effect on the resistence to interfacial cracking is 
apparent only at small to medium crack lengths. 

Numerical Solution and Results 
The method of least squares is used to solve for the coef­

ficients A„. The method, in the present context, consists of 
truncating the series equation (36) to N terms and minimizing 
the mean square error EN defined by 

{
717 

0 

2/V-l 

«=1,3, . . 
AJn(6)~f(6) dd (46) 

Accordingly, Eq. (41) is also truncated to N terms so that we 
have 

2 
n=l ,3 , . 

oi„A„ = - T0. (47) 
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Transient Wave Propagation 
Methods for Determining the 
Viscoelastic Properties of Solids 
The following two solutions are proposed for deducing the viscoelastic properties 
of a solid from the change in the shape of a one-dimensional transient mechanical 
wave as it propagates through the medium: (i) The general solution:—the phase 
velocity and the attenuation coefficient are expressed in terms of the Fourier trans­
forms of the pulse after two distances of travel, and (ii) A filter method. An 
experimental set-up is described. The results, which are obtained with no heating 
of the material, come within the audiofrequency range. This method fills a gap 
between the existing vibratory and ultrasonic methods. 

1 Introduction 
The aim of the present study is to deduce the mechanical 

characteristics of a linear viscoelastic medium from the change 
in the shape of a transient mechanical wave propagating through 
a sample of the medium. 

In the mathematical study of a one-dimensional viscoelastic 
wave propagating along a semi-infinite rod, the medium can 
be represented by means of viscoelastic functions of either the 
time (Brun, 1974) or the frequency (Hunter, 1960). Sackman 
and Kaya (1968) have established the analytical bases for de­
termining short time portions of creep or relaxation functions; 
the four theories proposed so far involve, however, either 
various operations on observables or related quantities, partial 
sum expansions, or the resolution of Volterra integral equa­
tions. For determining viscoelastic characteristics in terms of 
the frequency, there exist two modes of excitation: fixed fre­
quency wave trains and transients. The former procedure, which 
extends to viscoelasticity acoustical methods previously used 
in elasticity, was applied in particular by A. W. Nolle (1947) 
and by Hillier and Kolsky (1949) to stretched filaments. Here 
it is proposed to use the second mode of excitation, that in­
volving brief transient pulses. 

Any homogeneous viscoelastic medium subjected to one-
dimensional tension or compression can be characterized in 
terms of the phase velocity c(co) and the attenuation coefficient 
ce(co) of the longitudinal wave, from which it is possible to 
deduce the complex modulus and the other equivalent visco­
elastic functions (Pierrard, 1969; Ferry, 1980). To determine 
these functions, a slender bar of the medium under investi­
gation is subjected to a single mechanical transient and the 
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resulting wave is observed. This wave can be represented by a 
Fourier integral involving the functions c(w) and a(oi) as well 
as the pulse at the origin. There exist several possible ways of 
deriving c(u) and a(o>) from this integral. First, one can attempt 
to integrate it exactly by forming hypotheses as to the form 
of the functions c(co) and a(co) and that of the initial pulse. 
This approach was first used by Bodner and Kolsky (1958) and 
then developed by Champomier and the present author for use 
in cases where only the wave front can be observed (Blanc and 
Champomier, 1976). Another possibility consists of looking 
for a numerical solution. Kolsky and Lee (1962) have inves­
tigated this problem without solving it completely: these au­
thors used a partial Fourier series development to represent 
the wave, but the expression they obtained for c(o>) was mul­
tivalued, and they did not completely overcome this difficulty. 
Sato (1955) previously encountered a similar indetermination 
in formulating the celerity of an elastic surface wave. Theocaris 
and Papadopoulou (1978) and Christensen (1982) have devel­
oped theories on the same lines as Kolsky and Lee. We shall 
not review here other previous studies, the general validity of 
which is restricted because they involve the use of mechanical 
models with only a few elements to represent the medium 
investigated: Kolsky and Lee (1962) have mentioned that these 
models are generally inadequate, "except in problems where 
only narrow frequency ranges are involved". We have estab­
lished (Blanc, 1971) expressions for the phase velocity and the 
attenuation coefficient in terms of the argument and the mod­
ulus, respectively, of the Fourier transforms of the pulse. So-
gabe, Kishida, and Nakagawa (1982) have proposed a similar 
method. We now propose to completely re-examine this prob­
lem and to fully solve it. 

The plan of the present paper is as follows. After describing 
the principle of the method we propose two theoretical solu­
tions. Expressions are first established for c(w) and a(co) in 
terms of the Fourier transforms of the wave shapes after two 
distances of travel. This is the general solution of the problem. 
It is expressed quite simply in terms of the transfer function 
of these two wave shapes. On the other hand, the behavior of 
the medium is completely determined by measuring the real 
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or complex Poisson's ratio. Secondly, the same pulses are 
applied to selective frequency filters, and again the required 
results are obtained from their responses. An appropriate ex­
perimental set-up is described. As an illustration, the method 
is applied to the study of a bitumen. 

These general relations completely solve the problem. It can 
be noted that c(co) and a(co) are remarkably simple functions 
of the phase d(x2, co) - 0(xu co) and the gain p(x2, u>)/p(xu co) 
of the transfer function of the two waves (which can be directly 
obtained experimentally by means of a spectrum analyzer). 

2 Principle 
The principle of the method is as follows. Let us consider 

a slender bar of the medium, with a constant cross-section 
area. A short axial disturbance is produced at one end of the 
bar, resulting in the propagation of a wave. In viscoelastic 
media, the high frequency waves propagate and are damped 
more quickly than the low frequency ones, so that the shape 
of the wave will change continuously as it propagates. Let us 
assume that we know the successive shapes of the pulse as a 
function of time after it has travelled two distances X\ and x2 

along the bar. It is proposed to deduce the corresponding 
functions c(co) and a(co). 

The bar is assumed to be thin, which means that the largest 
dimension of its cross-section is small in comparison with the 
wavelengths involved in the disturbance. The one-dimensional 
theory will then be valid (Kolsky, 1963). 

It is worth mentioning that the results established below in 
the framework of the present theory in the case of a thin bar 
will in fact be more general, since they can be extended to 
other types of waves defined in terms of a single parameter in 
both rods and extended media (Sackman and Kaya, 1968). 

3 General Theory 
At distance x and time t, let us consider the stress a, the 

displacement u, or any of its successive derivatives with respect 
to time, particularly the particle velocity v = du/dt or the 
strain e. Let us write/(x, t) for functions of the kind 

/ ( x , f ) € { a , u , . . . , ^ , . . . , e } . (1) 

f{x, t) can be represented by the Fourier integral (Hunter, 
1960) 

fix, t)=±-
Z7T 

7(0, co)e L c(co)J rf(w) (2) 

where fix, co) stands for the Fourier transform of fix, t). 
Taking the inverse transform of (2), 

X 

fiX, C0)=/(0, W)e = < < • > > 

and writing this transform in polar form 

/ ( * , « ) = P(X, co)e",<^u) 

yields 

(3) 

(4) 

I 9 < 0 , M ) — — 

L c(")J p{x,o»ei6^^ = PiO, o>)e~aMx+i 

This relation can be decomposed into two parts by taking the 
arguments and the moduli: 

d(x, co) = 0(O, co)- ax 
(5) 

c(co) 

p(x, co) = p(0, w)e~aMx. (6) 

Let us write these relations for the two distances of travel xx 

and x2; the following two relations can then be derived: 

c(co) = —co 

a(co) = 

X2 — X\ 

6ix2, w)-0(*i, co) 

1 p(x2, co) 

X2~Xi p(Xi, CO) 

(7) 

(8) 

3.1 Wave Area Conservation. Let us note that a(0) = 0 
(Hunter, 1960). Substituting into Eq. (8), this results in 

'p(x2, 0) = p(x„0), (9) 

which is usually not null. 
On the other hand, since the transform of a real function 

is real with co = 0, it follows that dixt, 0) = kxir and d(x2, 0) 
= k2-w, where k\ and k2 are both integers. If one takes x2 = 
Xi, one obtains k2 = k\. This gives 

0(*2,O) = 0(*i,O). (10) 

Note that this result can be obtained using a different approach, 
taking as a starting point the behavior of c(co) when co — 0 
(see Hunter, 1960). 

From the definition of the Fourier transform, 

v(x, 0)= vix, t)dt= \u(x, 

Substituting from (9) and (10) gives 

01 ] = AvU-

Ax2u = A ^ « . (11) 

The total displacement of any particle of the material due to 
the passing of the wave is therefore invariant with respect to 
the distance covered by the wave, which generalizes the validity 
of a result established for the elastic case (Kolsky, 1963). Ac­
cording to (1), the area of any wave, whatever its mechanical 
nature, remains the same as it propagates through the medium. 

3.2 Linear Distortion Invariance. Let us examine the ef­
fects of a possible linear phase and amplitude distortion which 
is liable to affect the measurement of the mechanical quantity 
fix, t) given by (2). Let us assume that at each angular fre­
quency co, the transducer (for example) multiplies the amplitude 
by /i(co) and causes a change of (̂co) in the phase. In this case, 
the signal obtained will be as follows (Rocard, 1960): 

fix, t)=± f \ ( c o ) 7 ( 0 , o,)e~aMx+i{{'-^ 
+ IKOJ) 

dio. 

Inverting this transform yields 

r -ax n 
fix, co) = /i(co)f(0, co)e LC(<"> J 

and hence 

p*(x, co)e/s*(x'a,) = Ai(co)p(aco)e 

which can be decomposed into 

- a (w)x+ i 0(0, 
UX 1 

> • « ) — — r + * ( u > 
C(u>) J , 

0*(x,co) = 0(O, « ) - — - + * < « ) 
c(co) 

p*ix, co) = /x(co)p(0, co)e -a(u)x 

We obtain 

0*(x2, o)) — 6*(Xi, u) = d(x2, co)-0(*i, co) 

P*(x2, co) p(x2, co) 

P*(X\, co) p(Xi, co)' 

Applying relations (7) and (8) to the distorted wave shapes 
therefore does not change the results. Here it should be men­
tioned that the useful frequency range of the transducers is 
thus extended to the whole interval within which their sensi­
tivity is appreciable. This increases the variety and number of 
the gauges which are suitable for use with this method. 
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Note that this invariance can be said to be a generalization 
of relation (1), where each element of the set was taken to be 
the distorted image of any other one. The invariance does not, 
however, include the case of nonlinear distortions (such as 
chopping or pulse clipping). 

3.3 Complete Determination of the Behavior. In order 
to completely determine the mechanical behavior, it is nec­
essary to know a second viscoelastic function: we propose 
the complex Poisson's ratio (Tschoegl, 1989). The longitudinal 
and radial pulses can be measured at a single point using 
appropriate strain gauges. The reverse-sign ratio between the 
Fourier transforms of these pulses yields v(co). Experience has 
shown that in fact, v(o>) usually reduces to a real constant 
which can then be obtained without performing any trans­
forms. 

4 The Filter Method 
It is now proposed to determine functions c(o>) and a(a>) 

without having to calculate the Fourier transforms which occur 
in (7) and (8). For this purpose, transients are applied to a 
frequency filter. The signal delivered each time in response to 
these transients will depend not only on the input signal but 
also on the filter characteristics. In order to eliminate the latter, 
we apply to one same filter a single transient which has been 
picked up after two distances, X\ and x2, along the bar, and 
compare the results obtained. In a previous study (Blanc, 1974), 
we solved this problem in the case of an oscillating circuit. It 
is now proposed to generalize the method by extending it to 
the case of a narrow band filter system. Let us consider a 
bandpass filter having u0 as the center frequency. Let hx{t) 
be the envelope of the impulse response of the equivalent low-
pass filter. Let us assume the bandpass of the filter to be 
sufficiently narrow for the Fourier transform of the input 
signal to be approximately constant. Papoulis (1962) has es­
tablished that the filter response to the signal f(x, t) can be 
expressed as follows: 

y(x, t)=2p(x, wo)/ii(Ocos[a>of + 0(x, wo)-x(«o)]- (12) 

4.1 Damping Measurement. Let us consider the envelope 
of the response: 

yi(x,t)=2p(x,u0)hl(t) 

after two distances of travel, X\ and x2, along the bar. Let us 
take each of these two responses after the same time t' has 
elapsed from the onset of each response, i.e., making the two 
auxiliary time origins coincide. Let us write the latter relation 
with Xi and x2 and divide the two equations thus obtained part 
by part. It emerges that the ratio between the two response 
envelopes 

ydxi, / f)_p(Jf2. up) 

y\{xut') P(*I, wo) 
is independent of t'. Substituting this ratio into expression (8) 
yields the damping coefficient a(u) with the angular frequency 
value u = coo-

This result is immediately verified in the elastic case where 
the wave propagates without changing shape. We therefore 
obtain yx(x2, t ') = yi(x1; t'), and hence a{u0) = 0. 

4.2 Phase Velocity Measurement. The filter response 
phase is given by the sum between square brackets in expression 
(12). Let us write t\ for the time in the filter response at point 
x = X\ and t2 at x = x2. As previously, let us then take each 
of the two responses after the same time t' has elapsed since 
their time origins, /0l and tQv i.e., at instants 

and h = to, +1 . 

y SUSPENSION 

A B 

/ 

SPECTRUM 
ANALYSER 
B & K 2034 

ELECTRO -
MECHANICAL 
TRANSDUCER 

Fig. 1 Experimental set-up 

Substituting these values into the corresponding expressions 
for the phases and subtracting them, the difference is inde­
pendent of t'. Let us write £(xi, x2, o)0) for this observable 
difference. This gives 

u0(ta2-tQj) + 6(x2, uo)-0(*i, w0) = f(*i, x2, u0) + 2kir 

which yields modulo 2kir, the denominator of expression (7) 
for C(OJ) which we were looking for. 

The present relation is immediately satisfied in the elastic 
case, where £ + 2kir = 0, so that one again obtains 

c(a>o) = (*2-*i)/('o2-fo1)=const. 

In the viscoelastic case, it is necessary to determine k in order 
to remove the indetermination as to c(oi0). Let us consider 
relation (7). Let us now refer each pulse to an auxiliary time 
origin, the abscissa tG of the center of gravity of its area. The 
argument d of the Fourier transform of each pulse therefore 
becomes stationary around the value mr, and the difference 
between the arguments becomes stationary around the value 
0. In order to relate all the functions to the same time origin, 
one needs then only to subtract the quantity u(tGl - /G]) from 
the difference between arguments thus obtained. Since c(u) is 
an increasing function, it is worth noting that the bottom limit 
of c(co) 

*2~X\ 

lG2-lGi 

is obtained on the left of the pulse spectrum curve. 

5 Experimental Set-Up 
5.1 Principle. Let us consider a slender bar of the medium 

under investigation, ending in two plane cross-sections A and 
B which are distance 1 apart (cf. Fig. 1). An axial shock is 
produced against A, which results in the propagation of a 
compression pulse. On being reflected at free end B, this pulse 
becomes a tension pulse. It returns to the original end ̂ 4, which 
has meanwhile become free, and is again reflected as a 
compression pulse, and so on. The experimental set-up de­
scribed below gives the wave shape as a function of time as it 
reaches B (Hunter, 1960) on two occasions, corresponding to 
distances of travel chosen from the sequence 1, 31, 51, etc. 
This set-up is basically similar to that described by Kolsky 
(1956). On the other hand, it would have been possible to 
measure the wave shape at any two points xx and x2 along the 
bar. By comparing functions f(xlt t) and/(x2, 0 . the phase 
velocity c(w) and the attenuation coefficient a(oi) can be de­
termined using the solutions we established above, and hence 
the complex modulus E{u>) can also be obtained, for example. 
On the other hand, it is furthermore possible to measure Pois­
son's ratio, as mentioned in Section 3.3. Once these two func­
tions are known, it is then possible to calculate any other 
complex modulus which may be required to completely char­
acterize a medium (Staverman and Schwarzl, 1956; Waterman, 
1977). 

The principle of the present method requires that pulses/(xx, 
t) and/(x2, 0 be observed separately. B. Lundberg and the 
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Fig. 2 Longitudinal displacement versus time of one end of a sus­
pended duralumin bar after receiving an axial shock 

Fig. 3 Bar supported by roller bearings, under identical shock condi­
tions to those pertaining in Fig. 2 

author (1988) have solved elsewhere the problem where, on 
the contrary, one waits until observing the superimposition of 
the successive reflections of the pulse produced by the two 
ends of the bar. 

5.2 General Description. Figure 1 shows the experimental 
set-up, which can be seen to be very simple. The suspended bar 
is free to undergo any small horizontal movement. The axial 
shock is produced at one of its ends by means of a hammer 
or an air gun. This shock also activates an electrical switch 
causing a single sweep to be made on either a spectrum ana­
lyzer, a transient recorder or a digital oscilloscope. An elec­
tromechanical transducer placed at the opposite end of the bar 
gives the pulse with respect to time at two passages, successive 
or otherwise. 

5.3 Bar Suspension Mode. We have previously studied 
the limitations associated with two means of supporting the 
bar (Blanc, 1971). For this purpose, we recorded the displace­
ment u of the end of a bar while the pulse was travelling back 
and forth several tens of times along the bar. It was observed 
that the movement of the end of the suspended bar (cf. Fig. 
2) consisted of a series of equal, regularly spaced displacements 
u, in agreement with relation (11). When the bar was placed 
on a support (cf. Fig. 3), the kinetic energy began to dissipate 
as soon as the pulse had travelled only a few tens of times 
along the bar. It is therefore preferable to suspend the bar 
using flexible threads with no appreciable mass. 

5.4 The Electromechanical Transducer. It is first worth 
mentioning that in the case of the two theories proposed above, 
the pulses f(xu t) and f(x2, t) can be determined with an 
arbitrary unit; only the time axis requires calibration. 

From (1), it follows that the quantity to be measured can 
be either a, u, v, or e. Now it is not possible to measure the 
stress a directly, and in the case of a shock the displacement 
u is not susceptible to Fourier transform (cf. Figs. 2 and 4). 
We are left with a choice between measuring v or e. 

Fig. 4 Upper trace (a): displacement versus time of one end of a bar 
of polyvinyl chloride 0.80 m in length after receiving a shock at the 
opposite end. Middle trace (b): direct recording of the corresponding 
particle velocity. Lower trace (c): response to the above transients (b) of 
an Alison narrow band-pass filter, type 2D, centered on a frequency of 
8.5 kHz. 

Both the general method and the filter method are insensitive 
to distortion, so that one does not have to worry about the 
severe limitations which often have to be taken into consid­
eration when choosing gauges (Kolsky, 1962). With these two 
methods, it is thus possible to use either electromagnetic trans­
ducers, which are sensitive to the particle velocity v but are 
otherwise not suitable for measuring mechanical waves because 
their pass-band is too narrow, or metallic resistance strain 
gauges, which are sometimes unsuitable because they have an 
indesirable stiffening effect on soft materials (Swan, 1973). 

In the present study we used a velocity-sensitive pick-up, the 
Briiel and Kjaer Magnetic Transducer MM 0002, a variable 
reluctance device. It is also possible to use a capacitance gauge 
which is directly sensitive to v (Blanc, 1971; Graham and Asay, 
1978). In fact, gauges of this kind and electromagnetic gauges, 
both of which are contact-free, are the most convenient types 
of transducers to use when working at the end of a bar. 

5.5 Signal Analysis. The electrical signal delivered by the 
transducer can be processed in either of two possible ways. 
First it can be fed into a spectrum analyzer such as the Briiel 
and Kjaer model 2034 equipped with input time windows in 
order to separate the pulses. In this case, the transfer function 
of the two pulse shapes, which occurs in relations (7) and (8), 
is obtained directly; this yields c(co) and a(io) without requiring 
the use of a computer. The second possibility consists of feed­
ing the signal to a transient recorder; we used the Datalab 
model DL 905. After being thus stored on memory, the signal 
can again be used in 2 possible ways as follows: (i) it can be 
displayed on an oscilloscope screen; (ii) since it is digitized, it 
can be transferred to a computer to have the Fourier transforms 
and transfer functions of the two pulses calculated. Further­
more, when applying the filter method, the selective frequency 
filter is placed between the transducer and the transient re­
corder. 

It is also possible, however, to bond two sets of gauges onto 
the bar. The pulses f(X\, f) a n d / t e , 0 are then obtained on 
two separate channels. This procedure is used when the pulses 
overlap in B, 

Lastly, in order to measure Poisson's ratio, appropriate two-
element strain gauges are used. 

6 Results 
As an illustration, Fig. 4 gives three typical examples of 

recordings obtained with a viscoelastic material. 
In addition to numerous polymers and elastomers, the above 

set-up has been used to study a wide range of other materials 
with internal damping, such as composites, aggregates, and 
even foams. 
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Fig. 6 Attenuation versus frequency in a bitumen between 
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6.1 Example of a Bitumen. The general theory estab­
lished in Section 3 was applied to the mechanical characteri­
zation of an industrial bitumen, Mexphalte R type 135/10 
manufactured by Shell company, which is a highly oxydated 
gel. The method was applied at 14 temperatures ranging in 
ten-degree steps between - 4 0 and +90°C. From relations (7) 
and (8), the families of curves shown in Figs. 5 and 6 were 
obtained. 

The real and imaginary parts of the complex modulus E = 
E' + iE" can then be built up using the following classical 
relations: 

tan 
<p(<j>) a(o))c(a>) 

l£(w)l = p c 2 ( a ) ) c o s 2 ^ 

E' (a>) = \E(oi) lcosip(w) 

E"(o))= \E(u)\sm<f>(w), 

p being the specific mass. 
These families of curves show that we are dealing with a 

thermorheologically simple medium (Ferry, 1980). Taking T0 

- 293 K as the reference temperature, the shift factor aT 

obtained obeys the following W.L.F. equation: 

•10(7-293) 

F R E Q U E N C Y ( H z ) 

Fig. 7 Complex modulus of a bitumen at 20°C 
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Fig. 8 Relaxation spectrum of a bitumen at 20°C 

One thus obtains the master curves given in Fig. 7. Knowing 
E{oi) makes it possible to calculate the relaxation spectrum, 
for example, using the method described by Williams and Ferry 
(Pierrard, 1976; Ferry, 1980), cf. Fig. 8. 

7 Discussion and Conclusion 
Transient wave propagation methods are proposed for de­

termining the viscoelastic properties of solids. Two solutions 
are provided for deducing these properties from the change in 
the shape of a transient mechanical wave as it propagates along 
a slender bar of the medium under investigation: 

(1) the general solution, i.e., one which is valid with any 
transient excitation. Very simple expressions are established 
for the phase velocity and the attenuation coefficient in terms 
of the Fourier transforms of the wave shapes after two dis­
tances of travel. These results are shown to be linear distortion 
invariant. 
(2) a physical filter method, which is applicable in the case 
of brief pulses and does not require calculation of the Fourier 
transforms. It is again insensitive to distortion. 

An appropriate experimental set-up is described for use with 
these theoretical solutions. With this method, it suffices to 
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determine the wave shapes with an arbitrary unit, and only 
the time axis requires to be calibrated. In addition, the dis­
tortion invariance implies that a larger number of gauges can 
be used, and that their useful range is extended to the whole 
frequency band within which the gauge sensitivity continues 
to be appreciable. These two characteristics, along with the 
simplicity of the set-up as a whole, make the present method 
particularly easy to use. The results occupy a frequency band 
of one and a half to two decades within the audiofrequency 
range (20-20,000 Hz). The slight shock required entails prac­
tically no heating of the medium-. As an illustration, the method 
was applied to studying a bitumen between -40 and +90°C. 

The present impulse method fills a gap (see for example 
Perepechko (1975), Read and Dean (1978), Whorlow (1992), 
and Masson and Thurston (1990)) between the available vi­
bratory and ultrasonic methods. 

Acknowledgments 
The author is grateful to Dr. Jessica Blanc for her help with 

the English translation. 

References 
Blanc, R.H. , 1971, "Determination de l'equation de Comportement des Corps 

Viscoelastiques Lineaires par une Methode d'impulsion," Doctoral Thesis, Uni­
versity d'Aix-Marseille, Faculte des Sciences, Marseille, France. 

Blanc, R. H., 1974, "Spectre Instantane d'une Impulsion dans un Barreau 
Viscoelastique," Rheologica Acta, Vol. 13, No. 2, pp. 228-232. 

Blanc, R. H., and Champomier, F. P. , 1976, "A Wave-Front Method for 
Determining the Dynamic Properties of High Damping Materials," Journal of 
Sound and Vibration, Vol. 49, No. 1, pp. 37-44. 

Bodner, S. R., and Kolsky, H., 1958, "Stress Wave Propagation in Lead," 
Proceedings of the third U.S. National Congress of Applied Mechanics, R. M. 
Haythornthwaite, ed., ASME, New York, pp. 495-501. 

Brun, L., 1974, "L'onde Simple Viscoelastique Lineaire," Journal de Me-
canique, Vol. 13, No. 3, pp. 449-498. 

Christensen, R. M., 1982, Theory of Viscoelasticity: An Introduction, Aca­
demic Press, New York. 

Ferry, J. D., 1980, Viscoelastic Properties of Polymers, John Wiley and Sons, 
New York. 

Graham, R. A., Asay, J. R., 1978, "Measurement of Wave Profiles in Shock-
Loaded Solids," High Temperatures—High Pressures, Vol. 10, No. 4, pp. 355-
390. 

Hillier, W., and Kolsky, H., 1949, "An Investigation of the Dynamic Elastic 
Properties of Some High Polymers," Proceedings of the Physical Society, Lon­
don, Vol. 62, Part 2, No. 350, pp. 111-121. 

Hunter, S. C , 1960, "Viscoelastic Waves," Progress in Solid Mechanics, Vol. 
1, I. N. Sneddon, and R. Hill, eds., North-Holland, Amsterdam, pp. 1-57. 

Kolsky, H., 1956, "The Propagation of Stress Pulses in Viscoelastic Solids," 
The Philosophical Magazine, Vol. 1, No. 8, pp. 693-710, pi. 35-36. 

Kolsky, H., 1962, "The Detection and Measurement of Stress Waves," Ex­
perimental Techniques in Shock and Vibration, W. J. Worley, ed., ASME, New 
York, pp. 11-24. 

Kolsky, H., 1963, Stress Waves in Solids, Dover, New York. 
Kolsky, H., and Lee, S. S., 1962, "The Propagation and Reflection of Stress 

Pulses in Linear Viscoelastic Media," Contract Nonr 562(30), Office of Naval 
Research, Washington, D . C , Technical Report No. 5, Brown University, Prov­
idence, RI. 

Lundberg, B., and Blanc, R. H., 1988, "Determination of Mechanical Ma­
terial Properties from the Two-Point Response of an Impacted Linearly Vis­
coelastic Rod Specimen," Journal of Sound and Vibration, Vol. 126, No. 1, 
pp. 97-108. 

Mason, W. P., and Thurston, R. N., 1990, Physical Acoustics (19 volumes), 
Academic Press, New York. 

Nolle, A. W., 1947, "Acoustic Determination of the Physical Constants of 
Rubber-Like Materials," Journal of the Acoustical Society of America, Vol. 
19, No. 1, pp. 194-201. 

Papoulis, A., 1962, The Fourier Integral and its Applications, McGraw-Hill, 
New York. 

Perepechko, I., 197 5, Acoustic Meth ods of In vest iga ting Polymers, Mir, Mos­
cow. 

Pierrard, J. M., 1969, "Modeles et Fonctions Visco-elastiques Lineaires," La 
Rh&ologie, Persoz, B., coord., Masson, Paris. 

Read, B. E., and Dean, G. D., 1978, The Determination of Dynamic Properties 
of Polymers and Composites, Adam Hilger, Bristol, U.K. 

Rocard, Y., 1960, Dynamique Genirale des Vibrations, Masson, Paris. 
Sackman, J. L., and Kaya, I., 1968, "On the Determination of Very Early-

Time Viscoelastic Properties," Journal of the Mechanics and Physics of Solids, 
Vol. 16, pp. 121-132. 

Sato, Y., 1955, "Analysis of Dispersed Surface Waves by Means of Fourier 
Transform I ," Bull. Earthquake Research Inst., (Tokyo), Vol. 33, Part 1, pp. 
33-48. 

Sogabe, Y., Kishida, K., andNakagawa, K., 1982, "Wave Propagation Anal­
ysis for Determining the Dynamic Properties of High Damping Alloys," Bull. 
J.S.M.E., Vol. 25, No. 201, pp. 321-327. 

Staverman, A. J., and Schwarzl, F., 1956, "Linear Deformation Behaviour 
of High Polymers," Die Physik der Hochpolymeren, Vol. 4, H. A. Stuart, ed., 
Springer-Verlag, Berlin, Ch. 1. 

Swan, J. W., 1973, "Resistance Strain Gauges on Thermoplastics," Strain, 
Apr., pp. 56-59. 

Theocaris, P. S., and Papadopoulou, N., 1978, "Propagation of Stress Waves 
in Viscoelastic Media," Polymer, Vol. 19, No. 2, pp. 215-219. 

Tschoegl, N. W., 1989, The Phenomenological Theory of Linear Viscoelastic 
Behavior, Springer-Verlag, Berlin. 

Waterman, H. A., 1977, "Relations between Loss Angles in Isotropic Linear 
Viscoelastic Materials," Rheologica Acta, Vol. 16, No. 1, pp. 31-42. 

Whorlow, R. W., 1992, Rheological Techniques, Ellis Horwood, Chichester, 
U.K. 

768 / Vol. 60, SEPTEMBER 1993 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Journal of 
Applied 

Mechanics 

A Brief Note is a short paper that presents a specific solution of technical interest in mechanics but 
which does not necessarily contain new general methods or results. A Brief Note should not exceed 
T500 words or equivalent (a typical one-column figure or table is equivalent to 250 words; a one line 
equation to 30 words). Brief Notes will be subject to the usual review procedures prior to 
publication. After approval such Notes will be published as soon as possible. The Notes should be 
submitted to the Technical Editor of the JOURNAL OF APPLIED MECHANICS. Discussions on the Brief 
Notes should be addressed to the Editorial Department, ASME, United Engineering Center, 345 
East 47th Street, New York, N. Y. 10017, or to the Technical Editor of the JOURNAL OF APPLIED 
MECHANICS. Discussions on Brief Notes appearing in this issue will be accepted until two months 
after publication. Readers who need more time to prepare a Discussion should request an extension 
of the deadline from the Editorial Department. 

The Scattering of Plane SH-Waves by 
Noncircular Cavity in Anisotropic 
Media1 

Liu Diankui2 and Han Feng2 

1 Introduction 
The scattering of elastic waves has been the subject of study 

for over a hundred years, but only in the last 20 years has the 
subject received a good deal of attention from seismology and 
applied mechanics. A comprehensive review of them was given 
by Pao and Mow (1973) and Pao (1983). The problems of 
scattering by inclusions of arbitrary shape are not amenable 
to an exact solution, and only in recent years has it been possible 
to obtain numerical and approximate asymptotic solutions for 
that. Datta (1978, 1982, 1988) and others have made a greater 
contribution to these problems. The method of complex func­
tion presented by Liu (1982) offers a new approach to two-
dimensional scattering problems. Despite the fact that the wave 
equation is not conserved by a conformal mapping, the scat­
tering of cavities of arbitrary shape can still be treated nu­
merically. 

In general, wave in homogeneous anisotropic media cannot 
be represented by the compressional (P—) wave and shear 
(S—) wave parts as in an isotropic case, so there are some 
inherent mathematical difficulties in solving scattering prob­
lems in anisotropic media. Until now, references of scattering 
and dynamic stress concentration in anisotropic media are 
extremely few. Liu (1988, 1990) tried to meet this challenge 
by choosing antiplane shear motion as a simple mathematical 
model to approach anisotropic media character. By means of 
complex function and mapping techniques, the authors have 
successfully evaluated the dynamic stress concentration around 
a circular hole and the displacements along the surface of the 
cylindrical canyon of arbitrary shape. 
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In this paper the authors will extend this method in the case 
of scattering of a plane SH-wave due to cavities with arbitrary 
shape in anisotropic media by adding the technique of con-
formal mapping. 

2 Statement of Problem 
Under an antiplane shear model for the problem of scattering 

of elastic waves and dynamic stress concentration around a 
cavity in anisotropic media, the equation of motion can be 
written as (Liu, 1988) 

C5: 
d2W _ a2W 
dx>+2C45dxdy 

+ C4, 
blW 

By J=P a/2 (2.1) 

The relationships between stresses and displacements in an­
isotropic media are 

„ aW aW 
: C55 „ + C45 „ > ox ay 

bW bW 
'• Q 5 „ + C44 „ ax ay 

(2.2) 

where (x, y, t) is the displacement of an anti plane shear motion 
normal to the (x, y) plane and independent of the z-axis; p is 
the density of the media; and C55) C45, C44 are_elastic constants. 

Introduce complex variables Z = x + iy, Z = x —iy. Then, 
on our study of steady-state waves, w can be expressed as 

W(Z, Z, t)=Re[W(Z, Z)e"'w '] (2.3) 

where w (z, z) is a function of z and z, co is the circular frequency 
of wave. 

Here, with the aids of complex variables and the technique 
of conformal mapping, it is possible to transform the external 
domain bounded by noncircular curve in the z-plane into the 
external domain of a unit circle bounded by S in the X-plane. 
If both L and S are unlimited and mapped in finite points, the 
mapping function co(X) will be of the following form: 

Z = co(X)=CX + a holomorphic function. (2.4) 

Using the mapping function (2.4), the equation of motion in 
the X-plane can be written as (Liu et al., 1990) 

( C 5 5 — C44 + 2/C45) 
1 1 bW 

a)'(X) ax U'(X) ax 

+ 2(C55 + C44) 
1 1 aW 

u'(X) ax \<o'(x) B\ 

1 a / 1 aw\ , 
+ ( 0 5 5 - 0 4 4 - 2 / 0 4 5 ) = = - = = = - = - + p « V = 0 . 

u (X)ax \w (X) sxy 
(2.5) 
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3 Analytical Method 

In order to solve Eq. (2.5), we introduce a new transfor­
mation for mapping function co(X) as follows: 

f = ^ [ ( i - / 7 M X ) + (i + /7)^(X)] 

? = | [ ( l - ^ ) w ( X ) + (l + iVMX)] (3-1) 

where y is a complex constant, 7 = -C4S/C44 + i(C55CM -
C45) /C44. 

Using the transformation (3.1), Eq. (2.5) can be written as 

+ ( C 5 5 - C44-2/C45) (1 + iy)] ^ + [(C5S + C44) (1 - i y ) 

- aw-Ox co'(X) 
+ (C55-Cu~2iC45)(l + iy)]1^ - . , . •• (3.12) 

of J P lw (X)l 
When the incident- steady-state plane SH-wave is from an 

infinite distance, the controlling condition for stress along the 
circumference of a scatter should be given, i.e., along X = e'e, 
we have 

d2W (iKr 2 ' rz ' ' rz * 

w (3.2) 

where KT = w/CT, C\ = ji/p and ]x = (CS5C44 - C2
45)/C44. 

Following our previous works (Liu et al., 1982), the scat­
tering wave governed by Eq. (3.2) can be written as 

^<s)(f, f )=£ ;^x" (^ i f i ) f 
i f i 

(3.3) 

(3.13) 

where T^ ' , T,P and F are incident stress, scattering stress, and 
applied stress along the circumference of the scatterer. Again, 
assuming that the time dependence of F can be the same as 
that of the incident wave, we have 

F=Re[f>e-iu']. (3.14) 

Substituting (3.9) and (3.3) into (3.12) and (3.13), respectively, 
we have 

where A„ are undetermined coefficients, and H^\.) is the first 
kind Hankel function of the nth order with argument KT\ f I. 

The incident plane SH-wave in the n-direction in anisotropic 
media can be written as 

YJ enAn = e (3-15) 

W(i)=W\t- x cos ct+y sin a 
(3.4) 

where cos a = nx, sin a = ny\ Ca is the wave velocity in the 
n-direction. Then we shall get the expression of velocity Ca as 
follows: 

where 

(a + ic)H\llx(KT\{\) 

f 
I f l 

n +1 

C55 cos2 a + 2C4S sin a cos a + C44 sin2 a 
1 

(3.5) 

In the steady-state case, the incident plane SH-wave propa­
gating in the n-direction can be written as 

IVU) = W0e'{Ka{x cos a+y sin a)~"'! (3.6) 

where Wa is an amplitude of the incident wave and to = KaCa. 
In a polar coordinate system, x = r cos d, y = r sin 6. So 

the incident wave can be written as 

W(i) = W0e
i[K<*r cos <«-H>le-

/w'. (3.7) 

In the X-plane, the expression (3.6) can be written as 

WM=W0e
2 . (3.8) 

The expression (3.8) can be expanded into the Fourier series 
in complex form 

f 
fl 

e = F' -W, 

(b-ic)H^+x(KT\i\) 

xH%U(KT\S\) 

-(a-ic)H^+l{KT\i\) 

— 00 

xJ„-X{Ka\u{\)\)e 

Xco'(X) 

< o ' ( \ ) l 

n - 1 

(b + ic) 

Ifl 

Xo) ' (X) 

lo ) ' (X) l 

" ( X ) 

lw(X)l 

- ( l - 7 j - 2 / ? ) 2 ( 0 " 

X/„ + 1 (^Jco(X) l )e-
u(X) 

Wll)=Wo2] (iyj„(Ka\u(\)\) 
" ( X ) 

lw(X) l e-"
,a

e~"" (3.9) 

co(X)l 

( l - i j + 2/f)J](i)V),-i(if„l«(X)l)e-"" 

«(X) 

Xco'(X) 

loo' (X) 1 

«(X) 

where /„(.) is the nth order of the Bessel function with the 
argument Ka I co(X) I. 

In the complex plane Z, stresses can be written as 

-(\+r,)Yj(i)nJn+dKa\w(\)\)e 

and 

l o ( X ) l 

lco(X) 

n+1 
X w ' ( X ) 

loo (X) l 

dW dW 
Txz-iTyz= (CS5 + C44) —+ (C55-C44-2iC45) - r= (3.10) 

dZ 

Trz ~ 'Tiz 
dW 

dZ 

F'=F/C55Ka, « = ( ^ - r ) ' / z ] l + l ^ - - 2 

2\ 1/2-

( C55 + C44 ) —— + ( C55 — C44 — 2/C45 ) eie. b=-(V-?y"\i 
2\ 1/2" 

c = - v 

(3.11) 

Similarly, in the complex plane X, (3.11) can be written as 

and £ = C45/C55, r/ = C45/C55. 
Multiplying both sides of Eq. (3.15) with e'ls0 and integrating 

on the interval [ - T, 7T], we find 
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^]e„sA„ = es 5 = 0, ± 1 , ± 2 . . . (3.16) 

where 

i r e-lsed6, es 
2TT •J - T T . 

«"Wrffl. 

Dynamic stress concentration factor rez along the circum­
ference of a scatterer is defined as the ratio of the stress along 
the circumference to the maximum amplitude of the stress at 
the same point, i.e. (Pao, 1973; Liu, 1988), 

* 
T8z=Tf>z/T0 (3-17) 

where r6z = r$ + 7$ and T0 = C5SKaW0. 
Using (3.9), (3.3), (3.12), and (3.17), we have 

rez = -4 '"(1+17)2 (»')VB-i(Jfal«(X)l T ^ J j 
Fig. 1 Distribution of dynamic stress concentration factor: b/a = 0.75, 
« = 45, f = 0.0, ij = 0.8 
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jl«(X)l 

+ - j(2f+ /(!,-1))2(')" 

Xj„_,(^ a lco(X)l) 
co(X) 

x7„ + 1(i<:ala)(X) 

w(X)l 

— O 

«(X) 
l a > ( X ) l 

X w (X) 

ij'/2(cos2 a + 2$ sin a cos a + ij2 sin2 a)1 / 2 

- 4(„-£2)"2 

l c o ' ( X ) l 

OO 

( - c + i f l j ^ 4 " 

xM' l i - ^ J f l 

I f l 

X ^ T - K C + ^ E A M ' I , | / u n 
lw (X)l I f l 

x f c + i f l l ^ A M ' i i l ^ J f ! 
Ifl 

X a j ' ( X ) 

O)'(X) I J" 

(3.18) 

4 Numerical Results and Conclusions 

Ka= 

_ Ka= 

.._ Ka= 

=0 

= 1 

=2 

1 

,0 

,0 

Fig. 2 Distribution of dynamic stress concentration factor: side length 
of the square cavity is 2a, a = 0, f = 0.2, ij = 0.8 

(1) Case I, for Elliptic Cavity: The distribution of dynamic 
stress concentration factor in the neighborhood of an elliptic 
cavity with a and b as its semi-major and semi-minor axis, 
respectively, can be expressed by choosing mapping function 
as 

Z = u(\)=R(\ + m/\) (4.1) 

where R = (a + b)/2, m = (a - b)/(a + b). 
We assume that b/a = 0.75, the boundary of ellipse is free, 

and the parameters of media are £ = 0.0, -q = 0.8. Substituting 
(4.1) into (3.16) and choosing n = s = 3 for Ka a = 0.1, 1.0, 

Fig. 3 Distribution of dynamic stress concentration factor: side length 
of the square cavity is 2a, a = 45, f = 0.2, i; = 0.8 

and 2.0, the coefficients A„ can be calculated. Figure 1 shows 
the distribution of dynamic stress concentration factors along 
the circumference of the cavity. 

(2) Case II, for Square Cavity: The function to map the 
external region of the square cavity with 2a as its side length 
into the unit circle in the X-plane can be written as 

1 1 1 
Z = c o ( X ) = * ( X - ^ + 5 6 x 7 - i 7 6 x I 1 (4.2) 

where R = 1.2a. 
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Similarly, the boundary condition is free from applied stress 
and the media are £ = 0.2, -n = 0.8. 

By truncating the infinite algebraic Eq. (3.16) to n = s = 
3 for Kaa = 0.1 and n = 5 = 4 for Kaa = 1.0, 2.0, we find 
the coefficients A„. Figures 2 and 3 show the results of stress 
concentration factors of calculation. 

Now, we conclude this paper with the following discussions: 
(a) From the numerical results indicated above, we can see 

that the effect of anisotropy on dynamic stress concentration 
is quite significant in engineering sense. 

(b) The convergence of Eq. (3.16) depends on wave number 
Kaa and on cavity shapes. For low Kaa, a few terms of the 
series are sufficient; while for high Kaa, the convergence is 
rather slow. So, in this case, the number of terms needed 
becomes large in order to get reasonably good results. 

(c) For the square cavity case, the mapping function (4.2) 
maps the unit circle only to "nearly square cavity" with corners 
as shown in the figure attached. Such shape of course misses 
the character of sharp corners. This is the weak point of the 
method of mapping as noted universally in static case. In­
creasing the number of terms of the mapping functions is a 
way to make the corners of the figure rather sharp. 
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Introduction 
Recently, the authors have investigated various transient and 

steady-state elastodynamic indentation problems, with a view 
to elucidating the paradoxes associated with such problems 
when the edge of the contact area has a speed in the super-
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Rayleigh/subseismic range (Georgiadis and Barber, 1993). In 
the course of this investigation, an integral equation formu­
lation was developed for the steady-state problem of an in-
denter moving over a half-plane at constant speed, using the 
classical solution of Cole and Huth (1958) as a Green's func­
tion. However, the resulting equation exhibited different 
asymptotic behavior at the ends of the contact zone from other 
published solutions to elastodynamic crack and contact prob­
lems (see, e.g., Brock, 1977; Freund, 1979; Burridge et al., 
1979; Georgiadis, 1986; Robinson and Thompson, 1974). Fur­
ther investigation showed that this inconsistency was attrib­
utable to an error in the Cole/Huth solution in the transonic 
range. The purpose of the present Note is to rederive the 
solution for this speed range. 

The Cole/Huth problem involves a concentrated load mov­
ing with a constant speed, V, over the surface of an elastic 
half-space under plane-stress or plane-strain conditions. This 
classical problem was formulated within steady-state elasto-
dynamics and solved by a complex-variable method. A gen­
eralization involving an inclined load, i.e., a formulation 
including both normal and tangential tractions, was considered 
by Eringen and Suhubi (1975), but their final results exhibit 
the same error. 

Obviously, the Cole/Huth problem possesses considerable 
engineering importance. For instance, it is of great interest in 
soil dynamics, where ground motions and stresses can be pro­
duced by blast waves (surface pressure waves due to explo­
sions), or by supersonic aircraft. Other applications are 
encountered within the context of contact mechanics (see, e.g., 
Johnson, 1985); for instance, the problem of high-velocity 
rocket sleds sliding over steel guide rails (Gerstle and Pearsall, 
1974). Consequently, this problem has attracted much interest 
being cited and fully presented in such classical texts as Sned­
don (1951), Fung (1965), and Eringen/Suhubi (1975). 

This Brief Note sets out to present the correct solution to 
the steady-state moving load problem for the transonic range, 
i.e., when the velocity of the load is between the shear and the 
longitudinal-wave velocities. It is this particular velocity range, 
where the results for displacements and stresses by Cole/Huth 
(1958) and Eringen/Suhubi (1975) are in error. 

Analysis 
We shall present very briefly the solution to the Cole/Huth 

problem for an inclined load. Our approach leads directly to 
the expressions for the real and imaginary parts of the complex 
potential function. 

Assume that an elastic body in the form of a half-plane is 
set into motion by an inclined concentrated load moving over 
the surface with a constant velocity V (see Fig. 1). The lon­
gitudinal and shear-wave velocities are defined as C\ = [(X + 
2/t)/p]1/2 and c2 = {jx/pf11, in terms of the Lame constants X, 
H and the mass density p. The quantities Mj = V/cj (j = 1, 
2) are the Mach numbers which define the speed range (sub­
sonic, transonic, supersonic) of the motion. 

The steady-state elastodynamic field can be described by 
introducing a moving coordinate system (x, y) as x = x' -

Fig. 1 Steadily moving load over the surface of an elastic half-plane. 
The Mach wave (shock wave in shear stress) is also shown for the tran­
sonic range. 
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Similarly, the boundary condition is free from applied stress 
and the media are £ = 0.2, -n = 0.8. 

By truncating the infinite algebraic Eq. (3.16) to n = s = 
3 for Kaa = 0.1 and n = 5 = 4 for Kaa = 1.0, 2.0, we find 
the coefficients A„. Figures 2 and 3 show the results of stress 
concentration factors of calculation. 

Now, we conclude this paper with the following discussions: 
(a) From the numerical results indicated above, we can see 

that the effect of anisotropy on dynamic stress concentration 
is quite significant in engineering sense. 

(b) The convergence of Eq. (3.16) depends on wave number 
Kaa and on cavity shapes. For low Kaa, a few terms of the 
series are sufficient; while for high Kaa, the convergence is 
rather slow. So, in this case, the number of terms needed 
becomes large in order to get reasonably good results. 

(c) For the square cavity case, the mapping function (4.2) 
maps the unit circle only to "nearly square cavity" with corners 
as shown in the figure attached. Such shape of course misses 
the character of sharp corners. This is the weak point of the 
method of mapping as noted universally in static case. In­
creasing the number of terms of the mapping functions is a 
way to make the corners of the figure rather sharp. 
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Rayleigh/subseismic range (Georgiadis and Barber, 1993). In 
the course of this investigation, an integral equation formu­
lation was developed for the steady-state problem of an in-
denter moving over a half-plane at constant speed, using the 
classical solution of Cole and Huth (1958) as a Green's func­
tion. However, the resulting equation exhibited different 
asymptotic behavior at the ends of the contact zone from other 
published solutions to elastodynamic crack and contact prob­
lems (see, e.g., Brock, 1977; Freund, 1979; Burridge et al., 
1979; Georgiadis, 1986; Robinson and Thompson, 1974). Fur­
ther investigation showed that this inconsistency was attrib­
utable to an error in the Cole/Huth solution in the transonic 
range. The purpose of the present Note is to rederive the 
solution for this speed range. 

The Cole/Huth problem involves a concentrated load mov­
ing with a constant speed, V, over the surface of an elastic 
half-space under plane-stress or plane-strain conditions. This 
classical problem was formulated within steady-state elasto-
dynamics and solved by a complex-variable method. A gen­
eralization involving an inclined load, i.e., a formulation 
including both normal and tangential tractions, was considered 
by Eringen and Suhubi (1975), but their final results exhibit 
the same error. 

Obviously, the Cole/Huth problem possesses considerable 
engineering importance. For instance, it is of great interest in 
soil dynamics, where ground motions and stresses can be pro­
duced by blast waves (surface pressure waves due to explo­
sions), or by supersonic aircraft. Other applications are 
encountered within the context of contact mechanics (see, e.g., 
Johnson, 1985); for instance, the problem of high-velocity 
rocket sleds sliding over steel guide rails (Gerstle and Pearsall, 
1974). Consequently, this problem has attracted much interest 
being cited and fully presented in such classical texts as Sned­
don (1951), Fung (1965), and Eringen/Suhubi (1975). 

This Brief Note sets out to present the correct solution to 
the steady-state moving load problem for the transonic range, 
i.e., when the velocity of the load is between the shear and the 
longitudinal-wave velocities. It is this particular velocity range, 
where the results for displacements and stresses by Cole/Huth 
(1958) and Eringen/Suhubi (1975) are in error. 

Analysis 
We shall present very briefly the solution to the Cole/Huth 

problem for an inclined load. Our approach leads directly to 
the expressions for the real and imaginary parts of the complex 
potential function. 

Assume that an elastic body in the form of a half-plane is 
set into motion by an inclined concentrated load moving over 
the surface with a constant velocity V (see Fig. 1). The lon­
gitudinal and shear-wave velocities are defined as C\ = [(X + 
2/t)/p]1/2 and c2 = {jx/pf11, in terms of the Lame constants X, 
H and the mass density p. The quantities Mj = V/cj (j = 1, 
2) are the Mach numbers which define the speed range (sub­
sonic, transonic, supersonic) of the motion. 

The steady-state elastodynamic field can be described by 
introducing a moving coordinate system (x, y) as x = x' -

Fig. 1 Steadily moving load over the surface of an elastic half-plane. 
The Mach wave (shock wave in shear stress) is also shown for the tran­
sonic range. 
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VU y - y'i where (x', y') is a fixed system. Then, for the 
transonic case (c2 < V < Ci), the displacement and stress 
fields are given in terms of the so-called potential functions 
Wi(z\ = x + ifixy) and W2(x + m2y) (Eringen and Suhubi, 
1975; Georgiadis, 1986) 

ux=2ReWl + 2m2W2, (la) 

uy=-2pilmWl-2W2, (lb) 

ax = 2ii[(2^ + ml+\)ReW[+2m2W2\ (\c) 

ay = 2^[-(l-m2
2)RcW'l-2m2W2], (Id) 

Txy = 2lx[-2^\mW[-(\-m2
2)W2], (\e) 

M2)V2 and m2 (M\ - 1)1/2 are real where fii = (1 
numbers. 

The boundary conditions of the problem can be written as 

oy(x,0)= —P sina 5(x), 

Txy(x,0)= -P cosa 5(x), 

(2a) 

(2b) 

where 5(») is the Dirac delta function, and the angle a defines 
the inclination of the load, as shown in Fig. 1. Introducing 
Eqs. (2) into (1) and then eliminating the function W2 (x) from 
the resulting system yields a relation between the real and 
imaginary parts of the function W[ 

RzW[ W=H'{}a-Zi Hx)+7^% ImWi (x), (3) 
2ix(l-m$y v-mr 

W2 (x + m2y) = — J- [(l/2)cosa 

jx(\-m2) 

+ W\m2(R*)-l'f(oL,m2)\ 

P^(l-m2
2)-f(a,m2) 1 •8(x + m2y) 

TTflR x+m2y 
-. (8) 

In a similar way, we can find the functions ReW^Zi), 
lmWi(zi), and W2(x + m2y), which are required for the 
determination of subsurface displacements, 

RzWdZx)=P'{(a'Zl] W,m2Aog(rx)-(\-ml)2'd,], 
2-irtxR 

P'f(oc,m2) 

(9a) 

I m t t ^ U i H * r v " l / [4j8i/»2'gi + ( l - ^ ) " - l og ( / - 1 ) ] , 
27T/XK 

(9b) 

W2(x+m2y) ••— j - [(1/2) cosa 
\i(\-m2) 

+ W2m2(R*yl-f(a,m2)} 

•H(x+m2y)-2l3l(l-m
2
2)~

i'A-log(\x+m2y\), (10) 

where/(a, m2) = sina • (1 - m2) - 2 cosa • m2. 
The boundary value problem in (3) is a Riemann-Hilbert 

problem (Gakhov, 1966) and can be solved by utilizing the 
Hilbert transform and elements from the theory of singular 
integral equations (Tricomi, 1985). By applying the operation 
Im W[ (x) = \1 „ [Re W[ (T)/TT(X - r)]dr to (3), we get a singular 
IE which has the solution 

ReWt (x) = 
P-f(a,m2) 

2fiR* 
(l-„t)'« (Jc>+^i (4) 

where R* = (1 - m2
2f + \60\m\- Then, lmW[(x) follows 

from (3), whereas W2' (x) may be obtained from Eqs. (1) and 
(2). Finally, the functions ReW\(x), ImWi(x), and W2(x) are 
found by integrating the previous functions and omitting con­
stants of integration, i.e., rigid-body displacements. 

The next step involves evaluation of the functions ReWl(z\), 
lmW{ (z\) and W2(x + m2y) which enter (1) and give the 
stresses. The first two functions result from RtW[ (x) through 
the Schwarz integral formula (Churchill et al., 1974) 

Wiizri^ReWiiz^+ilmWazi) 

PiyReW'i (T) + i(x-r)'ReWi (T) 
7T J _ (T-x)2 + (32y2 dr. (5) 

In combining (4) and (5) integrals which need to be evaluated 
are found in Tables (e.g., Petit Bois, 1961), and finally we 
obtain 

ReW,(«i) = 
Bx+ir l(3[Ay 

x' + fty 
. 2 , ,2 (6a) 

where/-, = (x2 + P\y2)U2, 0i = tan_103i.y/x)> 0 < 0, < w, 
and H(') is the Heaviside step function. 

Neither Cole and Huth (1958) nor Eringen and Suhubi (1975) 
give expressions for RtW[, \u\W[, ReM^i, lmW\ (ourEqs. (6), 
(9)), but their expressions for W2, W2 are identical with our 
Eqs. (8), (10). However, as will be shown in the next section, 
the final expressions for the stress and displacement fields given 
by these authors are incorrect. 

Results and Conclusions 
Having available the functions given by Eqs. (6)-(10), one 

can readily obtain the stress and displacement field by sub­
stituting in Eq.(1). In particular, the expressions for the surface 
displacements uy(x, 0), ux(x, 0) and the normal stress im­
mediately beneath the load ay(0, y) are found to be 

uy(x,Q) = -

1 
(\-ml

2) 

&\(l-m\)A'f(a,m2) 

•KR* 

4P2m2(\ + m2
2)>f(a,m2) 

R* 

log(lxl) 

'H(-x) , (ID 

, m 2P(3lm2(l+m2
2)'f(a,m2) ux(x,0) = ^, ' log(lxl) 

ix(\-ml
2) 

-KflR 

f(a,m2) 
R* 

I (1 - m2)3 + 8fi2m2] + cosa- m2 

• ll-m-x)], (12) 

I m l ^ . U , ) : TT-'AX +sd\ 
Piy)x2 + p\y2 /3,y - ^ - . (6b) 

where the constants A and B are given as 

A=P(2y,R*y'.f(a,m2)'(\-m
2
2)

2, 

B = P(2irixR*)~l-f(a,m2)'4(llm2. 

We also find 

(la) 

(lb) 

oy(Q,y) = 
P(\-m2

2)-f(a,m2) 
[ 4 | 8 f - ( l - f f i l ) 1 -

y 

--^\-[{\/2)cosa + ^]m2(R*)-l.f(a,m2)}.b(m2y). 
(\-m2) 

(13) 

Equations (11)—(13) differ significantly from the correspond­
ing expressions given by Cole and Huth (1958) and Eringen 
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and Suhubi (1975). These researchers do not give enough detail 
in their analyses for the cause of the difference to be identified 
with certainty, but a possible source of error could be an 
incorrect separation of their complex potentials into real and 
imaginary parts. 

A check on the correctness of the present analysis and results 
are provided by our previous findings on the asymptotics of 
moving contact zones (Georgiadis and Barber, 1993). For the 
case of normal load, i.e., when a = ir/2, and for the uy(x, 
0) displacement (which was utilized as a Green's function in 
Georgiadis and Barber, 1991), the Cole/Huth expression is in 
error by a factor (2/Ml) multiplying the H{ -x) term. 

With this correction, the asymptotic behavior of the stress 
and displacement field at the edges of the moving contact zone 
becomes consistent with that obtained in all other published 
solutions of elastodynamic crack and contact problems (Brock, 
1977; Freund, 1979; Burridge et a l , 1979; Georgiadis, 1986; 
Robinson and Thompson, 1974) involving the edge of a crack 
or contact zone moving at a speed in the transonic range. 

In closing, we mention that the respective transient problem 
was considered by Payton (1967). In principle, one could get 
the present steady-state results by Payton's analysis, as time 
tends to infinity in the transient problem. However, the latter 
work does not provide pertinent results for field quantities in 
the interior of the half-space and, moreover, only the hori­
zontal surface displacement caused by a normal load was 
worked out. Notice that we provide results for the more general 
case of an inclined load and stresses and displacements at all 
field points. It is felt thus, by also taking into account the very 
complicated expressions in Payton's analysis, that a direct 
steady-state analysis (as the present one) is preferable in some 
instances over a limiting procedure of exploiting already ob­
tained transient results. This is especially true when one tries 
to correct some established and well-known analyses, as we 
did in the present case. 
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Capillary-Gravity Waves Generated 
Against a Vertical Cliff in a Fluid of 
Finite Depth 

A. K. Pramanik5 and D. Banik5 

1 Introduction 
This is the problem of two-dimensional capillary-gravity 

waves generated by some free surface oscillatory pressure dis­
tribution which moves with a uniform velocity. The fluid is 
incompressible, inviscid and is of uniform finite depth h and 
is bounded on one side by a vertical cliff. 

This problem without the cliff has been studied by Pramanik 
and Majumdar (1984). The present problem with infinitely 
large depth has been discussed by Pramanik and Majumdar 
(1988). To understand the motivation of our paper we state 
the main results of the paper of Pramanik and Majumdar 
(1984). The ultimate steady state consists of six progressive 
waves, four gravity waves, and two capillary waves. There 
exists in the (a, b, c) space, where a, b, c are the nondimensional 
forms of the parameters of the problem, a surface called the 
critical surface, which divides the space into several regions in 
each of which the propagation is different. 

The aim of the present paper is (i) to fully characterize the 
critical surfaces for all possible values of the parameters, (ii) 
to determine the waves for all possible values of the parameters, 
and (iii) to find the effect of the cliff on the reflection of waves. 

As is already stated in Pramanik and Majumdar (1984), the 
waves were determined on the basis of two sections of the 
critical surface by the plane c = constant. However, the com­
plete characterization of critical surface is possible. In this 
paper the critical surfaces are determined for all possible values 
of a, b, c. It is found that these surfaces divide the whole 
positive quadrant of the (a, b, c) space into five distinct regions 
for {a, b, c) in each of which the propagation of waves is 
different and the waves for all cases are determined. It is known 
that for («, b, c) outside these surfaces, the waves are with 
constant amplitude while the amplitude is unbounded for (a, 
b, c) on the critical surfaces. 

Previously, in linear theory, these waves for (a, b, c) on 
critical surfaces were not of interest where essentially nonlinear 
theory is to be developed for the complete understanding of 
the waves. However, to develop the nonlinear theory (Akylas, 
1984) one has to take into account the order of the unbound-
edness on the critical surfaces. Motivated by this idea, waves 
are also determined for (a, b, c) on the critical surfaces. 

Regarding the effect of the cliff it is found that one gravity 
wave is reflected for certain values of (a, b, c). In (a, b, c) 
space there is a surface called the surface of reflection, such 
that for (a, b, c) on one side of this surface, including those 
on the surface, reflection occurs. And the amplitude of the 
reflected wave remains the same as the original waves for all 
(a, b, c), excepting for those forming a curve on the surface 
of reflections. For (a, b, c) of this curve, the amplitude is 
found to be reduced. 

2 Formulation and Formal Solution 
We take the x-axis along the undisturbed free surface and 
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and Suhubi (1975). These researchers do not give enough detail 
in their analyses for the cause of the difference to be identified 
with certainty, but a possible source of error could be an 
incorrect separation of their complex potentials into real and 
imaginary parts. 

A check on the correctness of the present analysis and results 
are provided by our previous findings on the asymptotics of 
moving contact zones (Georgiadis and Barber, 1993). For the 
case of normal load, i.e., when a = ir/2, and for the uy(x, 
0) displacement (which was utilized as a Green's function in 
Georgiadis and Barber, 1991), the Cole/Huth expression is in 
error by a factor (2/Ml) multiplying the H{ -x) term. 

With this correction, the asymptotic behavior of the stress 
and displacement field at the edges of the moving contact zone 
becomes consistent with that obtained in all other published 
solutions of elastodynamic crack and contact problems (Brock, 
1977; Freund, 1979; Burridge et a l , 1979; Georgiadis, 1986; 
Robinson and Thompson, 1974) involving the edge of a crack 
or contact zone moving at a speed in the transonic range. 

In closing, we mention that the respective transient problem 
was considered by Payton (1967). In principle, one could get 
the present steady-state results by Payton's analysis, as time 
tends to infinity in the transient problem. However, the latter 
work does not provide pertinent results for field quantities in 
the interior of the half-space and, moreover, only the hori­
zontal surface displacement caused by a normal load was 
worked out. Notice that we provide results for the more general 
case of an inclined load and stresses and displacements at all 
field points. It is felt thus, by also taking into account the very 
complicated expressions in Payton's analysis, that a direct 
steady-state analysis (as the present one) is preferable in some 
instances over a limiting procedure of exploiting already ob­
tained transient results. This is especially true when one tries 
to correct some established and well-known analyses, as we 
did in the present case. 
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1 Introduction 
This is the problem of two-dimensional capillary-gravity 

waves generated by some free surface oscillatory pressure dis­
tribution which moves with a uniform velocity. The fluid is 
incompressible, inviscid and is of uniform finite depth h and 
is bounded on one side by a vertical cliff. 

This problem without the cliff has been studied by Pramanik 
and Majumdar (1984). The present problem with infinitely 
large depth has been discussed by Pramanik and Majumdar 
(1988). To understand the motivation of our paper we state 
the main results of the paper of Pramanik and Majumdar 
(1984). The ultimate steady state consists of six progressive 
waves, four gravity waves, and two capillary waves. There 
exists in the (a, b, c) space, where a, b, c are the nondimensional 
forms of the parameters of the problem, a surface called the 
critical surface, which divides the space into several regions in 
each of which the propagation is different. 

The aim of the present paper is (i) to fully characterize the 
critical surfaces for all possible values of the parameters, (ii) 
to determine the waves for all possible values of the parameters, 
and (iii) to find the effect of the cliff on the reflection of waves. 

As is already stated in Pramanik and Majumdar (1984), the 
waves were determined on the basis of two sections of the 
critical surface by the plane c = constant. However, the com­
plete characterization of critical surface is possible. In this 
paper the critical surfaces are determined for all possible values 
of a, b, c. It is found that these surfaces divide the whole 
positive quadrant of the (a, b, c) space into five distinct regions 
for {a, b, c) in each of which the propagation of waves is 
different and the waves for all cases are determined. It is known 
that for («, b, c) outside these surfaces, the waves are with 
constant amplitude while the amplitude is unbounded for (a, 
b, c) on the critical surfaces. 

Previously, in linear theory, these waves for (a, b, c) on 
critical surfaces were not of interest where essentially nonlinear 
theory is to be developed for the complete understanding of 
the waves. However, to develop the nonlinear theory (Akylas, 
1984) one has to take into account the order of the unbound-
edness on the critical surfaces. Motivated by this idea, waves 
are also determined for (a, b, c) on the critical surfaces. 

Regarding the effect of the cliff it is found that one gravity 
wave is reflected for certain values of (a, b, c). In (a, b, c) 
space there is a surface called the surface of reflection, such 
that for (a, b, c) on one side of this surface, including those 
on the surface, reflection occurs. And the amplitude of the 
reflected wave remains the same as the original waves for all 
(a, b, c), excepting for those forming a curve on the surface 
of reflections. For (a, b, c) of this curve, the amplitude is 
found to be reduced. 

2 Formulation and Formal Solution 
We take the x-axis along the undisturbed free surface and 
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thej'-axis vertically upwards. The system being initially at rest, 
waves are produced by the continued application of the free 
surface pressure distribution p(x, t) = f(x) e"*' which at the 
same time moves along the positive x-axis with a uniform 
velocity V. Let <p(x, y, t) be the velocity potential, t](x, t) the 
surface elevation, p the density, and T\ the surface tension of 
the fluid. Then in a moving coordinate system in which the 
origin initially coincides with the cliff and then moves with the 
velocity V, we have the following linearized initial value prob­
lem: 

<Pxx+<Pyy = 0 i n 0<X<OO, -h<y<0, t>Q 

- + Dip + gr] = — r]xx and D-q = <py where D=[——V-
P P \ot Bx 

atj> = 0 

= 0, V>A~Vt,y, 0 = 0 , <py(x, -h,t). 

<p(x,y, 0) = 0, r,(x, 0) = 0. 

Following the usual procedure as in Pramanik and Majumdar 
(1988), the integral representation for t) with dimensionless 
variables can be obtained. For convenience we introduce the 
notation g,„ [A, x] = | " F,„e''(/"+Xx)c?X, m = 1 to 4 and then 
we get 

1 
i? = £'« 

where 

I\=g\[a + 2bk, x], I2 = g2[a + 2b\, x], I3 = g,[a+b\, x], 

h = gi[-o + b\, x], I5 = gi[a, x], I6 = gi[a, x], 

h = g}[o + b\x], 

h = gA-o + b\,x],I9 = gi[a, -x], 

I\o = g2\a, -x], 

Iu=gilo-b\, -x],Il2 = g2[-o-b\, -x], 

I\i = gi[a-2b\, -x], 

Iu = g4[a-2b\, -x], Il5 = gi[o-b\, -x], 

Ji6 = gd-o-b\, -x] 

(1) 

and 

Fi.i = 

(h 
a = u>\ -

/ ± (X)=-

b = 

A(X) 
a + bX^Fa 

\h tanh A 

>^3 , 
/-(X) 

a - b\ T a' 

[ f(hx)e±iXxl,dx 
Jo 

(ghY Pgh2 <7=[(X + cX3) tanhX] 1/2 

3 Steady-State Waves 
The steady-state waves at far field from the pressure segment 

will be determined by evaluating the integrals in (1) for large 
values of t and IJCI . The ultimate steady state comes from the 
integrals as contributions from the residues at the real positive 
poles of the integrands. These poles are the solutions of the 
following equations: 

a + b\-a = 0, a-b\ + (j = 0anda-b\-o = 0. (2)-(4) 
Pramanik and Majumdar (1984) have studied in detail the 
distribution of the roots of Eqs. (2), (3), and (4). However, 
for our purpose we state the results in short. Equation (2) has 
in general three real positive roots Xi, X2, A3, say (A] < A2 < 
A3); Eq. (3) has two such roots A4, A5, say (A4 < A5); and Eq. 

(4) has always one such root A6. The existence of the roots 
depends upon the values of the parameters a, b, c. This dis­
tribution can be known by a study of the cases where some 
roots coalesce. Following Pramanik and Majumdar (1984), the 
critical cases have the following representation: 

a = *i(A) for 0 <A<A' 
6 = *2(X) for 0<X<oo 

a = - ^ [ ( X ) for X'<X<oo and 

where 

* i ( X ) : 

*2(A): 

(A-cA3)tanh A-A(A + cA3) sech2A 
2[(X + cX3)tanhX]1/2 

(1 + 3cX2) tanh A + (A + cA3) sech2 X 

2[(A + cA3)tanh A]1/2 

where A0 is the point of inflexion of the curve a and A', the 
value of A for which the straight line m = b\ is a tangent to 
the curve m = a. These equations represent some surfaces, 
called the critical surfaces/(a, b, c) = 0 in (a, b, c) space. 
In general such a surface is divided in three portions, say Si, 
S2, and S3, which represent the cases \x = A2) A2 = A3, and 
A4 = A5, respectively. 

To determine the nature of the critical surfaces, we take 
two sections of these surfaces as in Pramanik and Majumdar 
(1984) by the planes c = .01 and c = 1 which are respectively 
shown in Figs. 1 and 2 where d , C2, and C3 are the sections 
of Si, S2> and S3, respectively, in Fig. 1 and C3' is the section 
of S3 in Fig. 2. These two sections as also the nature of the 
frequency curve for different values of c give some indications 
about the variation of the surface for different values of c. It 
is apparent that for c > 1/3, Si and S2 are not present. For 
c < 1/3 all the portions Su S2, and S3 are present such that 
in every section a loop is present. As c increases from zero to 
1/3, while the point A moves along a line L parallel to the c-
axis starting from the point a = 0, b = l , c = 0, the positions 
of the points A0 and A^ change such that both the points A0 

and A, approach to the line L along the space curves 17, f7, 
respectively. Consequently, the area of the loop approaches 
to zero. To verify this statement we consider the locii of the 
points A0, Ax which are, respectively, given by 

Fig. 1 Sections of the critical surface and surface of reflection in the 
(a, b) plane for c = .01 
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Section of 
Critical surface 

Fig. 2 Sections of the critical surface and surface of reflection in the 
(a, b) plane for c = 1 

ff"=0, a = * , (X) , b = V2(\) 

*i(X) = 0, ft = * 2 (X) . 

(5) 

(6) 

From each set of Eqs. (5), (6) it is clear that c can be expressed 
as a function of X and then a, b will be so. Thus, Eqs. (5) and 
(6) respectively represent, in the parametric form, the two 
previous space curves F7, T\ in the (a, b, c) space. Now it is 
easy to verify by numerical calculation that the points A0 and 
Ax approach to the line L as c increases from 0 to 1/3. 

The above descriptions give the clear idea about the shape 
of the critical surfaces. Thus, the whole positive quadrant of 
the (a, b, c) space is divided into five three-dimensional distinct 
regions R„{n = 1 to 5) among which the regions Ru R2, and 
i?3 exist only below the plane c = 1/3. Now it is easy to say 
that only the surface S3 is intersected by the plane c = 1/3 
into the surfaces S3] and S32 which are, respectively, below and 
above the plane c = 1/3. Below this plane the surfaces Si and 
S31 are intersected each other by a space curve, say 17. By this 
curve [J, Si is divided into two parts, say S{, S", of which only 
Si' contains the space curve [7. Similarly, S3) is divided into 
two parts S31 and S31 of which only S^ contains the space 
curve 17. 

The distributions of the roots in the regions, on the surfaces 
and on the space curves are respectively shown in the following 
schemes: 

Regions: R{ R2 « 3 /?4 R$ 
Roots: X! Xi,X2 X1.X2.X3 X3,X4 X3 

X6 X3,X6 X4.X5.X6 X5,X6 X6 

Surfaces: S( S" S2 S3'i 
Roots: Xi = X2 Xi = X2 X2 = X3 X4 = X5 

X3,X6 X3,X4,X5,X6 Xi,X6 Xi,X2,X3,X6 

S31 S 3 2 

X4 — X5 X4 = X5 

X3,X6 X3,X6 

various surfaces, and on the space curves mentioned above. 
It is known Pramanik and Majumdar (1984) that an integral 
gives a steady-state wave with constant amplitude when the 
poles are distinct i.e., for (a, b, c) in the regions. For (a, b, 
c) on the surfaces where some of the poles are coincident, the 
corresponding integral gives a wave with an unbounded am­
plitude. However, the order of this unboundedness is different 
for different surfaces. To determine this order we consider the 
integral In. Following Pramanik and Majumdar (1984) it can 
be shown that for each double pole on the surfaces, the asymp­
totic value of In is of the order tul when t — °°. For (a, b, 
c) on [7, three poles are coincident. To calculate In we use 
the transformation m = a + b\ - a. Since the main contri­
bution comes from the neighborhood of X = X0, we can write 

j.X0 + 

J x „ _ 

A (A) 
(a + b\-a) 

JUo-b\)t- u]dK, where 0 < e « l . 

Now using the fact ff'(Xo) 
get 

1 

b,a"{\0) = 0, ff'"(X0) > 0, we 

(X-X0)V"(X0). 

So 

Ai = 
W (Xo)]1 [f+ 

- n o 

(X)e' 
I m 15/3Sgnw 

dm 

/ ( - 5 / 3 ) ! : / + ( X 0 ) e / ( ' " - v ¥ / 3 a s r - . o o . 

'(X0) 

We now like to say something about the calculation of the 
integral I15, since in the process of this calculation some typical 
feature of the problem comes out. For this purpose we use the 
transformation 

•b\. (7) 

There arise several cases in each of which the curve of trans­
formation (7) has different shape and thus the asymptotic 
values are different. These cases are as follows: (i) 0 < b < 
b0, c < 1/3; (ii) b0 < b < 1, c < 1/3; (hi) b > 1 for any 
value of c; (iv) b < 1, c > 1/3 where rj0 is the value of b 
corresponding to X = X0. Since for the cases (i), (iv) the curve 
of transformation (7) has no extreme, by the usual method we 
get the asymptotic value of Ii5 as follows: 

W- (X6) 
Iis=—. o;[MX6)-6X6]/-X6x] a s /— 00. 

[o'(K)+b] 

But since for the case (ii) the curve of transformation (7) has 
two extreme points, one maximum, say a{ and other minimum, 
say a2, the asymptotic value of Il5 depends upon the position 
of the pole of the integrand X6 relative to ai or a2. To find 
the position of X6 with respect to ax or a2 we consider the case 
X6 = «! or X6 = a2 which is represented by a' = b and a = 
a + b\. 

This can be regarded as a surface, called the surface of 
reflection (the meaning of this term will be clarified later) in 

Space curves: 
Roots: Xi = X2 = X3,X6 

f? 17 
Xi,X2-X3,X4-X5,X6 Xi = X2,X4 = X5,X3,X6. 

We are now in a position to calculate the asymptotic values 
of the integrals in (1) for large time and distance from the 
origin in terms of the residue contributions at the poles. Now 
in a particular integral the poles occur in various ways for 
various values of the parameters a, b, c. Accordingly, the same 
integral has different values for a, b, c in various regions, on 

the parametric form in (a, b, c) space in the present case. The 
section AB0C of this surface by the plane c = .01 is shown in 
Fig. 1, where the point BQ corresponds the point of inflection 
X = Xo and the equation to its locus for c < 1/3 is given by 
a" = 0, a' = b and a = a + b\. 

This represents, in the parametric form, a space curve 17 in 
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(a, b, c) space which divides the surface of reflection into two 
parts, say T and T' of which T is confined between L and 

For other values of c, i.e., c > 1/3, we get a similar surface 
of reflection whose section AD by the plane c = 1 is shown 
in Fig. 2. Actually this is the continuation of the previous 
surface of reflection. But in this case, T is absent because the 
point Bo approaches to the line L as c increases from 0 to 
1/3. It is numerically verified from the equations representing 
the locus of B0. 

The above descriptions give the clear idea of the surface of 
reflection for all values of c. 

So for the points («, b, c), where c < 1/3, between the axis 
of b and T the asymptotic value of Iis is given by 

; / a s /— 00 where / = — • W-(K) , / [ |<7( \ 6 ) -6X 6 )r-X 6 x] 

W'(K)+b] 

Also, for the points (a, b, c), where c < 1/3, between Tand 
T', Ils — — / as / — 00. For the points (a, b, c) where c < 
1/3 in the three-dimensional region bounded by the plane pass­
ing through B0 and parallel to the (b - c) plane, the (a -
c) plane and the surface T', Ils =* / a s t — 00. 

Above the plane c = 1/3, Ils = ± / as t — 00 according 
as the points (a, b, c) lie on the left or right to the surface of 
reflection. For the points (a, b, c) on the surface T excepting 
the space curve 17 and on T' 

/ l 5 = - 2b 
. g'UffO^l-^l'-Vl a s ; —00. 

Also for the points (a, b, c) on the space curve IJ, the asymp­
totic value of /15 is given by 

T ™L<M. gflMV-'-Nii'-Vi as f-00. 
6b 

From the above calculations it follows that for (a, b, c), on 
the critical surfaces, the asymptotic values of the integrals 
become unbounded and the order of the unboundedness is like 
tW2 where two roots coincide and like tin where three roots 
coincide. Now for (a, b, c) in a region R„, the asymptotic 
values of the integrals are bounded leading to waves of constant 
amplitude. In the following we write down the waves. At first 
we write down the waves for (a, b, c) in the region R3: 

r} = 7)) + 773 + r/5 + ifr as x-~ 00 and ?— 00 

= 1)2 + V4 + V6 + Vr as Jc— - °° and /—• 00 
(8) 

where 

m = / / + (X 1 ) e ' ' ( a , ~^ ) , t ) 3 = / /+(X3)e ' ( a t-x3-), 

r/5=-//_(X5)e' '<al + X5Â , 

IJ2= - 7 / + ( X 2 ) e i ( a t - x ^ , VA = H_(\4)e
m+x*x), 

1?6 = G(X6)e / < a , +V ) 

if±(X) 
i?r=G(X6)e , [<"-m6) '-x6J (1 and H± = 

2pgh[a'(\)-b}' 

G(X)=; 
if-(X) 

2pgh[a'(k)+bY 

The wave system for the case when the values of the pa­
rameters a, b, c of the problem are such that the point («, b, 
c) lies in the other regions is easy to determine. This is the 
same wave system as expressed in (8), only the wave corre­
sponding to a pole not occurring in a region being deleted for 
that region. 

The waves r\„{n = 1 to 6) are the original waves created by 
the source as found in the unbounded fluid Pramanik and 
Majumdar (1984). The wave t\r is an addition to this system 
due to the existence of the cliff. It is obviously seen that rfr is 

the reflection of the wave tj6 on the cliff. Among the six waves 
generated by the source, only the wave ?y6 moves towards the 
cliff. So it must be reflected on reaching the cliff. Now the 
condition by which it reaches the cliff is obvious and its group 
velocity is greater than the velocity of source. One can verify 
that this is the same condition that the points («, b, c) to the 
left of the surface of reflection. Thus, occurrence of reflection 
is physically reasonable. However, it is seen that the amplitude 
of the reflected wave is the same as the original wave excepting 
(a, b, c) on the curve PT where the amplitude of the wave i\r 

is reduced than the original wave. This seems to be a striking 
result. It is to be noted that we have dealt with the linear theory 
in an inviscid fluid. There is no obvious reason for the reduction 
of the amplitude in the reflected wave r]r. 
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Introduction 
Many engineering structures are comprised of more than 

one material. The strength of composite materials is influenced 
by the orientation of existing cracks with respect to the bi-
material interface. A number of solutions for the stress and 
displacement fields for a crack lying along bimaterial interfaces 
have been obtained for isotropic materials by Williams (1959) 
and Rice and Sih (1965). Extensions to anisotropic elasticity 
have been made by Bogy (1972) and recently by Ting (1986, 
1990). All these studies of in-plane problems have shown that 
the stresses share the inverse square root singularity of the 
crack and, in addition, exhibit an oscillatory behavior as the 
crack tip is approached. Recently, Ma and Hour (1989, 1990) 
investigated the antiplane problems of two dissimilar aniso­
tropic wedges and an inclined crack terminating at a bimaterial 
interface. They found that the order of the stress singularity 
is always real for the antiplane anisotropic problems. 
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of reflection whose section AD by the plane c = 1 is shown 
in Fig. 2. Actually this is the continuation of the previous 
surface of reflection. But in this case, T is absent because the 
point Bo approaches to the line L as c increases from 0 to 
1/3. It is numerically verified from the equations representing 
the locus of B0. 

The above descriptions give the clear idea of the surface of 
reflection for all values of c. 

So for the points («, b, c), where c < 1/3, between the axis 
of b and T the asymptotic value of Iis is given by 
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tW2 where two roots coincide and like tin where three roots 
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values of the integrals are bounded leading to waves of constant 
amplitude. In the following we write down the waves. At first 
we write down the waves for (a, b, c) in the region R3: 
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i?r=G(X6)e , [<"-m6) '-x6J (1 and H± = 

2pgh[a'(\)-b}' 

G(X)=; 
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2pgh[a'(k)+bY 

The wave system for the case when the values of the pa­
rameters a, b, c of the problem are such that the point («, b, 
c) lies in the other regions is easy to determine. This is the 
same wave system as expressed in (8), only the wave corre­
sponding to a pole not occurring in a region being deleted for 
that region. 

The waves r\„{n = 1 to 6) are the original waves created by 
the source as found in the unbounded fluid Pramanik and 
Majumdar (1984). The wave t\r is an addition to this system 
due to the existence of the cliff. It is obviously seen that rfr is 

the reflection of the wave tj6 on the cliff. Among the six waves 
generated by the source, only the wave ?y6 moves towards the 
cliff. So it must be reflected on reaching the cliff. Now the 
condition by which it reaches the cliff is obvious and its group 
velocity is greater than the velocity of source. One can verify 
that this is the same condition that the points («, b, c) to the 
left of the surface of reflection. Thus, occurrence of reflection 
is physically reasonable. However, it is seen that the amplitude 
of the reflected wave is the same as the original wave excepting 
(a, b, c) on the curve PT where the amplitude of the wave i\r 

is reduced than the original wave. This seems to be a striking 
result. It is to be noted that we have dealt with the linear theory 
in an inviscid fluid. There is no obvious reason for the reduction 
of the amplitude in the reflected wave r]r. 
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one material. The strength of composite materials is influenced 
by the orientation of existing cracks with respect to the bi-
material interface. A number of solutions for the stress and 
displacement fields for a crack lying along bimaterial interfaces 
have been obtained for isotropic materials by Williams (1959) 
and Rice and Sih (1965). Extensions to anisotropic elasticity 
have been made by Bogy (1972) and recently by Ting (1986, 
1990). All these studies of in-plane problems have shown that 
the stresses share the inverse square root singularity of the 
crack and, in addition, exhibit an oscillatory behavior as the 
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In this study, plane problems for bonded dissimilar half-
planes of anisotropic material containing an interfacial crack 
are considered. The solutions obtained in this paper is valid 
only for anisotropic bimaterial having monoclinic symmetry 
with the axis of symmetry being the *3-axis. Here the problem 
of displacement prescribed on both crack faces, and the prob­
lem of traction prescribed on one face with displacement pre­
scribed on the other, is solved. The problem is solved by 
application of a generalized Mellin transform in conjunction 
with the complex stress function. The dependence of the order 
of the stress singularity on the material constants and boundary 
conditions is studied in detail. The result shows that the order 
of stress singularity has reduced dependence on material con­
stants. The full-field solutions in the Mellin transform domain 
are obtained explicitly. It is very interesting to find that the 
solutions of the displacement prescribed problems can be ob­
tained from the traction prescribed problems by a simple sub­
stitution. 

Explicit Solutions in Mellin Transform Domain 
The two-dimensional stress-strain relations for a homoge­

neous anisotropic body are 

eai3 = s'!&Oytj. (1) 

Because of assumed elastic symmetry about x3 = 0 for the 
plane problem, the six independent material constants are s\\, 
sM. s'2, s\l, sil, sll- The solution of displacement for the two-
dimensional problem has the following form in terms of com­
plex potentials 

ur+iue = e-ie 2 l&c$Uza)+pJiUza)}, (2) 

ldr, 

{ oo 

o 

(r,e)rsdr, 

(3) 

(4) 

where s is the complex transform parameter. The physical stress 
and displacement fields are recovered as follows: 

i /»c + 700 

<r«ti(r,6) = — crali(s,d)r~s-2ds, 
l*i Jc_,-oo 

ua(r,6) = — ua{s,0)r~s-,ds, 
Zm J„_,„ 

(5) 

(6) 

where Re (s) = c defines the path of integration. The choice 
of c has to be determined by the regularity of their integrands. 
Direct use of the transforms with the complex representation 
of the solution leads to (Bogy, 1972) 

9(s,d)-i&re(s,d)=-2(s+l)e-"> J] 
a = l , 2 

where 4>a(s) is defined as 

<Ms)= 1 ti«(za)z
s
adza. 

JO(0) 

For convenience, define 

Ha(s,d)=(eie + lae~ieVs"\ 

(9) 

(10) 

where Ua (a = 1, 2)_are arbitrary analytic functions of the 
complex variable za, tta is complex conjugate and primes de­
note derivatives with respect to the indicated arguments. The 
relation between z and za is z = re'e, za - z + yaz. The a n c i 
complex constants <5a, pa, and ya are defined in terms of the 
components of the elasticity tensor $2$; see Bogy (1972) or Ma 
and Luo (1992). We now take Mellin transform of r1 and r 
times the stress and displacement, respectively. 

T(s,8) = [a„(s,6) - to*(s,0)]/2(s+l), (11) 

D(s,6) = ur(s,d) + iiie(s,d). (12) 

Then (7) and (8) can be rewritten as 

D(s,6) = ew J ] [5aHa(s,0)<l>As)+PaHa(s,e)$a(s)}, (13) 
a = l , 2 

T(s,d) = -e~ie ^ 11°H* (*.*)*« (s)+Ha (s,ej4a (s)}. 
o = l , 2 

(14) 

We consider an anisotropic bimaterial interface crack, sub­
jected to prescribed displacements at the crack faces 9 = ±ir 
as shown in Fig. 1. Perfect bonding conditions along the in­
terface 0 = 0 are ensured by the stress and displacement con­
tinuity conditions. It is very interesting to find that the form 
of solutions for the displacement prescribed problems are very 
similar to that of the traction prescribed problems solved by 
Ma and Luo (1992). For convenience, we define the following 
material constants: 

7da = Sa/Pt*. &da = la/pa, P r f a = l / P a > (15) 

X r f = 
7d2&d 1 ~ 7rf 1 &d2 _ Pd 1 - Pd2 

7d\-yd2 jdi-yd2 

<5 r f l-<5d2 

nd=Vd= 

Zd=Zd= 

7di-Jd2 

7d2Pdl-ydlPd2 

7di-7rf2 

(16) 

(17) 

(18) 

The subscript d indicates the displacement prescribed prob­
lems. It can be proved that ijd and £rf are all real values and 
we also find the following relations: 

Xd = Ae, £rf = T7e, !/</=?«, (19) 

where 

11 _11 _11 _12 _12 - 2 2 Q J I ( - 1 1 Q t I CI' C C 
311 i 3 2 2 J S 1 2 J^12 J :=>22 >^12 

Material 1 

< < < < < 

ur(s,6) + iMs,6) = e-ie J] 

a = l , 2 

M a (*) 
Pa<t>a(s) 

(ei6 + yae-ier+r 
' + 7ae' 'V+ 1 (7) 

Material 2 

=n -it" =n =12' rf?" =22~ 
-^11 ) J 2 2 i ^ 1 2 J ° 1 2 i^22 . ^ 2 2 

Fig. 1 Configuration of bonded anisotropic dissimilar interface crack 
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1 
: T / £ - I A I 2 ' 

(20) 

7261-7162 P\-Pi S22 

71-72 Ti -72 7i72 

- Si - 52 T / C 1 I ° 2 2 

rj = rj= = - 2 1 Su-
71-72 V 7i72 

[7i + 72-7i72(7i + 72)L (21) 

(22) 

i=i 7 2 P 1 - 7 1 P 2 

7 1 - 7 2 
= 2(Si!-S227,72). (23) 

<X = C O S 
2TT 

•md 

2ld 

Kd = 

md-2ld 

md+2ld 

(37) 

(38) 

The material constants X, r), £ are obtained for the traction 
prescribed problems analyzed by Ma and Luo (1992). It is very 
interesting to find that the solutions of the displacement pre­
scribed problems can be obtained from the traction prescribed 
problems if we perform the following substitution: 

Traction 4>a T(s) G H Ua Va ya I m i\ £ X 
Displacement pacj)a -D(s) Gd Hd Uda Vda yda ld md r\d £rf \d. 

and n is an integer number. From the condition of the positive 
definite for the material constant it can be shown numerically 
that md/2ld > 1. The similar results as shown in (32) and (33) 
are also obtained by Ting (1986). It is shown that ft, can be 
expressed in another form, 

P l hnh- 1 rid-td-r)d + Zd 

*J(Vd+Sd + Vd + Z*d)2-4^d+'Kl\2 

The order of the power-type stress singularity is X = 

(39) 

Si + 

The solutions of the displacement prescribed problem in the 
Mellin transform domain can be expressed as follows: 

- . , , „ , m p{GdVda-HdUda) 
Pa<Pa (s)Ha (s,0) = -—— — 277,—~, 2~777> 

( - 1 ) (yd2-Jdi)(l-P )UdP + mdp
i + ld) 

(24) 

(25) 

(26) 

(27) 

where 

p = e~ns+,)\ 

ld=\\d + ~Kt\2- (yd+£d)(td+rid), 

md=2\\d + \*d\
2-(r)d+C)2-(id + -n*df, 

Gd = - D (s) [{„ -£d - (£rf + r,d )p2] 

-D(s)[-\d + \d+ (\d + )C)p2] 

-D*(s)(r,d + C)-D*(s)(-2\d), (28) 

Hd = -D(s)[\d-td - (\d + ^*d)p2] 
-D(s)[-r,d + rid+ (T)d+£)P2\ 

-D*(s)(2\d)-D*(s)(-r,d-C), (29) 

Uda= 2 (1"M7rf/3['?d+ld + (^+'7d)P2] 
(8= 1.2 

Vda= S d - ^ W ^ + ^ ) ( i + / ) 
(30) 

-tfd + Vd + (nd+Zd)P], (3D 
and S^ is the Kronecker delta. The expressions for ua and oap 
now follow directly from the substitution of (24) into (7)-(8). 
This completes the formal solution for the transforms of the 
stress and displacement components. The location of the zeros 
of the characteristic function (1 
0 is found to be 

•n, 

pl)(ldp* + mdp
l + ld) = 

(32) 

or 
1 

s = n-- ±<ft, if md/2ld>\; 

s=n±i&d if md/2ld< - 1 ; 

5 = n ± a if I md/2ld I < 1, 

(33) 

where 

z=— cosh 
2ir 2ld -s" 

1+Krf 

«-d 

1, where sx denotes the zero of the characteristic function with 
the largest value in the open strip - 2 < Re(s) < - 1 . The 
order of the stress singularity X is a complex number and the 
stress fields are oscillatory in the limit r — 0. The magnitude 
of the oscillation is depend on the value ft, which is expressed 
in (36) and depends only on one material parameter nd. There 
are combinations of the material constants that will have the 
square root singularity, i.e., fid = 0, should satisfy the fol­
lowing equation: 

•kd^d-C (40) Vd~ 
Homogeneous materials obviously satisfy Eq. (40). For the 

isotropic case, we have i\d = ix/(m - 1), £<, = n and \d = 
0. Equation (39) is reduced to 

1 _ u _ ! ti(m-2){m* - 1 ) - jx\m* -2)(w- 1) 
\t,m(m* - \) + fx*m*{m- 1) 

tanh" (41) 

which is in agreement with the result obtained by Ma and Wu 
(1990). The largest value of ft, in (41) is (In V 3 ) / T T ( = 0.175), 
the same as the traction-prescribed boundary conditions. 

Next, we consider the interfacial crack problem with the 
boundary conditions of traction prescribed along one crack 
face while displacement prescribed on the other crack face. 
Thus we consider the following boundary conditions: 

2 {yaHa(s,-K)4>a(s)+Ha(s,^a{s)} = T{s), (42) 
a = l , 2 

2 {£Hi(s,-Tt)<t>l(s)+p*aHl(s,-it)Va{s)\ = -D*(s). 
a = l , 2 

(43) 

By using the Cramer's rule and after some algebraic simpli­
fications, we get 

pQa d>a(s)Ha{sfi) = - (44) 
' ( - l ) a ( 7 2 - 7 i ) Q ' 

in which Q and Qa are obtained from the determinant of eight-
by-eight matrix. The characteristic equation Q, which presents 
the dependence of the stress singularity on material constants, 

(34) 

(35) 

(36) 

is re 

<2= 

duced to an explicit sin 

ri + Hp2 -Hl+P2) 
xo+p2) -i-w2 

l-p2 0 

0 \-p2 

iple form as 

0 
1-P2 

Xrf*(l +p2) 
* t.* 2 

Vd + ZdP 

\-p2 

0 
> . * * 2 

- id ~VdP 
-\*d(l+p2) 
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x[\a*d+r,*dP
2)-\*da+w2m 

-l(l-p2)2+tt + yp2)(r,*d + ZdP2) 

•l(\-p2)2+(ri + Zp2)(C + r)dP2) 

•\\d(l+p2)2} 

-\\*d(l+p2)2}. (45) 

But Qa can only be reduced to the determinant of a four-by-
four matrix. The results are: 

the zeros of Eq. (45), but not all zeros are admissible. From 
the positive definite character of the material constant, it can 
be shown numerically that the admissible zeros are those ex­
pressed in (47), (48), and (49). The order of stress singularity 
for the mixed boundary condition can then be obtained ex­
plicitly. This is the first explicit results for the order of stress 
singularity of mixed boundary condition for anisotropic in-
terfacial crack. While for the pure traction or displacement 

Qa = 

ST(s)-\T(s)-Dmts) 
\T(s)-r,T(s)-D*(s) 
T(s)-^dD*(s)+\dD_*(s) 

-T(s)-\*dD*(s)+Z*dD*(s) 

•X( l+p 2 )+E f j ( l -5^) 7 £ ( r ) + ^ 2 ) 

- ? - 1 ? p 2 + £ ( 3 ( l - 5 a ^ X ( l + p 2 ) 

E/ i ( l -M7f l ( l - -P2) 
1 - / 7 " 

\-pL 
\~PL 

0 

y*d + Zdp
2 -Xrf(l+/72) 

(46) 

All the zeros of (45) can be obtained explicitly as shown in the 
following form: 

s = n-- + a±ifi, n-- — a±ifi, 

where 

if lg+ -<T + 16<70l<2V Q Q~ 

s=n — - + a±a, n — ~ — a±a, 

if V V + V ? <yi6q0; 

s = n-- + i(P±T), n---i(0±T), 

if^lq+-\[cf>\l\6q0\ 

s = n + i(f3±r), n~i(@±T), 

if VV-V<7 <~yl6q0; 

s = n—-±i{d-i), H ± / ( # + ?), if<?o<0, 

"2TT 
cos l(-\/q+/16q0-\Jq /I6q0), 

0 = — cosh-'(Vq+/l6q0 + \/q~ A6q0) 
2ir 

ff = — cos \-\/q+/16q0 + -\Jq /\6q0 

(47) 

(48) 

(49) 

(50) 

(51) 

2TT 

T = — c o s h T ' l V Q + / 1 6 q 0 - \ J q ~ /I6q0\, 2ir 

d = — sinh~\\] -q+/\6q0 + \l -q~/\(>q0), 
lit 

? = — sinh"'(V -q+/\6q0-\J -q~/\6q0), 

q0= -2lp2=o= M- W\2)(vk*d- IXrfl2^ 
+ i/*d + $i?d-Xx2-XXS + l, (52) 

? + = -Glp 2 =i = [(^ + l)2-4IXI2][(r, ; + ^) 2 -4 lX d *l 2 ] , 

(53) 

(54) q~ = ~ Q\P
2=-x = [(!»-€) ( ^ - f d ) - 4 J 2 . 

prescribed problems Ting (1986) also obtained the explicit re­
sults by using Stroh's formulations. For the isotropic inter-
facial crack subjected to mixed boundary condition, the 
solutions can be obtained from general results shown in (47)-
(51) by setting 

<70 = 1 + 
JX* (m- 1) 

r 

i + - t>-

p mm 

q = 4 + 

n(m*-l)_ 

li"(m-2)(m 

2 

• 2 ) 

1) 

ix(m - 1 ) 

(55) 

(56) 

(57) 

Equations (47)-(51) list all the mathematical possibility of 

This result of the order of stress singularity for an isotropic 
case is in agreement with the results obtained by Ting (1986) 
and Ma and Wu (1990). 

Conclusions 
The problem of plane deformation for a dissimilar aniso­

tropic interface crack was solved by application of the Mellin 
transform. The explicit solutions of stresses and displacements 
are obtained for traction-displacement and displacement-dis­
placement boundary conditions applied on the crack faces. It 
is very interesting to find that the solutions of the displacement 
prescribed problems can be obtained from the traction pre­
scribed problems by a simple substitution. The dependence of 
the order of stress singularity on the material constants and 
boundary conditions is expressed in explicit closed form. It is 
shown that the order of stress singularity has reduced de­
pendence on the elastic constants. It needs only one material 
parameter instead of 12 material constants for displacement-
displacement boundary conditions. The reduction in the num­
ber of elastic constants may simplify the analysis and inves­
tigation of the interface crack problem. 
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Singularity Eigenvalue Analysis of a 
Crack Along a Wedge-Shaped 
Interface 

Y. Z. Chen9 and Norio Hasebe 

1 Introduction 
Recently, there has been a resurgence of interest in the elastic 

interface crack problem. Works by Huchinson, Mear, and Rice 
(1987), Rice (1988), Mukai, Ballarini, and Miller (1990), Has­
ebe, Okumura, and Nakamura (1990), Toya (1990), and Wu 
(1990) provide examples of the recent contributions. The in­
terface crack problem between dissimilar materials was first 
studied by Williams (1959). Williams showed that the stresses 
at the vicinity of a crack tip possess singularities of type f~K, 
where r is the radial distance from the crack tip and e is a bi-
material constant. The problem of two edge-bonded wedges 
of dissimilar materials was investigated by Bogy (1971). Bogy 
used the Mellin transform to investigate the nontrivial solution 
for the two edge-bonded wedges. He studied the order of the 
singularity in the case of some particular wedge angle and the 
material constants changing continuously. 

In this paper, singularity eigenvalue analysis of a crack along 
a wedge-shaped interface is examined. The considered wedges 
are bonded along one edge and are debonding, or cracking, 
along another edge (Fig. 1). One wedge has an angle a and 
the elastic constants ix\, K\ and another wedge has ft, n2, and 
K2. Two angles are assumed to satisfy a + /3 = 2ir, and a 
changes from 0 to 2TT. The eigenvalue is denoted by E = a -
ib in the following analysis. The complex variable function 
method proposed by Muskhelishvili (1953) is used for the ei­
genvalue analysis. Comparing with the Mellin transform 
method, the proposed method is straightforward, and the ob­
tained results and eigenvalues can be directly related to the 
stress and displacement fields. It is obviously that a = 0 or a 
= 2-w corresponds to the isotropic case, and the eigenvalue for 
leading term (abbreviated as ELT) is a real one. Also, it is 
easily seen that a = ir corresponds to the conventional interface 
crack problem, and the ELT is a complex value. Contrary to 
a previous study, in this paper the angle a is changing contin­
uously and the material constants involved are assigned to be 
some particular value. Therefore, the change of ELT from a 
real value (0 < a < ac), to a complex value (ac < a < au), 
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Fig. 1 A crack along a wedge-shaped interface 

and then to a real value (cv„ < a < lit) can clearly be seen 
from the obtained numerical results. 

2 Analysis 

It is well known that the complex variable function method 
proposed by Muskhelishvili (1953) provides a most effective 
approach to analyze the plane elastic problem. According to 
this method, the stresses (axx, ayy, axy), the resultant force 
functions (X, Y), and the displacements (u, v) can be de­
scribed by two complex potentials 4>(z) and co(z) 

axx+ayy = 4Re[^(z)] 

ayy-iaxy=i(z) + ( z - z ) # ' U ) + f l ( z ) (1) 

P= - Y+iX=<j>{z) + (z-zH'(z) +U(z) (2) 

2n{u + iv) = n<t>(z)- (z-z)4>' (z)-u(z) (3) 

where $ (z) = <t>' (z) and Q(z) = co' (z), /x is the shear modulus 
of elasticity, K = 3 - Av for the plane strain problem, K = (3 
- v)/{\ + v) for the plane stress problem, and vis the Poisson's 
ratio. 

We seek the solution of the problem in some region 7? (R 
= R\ + R2, Fig. 1) surrounding by a traction-free interface 
crack. The elastic constants and the complex potentials are 
denoted by /xb KU < M Z ) , W I U ) and /x2) K2, 4>2(Z), m(z) for 
the regions R\ and R2, respectively. From Eqs. (2) and (3) the 
continuation condition of the resultant force and the displace­
ment along the positive part of real axis gives rise to the fol­
lowing relations: 

4>t(x)+wt(x) =<fe- (x)+^T<XJ (*>0) (4) 

H2(K\<I>\ {x)-at(x))=m(Ki<l>i(x)-W2(x)) (*>0), (5) 

since along the crack faces OA and OB we have 

Z = zexp(2/a) (z€OA or zeOB). (6) 

Therefore, the traction-free condition along the upper and 
lower crack faces can be expressed by 

0,(z) + (exp(2ra)- 1)1 <f>'\ (z) + w,(z) = 0 (z€OA) (7) 

02(z) +(exp(2/a)- l)z <fe (z) +o>2(z) = 0 (z€OB). (8) 

In the following analysis we let the complex potentials take 
the following expression: 

<t>l(z)=Plz
a-'b + glz

a+ib 

wdz)=slz
aJrib + hza->b (9) 

Mz)=P2Za-ib + q2z
a+ib 

o>2(z)=s2z
a+ib + t2z

a~ib (10) 

where/?!, qu S\, tx, p2, q2, s2, and t2 are complex values. In 
addition, the value E = a - ib (or a + ib) will be determined 
by the condition of a nontrivial solution of the problem and 
is called the eigenvalue for a crack problem in the bonded 
wedges. 

Substituting Eqs. (9) and (10) in (4), (5), (7), and (8) yields 
eight equations. Furthermore, after eliminating sit tit s2, and 
t2 in these equations we get the following equations: 

(1 - e, )pi - e3q, - (1 - exe2)p2 + e3q2 = 0 (11) 

Journal of Applied Mechanics SEPTEMBER 1993, Vol. 60 / 781 

Downloaded 03 May 2010 to 171.66.16.245. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Ma, C. C , and Luo, J. J., 1992, "Plane Solutions of Interface Cracks in 
Anisotropic Dissimilar Media," submitted for publication. 

Ma, C. C , and Wu, H. W., 1990, "Analysis of Inplane Composite Wedges 
under Traction-Displacement or Displacement-Displacement Boundary Condi­
tions," Acta Meehanica, Vol. 85, pp. 149-167. 

Rice, J. R., and Sih, G. C , 1965, "Plane Problems of Cracks in Dissimilar 
Media," ASME JOURNAL OF APPLIED MECHANICS, Vol. 32, pp. 418-422. 

Ting, T. C. T., 1986, "Explicit Solution and Invariance of the Singularities 
at an Interface Crack in Anisotropic Composites," Int. J. Solids Structures, 
Vol. 22, pp. 965-983. 

Ting, T. C. T., 1990, "Interface Cracks in Anisotropic Bimaterials," J. Mech. 
Phys. Solids, Vol. 38, pp. 505-513. 

Williams, M. L., 1959, "The Stresses Around a Fault or Crack in Dissimilar 
Media," Bulletin of the Seismological Society of America, Vol. 49, pp. 199-204. 

Singularity Eigenvalue Analysis of a 
Crack Along a Wedge-Shaped 
Interface 
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1 Introduction 
Recently, there has been a resurgence of interest in the elastic 

interface crack problem. Works by Huchinson, Mear, and Rice 
(1987), Rice (1988), Mukai, Ballarini, and Miller (1990), Has­
ebe, Okumura, and Nakamura (1990), Toya (1990), and Wu 
(1990) provide examples of the recent contributions. The in­
terface crack problem between dissimilar materials was first 
studied by Williams (1959). Williams showed that the stresses 
at the vicinity of a crack tip possess singularities of type f~K, 
where r is the radial distance from the crack tip and e is a bi-
material constant. The problem of two edge-bonded wedges 
of dissimilar materials was investigated by Bogy (1971). Bogy 
used the Mellin transform to investigate the nontrivial solution 
for the two edge-bonded wedges. He studied the order of the 
singularity in the case of some particular wedge angle and the 
material constants changing continuously. 

In this paper, singularity eigenvalue analysis of a crack along 
a wedge-shaped interface is examined. The considered wedges 
are bonded along one edge and are debonding, or cracking, 
along another edge (Fig. 1). One wedge has an angle a and 
the elastic constants ix\, K\ and another wedge has ft, n2, and 
K2. Two angles are assumed to satisfy a + /3 = 2ir, and a 
changes from 0 to 2TT. The eigenvalue is denoted by E = a -
ib in the following analysis. The complex variable function 
method proposed by Muskhelishvili (1953) is used for the ei­
genvalue analysis. Comparing with the Mellin transform 
method, the proposed method is straightforward, and the ob­
tained results and eigenvalues can be directly related to the 
stress and displacement fields. It is obviously that a = 0 or a 
= 2-w corresponds to the isotropic case, and the eigenvalue for 
leading term (abbreviated as ELT) is a real one. Also, it is 
easily seen that a = ir corresponds to the conventional interface 
crack problem, and the ELT is a complex value. Contrary to 
a previous study, in this paper the angle a is changing contin­
uously and the material constants involved are assigned to be 
some particular value. Therefore, the change of ELT from a 
real value (0 < a < ac), to a complex value (ac < a < au), 
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Fig. 1 A crack along a wedge-shaped interface 

and then to a real value (cv„ < a < lit) can clearly be seen 
from the obtained numerical results. 

2 Analysis 

It is well known that the complex variable function method 
proposed by Muskhelishvili (1953) provides a most effective 
approach to analyze the plane elastic problem. According to 
this method, the stresses (axx, ayy, axy), the resultant force 
functions (X, Y), and the displacements (u, v) can be de­
scribed by two complex potentials 4>(z) and co(z) 

axx+ayy = 4Re[^(z)] 

ayy-iaxy=i(z) + ( z - z ) # ' U ) + f l ( z ) (1) 

P= - Y+iX=<j>{z) + (z-zH'(z) +U(z) (2) 

2n{u + iv) = n<t>(z)- (z-z)4>' (z)-u(z) (3) 

where $ (z) = <t>' (z) and Q(z) = co' (z), /x is the shear modulus 
of elasticity, K = 3 - Av for the plane strain problem, K = (3 
- v)/{\ + v) for the plane stress problem, and vis the Poisson's 
ratio. 

We seek the solution of the problem in some region 7? (R 
= R\ + R2, Fig. 1) surrounding by a traction-free interface 
crack. The elastic constants and the complex potentials are 
denoted by /xb KU < M Z ) , W I U ) and /x2) K2, 4>2(Z), m(z) for 
the regions R\ and R2, respectively. From Eqs. (2) and (3) the 
continuation condition of the resultant force and the displace­
ment along the positive part of real axis gives rise to the fol­
lowing relations: 

4>t(x)+wt(x) =<fe- (x)+^T<XJ (*>0) (4) 

H2(K\<I>\ {x)-at(x))=m(Ki<l>i(x)-W2(x)) (*>0), (5) 

since along the crack faces OA and OB we have 

Z = zexp(2/a) (z€OA or zeOB). (6) 

Therefore, the traction-free condition along the upper and 
lower crack faces can be expressed by 

0,(z) + (exp(2ra)- 1)1 <f>'\ (z) + w,(z) = 0 (z€OA) (7) 

02(z) +(exp(2/a)- l)z <fe (z) +o>2(z) = 0 (z€OB). (8) 

In the following analysis we let the complex potentials take 
the following expression: 

<t>l(z)=Plz
a-'b + glz

a+ib 

wdz)=slz
aJrib + hza->b (9) 

Mz)=P2Za-ib + q2z
a+ib 

o>2(z)=s2z
a+ib + t2z

a~ib (10) 

where/?!, qu S\, tx, p2, q2, s2, and t2 are complex values. In 
addition, the value E = a - ib (or a + ib) will be determined 
by the condition of a nontrivial solution of the problem and 
is called the eigenvalue for a crack problem in the bonded 
wedges. 

Substituting Eqs. (9) and (10) in (4), (5), (7), and (8) yields 
eight equations. Furthermore, after eliminating sit tit s2, and 
t2 in these equations we get the following equations: 

(1 - e, )pi - e3q, - (1 - exe2)p2 + e3q2 = 0 (11) 
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Fig. 2 Eigenvalue (E = a - Ib) distribution for the leading term under 
the conditions of (i, = /J2 = 2.7/1.3, /t, = 1.0 and n2 = 2.0 (see Eqs. (22) 
and (23)) 

/*2(*i + e, )Pi + ,u2e3<7i - /xi (K2 + e,e2)P2- /*ie3tf2 = 0 (12) 

-e 4Pi + ( l - l / e 1 ) ? 1 + e 4 /72- ( l - l / (e ie 2 ) )92 = 0 (13) 

M2e4Pi + /*2(Ki + l /e i )<7i- /^4P2-MK2+l/ (e ie2))42 = 0(14) 

where 

ei = exp(2(6 + /fl)a) e2 = exp(-4ir(6 + /a)) 

e3= (« - /6 ) ( exp (2 / a ) - l ) , e4 = (a- /6)(exp(-2j 'a) - 1 ) . 

(15) 

After some manipulation, the condition of the nontrivial so­
lution for pu qu p2, and q2 gives 

A = Di + iD2 = 0 (16) 

where 

A= (fj2/e2)ei2+ (g2 + gx/e2)/ex + [- (A+fl+fl+fl) 

+ Vf2+f2
2)e3e4-f

2(eie4)
2+fiMe2+l/e2)] 

+ (g2 + g\e2)ei+(f1f2e2)e
2
1 (17) 

fl = Pl-P2i / 2 = ^l«2-K2Ml> / 3 = /*l +/*2«1» / t = /*2 + /*l*2 

ft = - / . / . ( I - e3e4) -f2f3, g2 = / , / 3 ( l - e3e4) + / 2 / 4 . (18) 

After using two parameters defined by Dundurs (1969) 

/ X 2 ( K I + 1 ) - ^ I ( K 2 + 1 ) _ M2<«1 - 1) - Ml(«2 - 1) , 1 9 , 

/x2(«i + l ) + HI(K2 + l ) ' /*2(«i + l ) + MI(K2 + 1 ) ' 

we get 

J\ - , /4> / 2 ~ ~ 1 /4) / 3 — ', /4-
1 - 7 

(20) 
1 —y "" " ' l —7^ 

Therefore, Eq. (16) can be rewritten as 

A=f2
4Al(a-ib,6,y,a) = 0. (21) 

The above equation shows that the eigenvalue E = a - ib 
depends on the material constants (8 and 7) and the wedge 
angle (a) only. 

Fig. 3 Eigenvalue (£ = a - ib) distribution for the leading term under 
the conditions of JM = p2 = 2.7/1.3, fi, = 1.0 and ji2 = 5.0 (see Eqs. (22) 
and (23)) 

5 1-4 

Fig. 4 Eigenvalue (E = a - ib) distribution at the vicinity of Re(£) 
= 1.0 under the conditions of ̂  = ft2 = 2.7/1.3, /», = 1.0 and ji2 = 2.0, 
5.0 (see Eq. (24)) 

a\=f\(a), bi = 0, ( 0 < a < a c and au<a<2ir) 

a2=f2{ot), b2 = 0 ( 0 < a < a c and a„<a<27r) . (22) 

(b) If a is in the same vicinity of a = it, we can find a 
complex eigenvalues E = a - ib with the interval ac < a < 
au. In this case, the calculated eigenvalues can be expressed as 

a=f3(a), b=f4(a) ( a c < a < a „ ) . (23) 

The calculated results for two cases /*2 = 2.0, 5.0 (/q = K2 = 
2.7/1.3, fn = 1.0) are plotted in Figs. 2-3, respectively. 

In addition, we also seek the eigenvalues in the vicinity of 
Re(£') = 1.0. The calculated two eigenvalues can be expressed 
by 

« i = / s ( « ) , 6i = 0 (0<a<27r) 

«2=/6(«) = l, b2 = 0 (0<a<27r) (24) 

It is seen that the one eigenvalue is always equal to unity and 
another is variable depending on the angle a. The calculated 
results are plotted in Fig. 4. 

3 Results 

The eigenvalue E = a — ib was evaluated by some numerical 
technique. To shorten the length of the present Note the detail 
of computation is omitted here. It is well known-that the most 
important eigenvalue in fracture analysis is the one relating to 
the leading term in the expansion form, which makes the stress 
infinite and the displacement finite. Clearly, the mentioned 
eigenvalue in the isotropic case is £ = a = 0.5. 

Thus, we first find the eigenvalue in the vicinity of Re(ii) 
= 0.5. The numerical computation shows the following results: 

(a) If a is rather small (a > 0) or rather large (a < 2TT), 
we always find two real eigenvalues ax and a2 (b = 0) within 
the intervals 0 < a < ac and au < a < 27T. The calculated 
eigenvalues can be expressed as 
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On the Convergence of Karhunen-
Loeve Series Expansion for a 
Brownian Particle 

W. G. Faff11 and G. Ahmadi11'12 

A linear Langevin equation for the velocity of a Brownian 
particle is considered. The equation of motion is solved and 
the Karhunen-Loeve expansion for the particle velocity is de­
rived. The mean-square velocity as obtained by the truncated 
Karhunen-Loeve expansion is compared with the exact solu­
tion. It is shown, as the number of terms in the series increases, 
the result approaches that of the exact solution asymptotically. 

0 = 
3%iMd 

Ccm 
(2) 

and n(t) is a zero-mean Gaussian white noise process with a 
constant spectral intensity, S0, given by 

S„ = 
2l6vkTp 

*d>pl
pCc 

(3) 

Here, /x is the kinematic viscosity, d is the particle diameter, 
Cc is the Cunningham correction factor, m is the mass of the 
particle, v is the kinematic viscosity, k is the Boltzmann con­
stant, 7 is the temperature, p is the fluid density, and pp is the 
particle density. A white noise process may be formally defined 
as the derivative of a Wiener process (Papoulis, 1984). A digital 
simulation procedure for generating white noise process cor­
responding to molecular agitation was described by Ounis et 
al. (1991). 

Assuming that the motion starts from rest, 

u(0) = 0. (4) 

Equation (4) is the initial condition for particle velocity. 

Karhunen-Loeve Expansion. According to the Karhunen-
Loeve Theorem (Loeve, 1955), the random velocity has a series 
expansion of the form 

u(t) = J]Cn$n(t) (5) 

where *„(/) are the KL orthonormal basis and C„ are inde­
pendent random coefficients. The KL basis are the eigen-
functions of the Fredholm equation given by 

RmVi,t2)*«V2)dt2 = \„*n(ti). (6) 

Introduction 
Brownian motion was first observed by Robert Brown in 

1827 while studying pollen particles suspended in liquid, and 
Brownian diffusivity was first estimated by Einstein (1903). 
An extensive exposition of the theory of Brownian motion was 
provided by Chandrasekhar (1943). 

Use of the Karhunen-Loeve (KL) expansion (Loeve, 1955) 
for representing random data has attracted considerable at­
tention in the field of turbulence (Lumley, 1967) and other 
areas (Lin and Yong, 1986). Here, the Karhunen-Loeve ex­
pansion for a Brownian particle is considered and analytical 
expressions for orthogonal basis are derived. The particle ve­
locity response statistics as evaluated from the truncated series 
are compared with the exact values and the convergence of the 
KL series is discussed. 

Here the kernel Ruu(t\, h) is the particle velocity autocorre­
lation function, and eigenvalues X„ = <IC„I2>, with " < > " 
denoting the expected value (ensemble average) and T, is a 
specified time duration. 

Following the procedure outlined by Lin and Yong (1986), 
Eq. (6) may be restated as 

where 

2TTC< 

L_lL^n(t)=~^„(t) 

r d a r d 

dt dt 

(7) 

(8) 

The required boundary conditions are 

#„(0) = 0, L , * „ ( D = 0 . (9) 

The eigenfunctions for the boundary value problem, (7)-
(9), are given by 

Analysis 

Equation of Motion. The linear Langevin equation for the 
velocity of a Brownian particle is given as 

du 
- + f3u = n(t) (1) 

*„(/)= A, sin(U) 

dt 

where 
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2irS„ 

where 

are solutions to the transcendental equation 

t a n ( | „ r ) = ^ . 

The corresponding eigenvalues are 

2irS„ 
X"~? + ti 

(10) 

(11) 

(12) 

(13) 

Using the normality condition, 
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A linear Langevin equation for the velocity of a Brownian 
particle is considered. The equation of motion is solved and 
the Karhunen-Loeve expansion for the particle velocity is de­
rived. The mean-square velocity as obtained by the truncated 
Karhunen-Loeve expansion is compared with the exact solu­
tion. It is shown, as the number of terms in the series increases, 
the result approaches that of the exact solution asymptotically. 
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and n(t) is a zero-mean Gaussian white noise process with a 
constant spectral intensity, S0, given by 

S„ = 
2l6vkTp 

*d>pl
pCc 

(3) 

Here, /x is the kinematic viscosity, d is the particle diameter, 
Cc is the Cunningham correction factor, m is the mass of the 
particle, v is the kinematic viscosity, k is the Boltzmann con­
stant, 7 is the temperature, p is the fluid density, and pp is the 
particle density. A white noise process may be formally defined 
as the derivative of a Wiener process (Papoulis, 1984). A digital 
simulation procedure for generating white noise process cor­
responding to molecular agitation was described by Ounis et 
al. (1991). 

Assuming that the motion starts from rest, 

u(0) = 0. (4) 

Equation (4) is the initial condition for particle velocity. 

Karhunen-Loeve Expansion. According to the Karhunen-
Loeve Theorem (Loeve, 1955), the random velocity has a series 
expansion of the form 

u(t) = J]Cn$n(t) (5) 

where *„(/) are the KL orthonormal basis and C„ are inde­
pendent random coefficients. The KL basis are the eigen-
functions of the Fredholm equation given by 

RmVi,t2)*«V2)dt2 = \„*n(ti). (6) 

Introduction 
Brownian motion was first observed by Robert Brown in 

1827 while studying pollen particles suspended in liquid, and 
Brownian diffusivity was first estimated by Einstein (1903). 
An extensive exposition of the theory of Brownian motion was 
provided by Chandrasekhar (1943). 

Use of the Karhunen-Loeve (KL) expansion (Loeve, 1955) 
for representing random data has attracted considerable at­
tention in the field of turbulence (Lumley, 1967) and other 
areas (Lin and Yong, 1986). Here, the Karhunen-Loeve ex­
pansion for a Brownian particle is considered and analytical 
expressions for orthogonal basis are derived. The particle ve­
locity response statistics as evaluated from the truncated series 
are compared with the exact values and the convergence of the 
KL series is discussed. 

Here the kernel Ruu(t\, h) is the particle velocity autocorre­
lation function, and eigenvalues X„ = <IC„I2>, with " < > " 
denoting the expected value (ensemble average) and T, is a 
specified time duration. 

Following the procedure outlined by Lin and Yong (1986), 
Eq. (6) may be restated as 

where 

2TTC< 

L_lL^n(t)=~^„(t) 

r d a r d 

dt dt 

(7) 

(8) 

The required boundary conditions are 

#„(0) = 0, L , * „ ( D = 0 . (9) 

The eigenfunctions for the boundary value problem, (7)-
(9), are given by 

Analysis 

Equation of Motion. The linear Langevin equation for the 
velocity of a Brownian particle is given as 

du 
- + f3u = n(t) (1) 

*„(/)= A, sin(U) 

dt 

where 
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where 

are solutions to the transcendental equation 
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The corresponding eigenvalues are 
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Table 1 Listing of first nine eigenvalues for 0T = 5 

n 

inT 

SfV 

1 

2.654 

3.12 

2 

5.454 

1.83 

3 

8.391 

1.05 

4 

11.409 

0.644 

5 

14.47 

0.427 

6 

17.556 

0.3 

7 

20.657 

0.221 

S 

23.769 

0.17 

9 

26.887 

0.134 

4.0 

Fig. 1 Comparison of the mean-square velocities for the truncated 
Karhunen-Loeve series 

f §„{t)2dt=\, 

the coefficients A„ in Eq. (10) are given as 

A„ = 
21, 

t„T-sm(H„T) 

(14) 

(15) 

The mean-square velocity associated with the KL series is 
given by 

_ (16) (u2(t)) = J]\„\<i>n(t)\2 

and the exact transient mean-square velocity response as ob­
tained by use of the impulse response method is 

TTS, 
< « z ( 0 > = ^ ( l - e - * ' ) . (17) 

Results 
For a nondimensional time duration of [5T = 5, Table 1 

provides a listing of the first nine values of £„T and X„. The 
weightings of different modes in Eq. (15) which correspond 
to eigenvalues X„ can be clearly seen from this table. It is 
observed that X„+1 is roughly about 80 percent of X„ for higher 
modes. Figure 1 compares the dimensionless mean-square ve­
locity responses, /3<«2>/S0, as obtained by the truncated KL 
expansion with the exact solution given by (17). The gradual 
convergence of the series solution to the exact mean-square 
response is clearly observed from this figure. Figure 2 shows 
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Fig. 2 Variation of energy ratio with order of truncation 

the energy ratio for various orders of truncation of the KL 
series. Here the energy ratio is defined as the ratio of area 
under the mean-squared response curve as obtained by the 
truncated KL series to that of the exact one. From Fig. 2 it is 
observed that the first few terms of the KL series capture most 
of the energy. However, the convergence is asymptotic and a 
large number of terms are needed to recover the exact result. 

Conclusion 
For a finite time duration, the exact Karhunen-Loeve or­

thogonal basis for Brownian particles are derived. The mean-
square velocities as evaluated from the truncated KL series 
expansion are compared with the exact one. It is shown that 
the first few terms of the series contains a substantial fraction 
of the energy of the response. However, for a high resolution 
description, consideration of a large number of terms are re­
quired. 
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Work-Conjugate Boundary Conditions 
Associated With the Total Rotation 
Angle of the Shell Boundary 

W. Pietraszkiewicz 

Introduction 
The general structure of four work-conjugate static and geo­

metric boundary conditions for the nonlinear theory of thin 
shells expressed in terms of displacements of the reference 
surface as basic independent field variables was discussed by 
Makowski and Pietraszkiewicz (1989). It was proved, in par­
ticular, that the angle w, of total rotation of the shell boundary 
can be chosen as the fourth parameter which, together with 
three displacement components, describes an arbitrary defor­
mation of the shell lateral boundary surface. In this report we 
present explicit derivation of the set of work-conjugate bound­
ary conditions associated with the angle u>,. 

Notation and Basic Relations 
Let the reference surface M of undeformed shell be defined 

by the position vector r(9a), where 9", a = 1,2, are surface 
curvilinear coordinates. On M we have the natural base vectors 
aa = dr/99", the covariant (components of the surface) metric 
tensor aap = aa«a,3 with determinant a = \aap\, and the unit 
normal vector n = o_1/2aiXa2. The boundary contour C of 
M consists of the finite set of piecewise smooth curves r(s) = 
r[Qa(s)], where 5 is the arc length along C. With each regular 
point M € C we associate the unit tangent vector t = dx/ds 
= r' = taaa and the outward unit normal vector v = r_„ = 
t x n = vaaa, where ( )_„ denotes the outward normal deriv­
ative at_C. _ 

LetMand Cbe deformed configurations of Mand Cdefined 
by the position vectors r(9") = r(9a) + u(9a) and r[9a(s)] 
= t(s) + u (s), respectively, where u is the displacement vector 
while 9™ and 5 are convected coordinates. With M and C we 
can associate analogously defined geometricquantities, only 
now marked by an overbar: a„, aap, a, n, t, ~v etc. All the 
quantities can be expressed through the geometry of M and C 
and the displacement field u by the relations presented in more 
detail in Pietraszkiewicz (1989). In particular, on C we have 

r ' = t + u'=a,t , ii=7"1fi„Xr', (la) 
f<„ = v + \itV = ail(jv + 2yJ), (lb) 

a,= \f'\, 27„, = ri„.r', (lc) 
f = a/a= lr,„l2lr' l 2 - ( r>r ' ) 2 , (lc?) 

a f l=y-1(fl f /-27 r t«r1^)? + flr'/flt. (le) 
It follows from (5) of Makowski and Pietraszkiewicz (1989) 

that within the nonlinear theory of thin shells the work-con­
jugate boundary and corner conditions should follow from the 
line integral 

\ [(Tlsvl3-J)'Sa + (Mal3aolv/i-li)^Sn]ds, (2) 
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which should vanish identically for any kinematically admis­
sible virtual displacement field 5r = Su. Here Nal3 and Af"3 

are symmetric Piola-Kirchhoff type stress resultant and stress 
couple tensors, C/is the part of C where the external boundary 
force and moment resultant vectors T and H are prescribed, 
while T3 and 5n are given by 

T<3 = AT<3aa + AT'3n,a+ ([(MXaax),a + h].a/3)n) (3) 

5n = - ^ ( n . 5 u , „ ) - ^ ( n - S u ' ) , (4) 
where h in (3) is the external surface moment vector, ( ) \ a 
denotes the covariant derivative in the undeformed surface 
metric «a/3 and the moment H used in (2) is related to the 
external boundary couple resultant vector M by M = n X H. 

All the vectors appearing in (1), (2), (3), and (4) are under­
stood to be expressed in components with respect to the known 
triad v, t, n of C. 

If (4) is introduced into (2) and integration by parts of terms 
containing 5u' is performed, the vanishing of (2) allows us to 
derive natural static boundary and corner conditions to be 
satisfied on Cf. However, the effective force and couple re­
sultants appearing in such natural boundary conditions do not 
possess corresponding work-conjugate geometric counter­
parts, because the differential 1-form n • 8u,p is not integrable 
(see the Appendix of Makowski and Pietraszkiewicz, 1989). 
In what follows we derive an alternative formula for Sn ex­
pressed entirely in terms of 8co, and <5u'. 

Total Rotation of the Shell Boundary 
The total rotation of the shell lateral boundary surface can 

be described either by the total rotation tensor R, (proper 
orthogonal) or by an equivalent total finite rotation vector ft,, 
which according to Pietraszkiewicz (1979, 1980) are expressed 
in terms of displacement vector u by 

R, = F(g)j'-r-t(g)t + n®n, 0, = - (eXp + tXt + nxn), (5) 

where v, t, iT are known functions of u v and u' following from 
(1). 

On the other hand, R, and % can be represented through 
the unit vector e describing the rotation axis and the angle o>, 
of rotation about e according to 

R, = cosw,l + sinco,exl + (l -cosco,)e(x)e, Q, = sinw,e, (6) 
where 1 is the metric tensor of three-dimensional Euclidean 
space and ® denotes the tensor product. 

From (5) and (6) it follows that 
trR, = 2cosco,+ l=P'y + t»t + n-n, (7) 

e = e„c + e,t + e„n, (8) 

2e„sino>, = t»n - n't, 2e,sinw, = iT• v — v«n, 
2e„sino),= i ' ' t~t 'c . (9) 

Therefore, e and «, are known functions of u„ and u' as well. 
Taking the variation of (7) we obtain 

-2smco,8co, = 5)''c + 5t»t + 5n»n. (10) 

Thus in order to express 8u>, in terms of 8u:V and 5u', such 
expressions for Si> and &t should be given. 

Since the variation of aj = r' • f' leads to Sa, = t • 5u' 
then 

5u'=(t(g)t)»5u'+a,5t. (11) 
On the other hand, 5u' = 1 • 5u' in the basis v, t, n 
reads 

<5u' = (p<g)p)'8u' + (t(8)t)«5u' + (n®n)«6u'. (12) 

From (11) and (12) it follows that 
8i = a^l(v®v + n®ii)'8u'. (13) 
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Then, (4) with (le) leads to 

5n = - a,j~' (v®n)«5u „ + a,~' (j~ l2yvlv<S)n -1(x)ii)»5u'. 
(14) 

Finally, the variation of v = t x n with the help of (13) and 
(14) yields 

5y = a /y~1(n®n).6u,-ar ' (y_ 127wn(x)i i + t®5;).5u'. (15) 

Including (15), (13), and (14) into (10) and using (9) we obtain 

5co,= -a,y'_1e,(n-5u1,) + flr1(e„n+y'~127„^,n-e„y)-5u'. 
(16) 

Now, from (16) we calculate n • 5u„ expressed in terms of 
<5co, and 5u' only; this result introduced into (4) gives 

5n = qS«,-f-L»5u', (17) 

where 

q = arlerlJVfflP, (18a) 
L = «r2e,~ ljv^®(eja. +j-%rte,n - e„v) - ^ap<g)5. (186) 

Please note that by (17) <5n is now expressed entirely in terms 
of 6w, and 5u' . The expression (17) provides a convenient 
alternative to earlier formulae for 5n reviewed by Pietrasz-
kiewicz (1989). 

Work-Conjugate Boundary Conditions 
Let us introduce (17) into (2) and apply integration by parts 

to terms containing 5u' . This allows us to transform the line 
integral into the final form 

f [(P-P*).fiu + (M-M*)&o,]£fc+y: (F„-F„*Wu„, (19) 

where the effective force resultants and the bending couple 
resultants are defined by 

P = 1 % + F ' , F = - A f ^ a ^ -L, (20a) 

p * = T + F * ' , F * = - H - L , (206) 

M=MaPaav^q, M * = H - q , (20c) 

F*=F*(sn + 0)-F*(s,,-0), un = u(sn). QM) 

From vanishing of (19) it follows that the static boundary 
and corner conditions take the form 

P(s)=P*(s) , M(s)=M*{s) onCf, (21a) 

F„ = F„ at each corner M„ 6 Cj. (216) 

It is also seen from (19) that the geometric boundary conditions 
which are work-conjugate to the static ones (21) are given by 

u (s) = u* (s), ui(s) = co* (s) on C„, (22) 

where, by definition, to,(.j) = o),[uiV(s), u'(^)] and ( )* denotes 
the prescribed value. All the vector quantities in (20), (21), and 
(22) are understood to be expressed in components with respect 
to the known triad v, t, n of C. 

The set of work-conjugate boundary conditions (21) and 
(22) is valid for unrestricted displacements, rotations, strains 
and/or changes of curvatures of the shell reference surface. 
In specific applications to nonlinear shell problems the bound­
ary conditions (21), (22) may happen to be more convenient 
than two known alternative sets of work-conjugate boundary 
conditions derived earlier in (2.32) of Pietraszkiewicz (1984) 
and in (32), (33), and (41) of Makowski and Pietraszkiewicz 
(1989). 
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The Effect of Compressibility on the Stress 
Distributions in Thin Elastomeric Blocks and 
Annular Bushings1 

Charles W. Bert2. The authors are to be congratulated for 
obtaining a very interesting analysis of the behavior of a thin 
elastomeric block compressed between rigid plates to which it 
is bonded. Their paper clearly illustrates the quantitatively 
large effect of even small changes in Poisson's ratio from the 
incompressible value of 1/2. 

Recently, the writer undertook the analysis of a thin elastic 
plate on a compressible foundation (Bert, 1992). This may be 
considered to be an extension of the previous work of Dillard 
(1989) to the compressible case. Equations (3), (4), (8), and 
(9) in the intermediate stops of this analysis are exactly equiv­
alent to the author's Eq. (24). For the deflection influence 
coefficient due to a unit load applied at the center of a thin, 
square, isotropic plate, the result obtained was 

K= (4a*/D) 2 S 
ir2(m2 + n2) + C 

ir6(m2 + n2)i + Tr4(m2- n2)2C + F 

where C = 18(a/h)2(l -2v)/{\ +v) and F = 144 
(a/h)6(l -v2

p)/(G + EP). Here, a and h are length and thick­
ness of the plate, G and v are the shear modulus and Poisson's 
ratio of the interlayer, D is the plate flexural rigidity, Ep and 
vp are the elastic modulus and Poisson's ratio of the plate, and 
m and n are the longitudinal and transverse half-wave numbers. 
The above Result reduces to that of Dillard (1989) if v = 1/2, 
since then C vanishes. 
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solution is given by a series, the behavior of the solution is 
difficult to obtain numerically when the small parameter that 
describes the width of the ligament tends to zero, because, as 
the authors mention: "in the neighborhood of the straight 
boundary (i.e., for small a), azz (0, y) cannot be accurately 
evaluated because of the slow convergence of the series so­
lution, as was also mentioned by Jeffrey (1921)." However, 
this type of difficulty has been overcome (Callias and Mar-
kenscoff, 1989) by a singular perturbation analysis of the so­
lution and the order of the stress amplification can be obtained. 
In the case of no stiffener (Mindlin problem) the stress was 
shown (Callias and Markenscoff, 1989) to be aM ~ ((d -
R)/R)~1/2, and it would be very interesting if the authors can 
show how the stiffener changes the ( - 1/2) exponent of (d -
R)/R. In the case, for instance, of the Koiter problem (Koiter, 
1957), when a straight boundary is introduced on the other 
side of the hole, the exponent is ( - 1). The controlling effect 
of the stress distribution in the thin ligament is how the re­
sultant force and moment transmitted by the ligament depend 
on (d - R)/R (Markenscoff andDundurs, 1992; Keller, 1993), 
which make the order of the stress amplification a function 
of both the loading and the geometry. 

"Singular Asymptotic Analysis 
" Quart. Appl. Math., Vol. 47, 
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Complex Modes and Solvability of Nonclass-
ical Linear Systems5 

Stress Distribution in an Edge-Stiffened Semi-
infinite Elastic Plate Containing a Circular 
Hole3 

X. Markenscoff4. As in all problems of geometries con­
taining holes (or inclusions) and free boundaries, in which the 
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S. M. Shahruz . The authors consider the equation of mo­
tion of an «-degree-of-freedom linear system represented by 

Mx(t) + Cx(t)+Kx(t)=f(t), (1) 

where the real n x n matrices M, C, and K do not necessarily 
satisfy symmetry, nonsingularity, and positive definiteness 
properties. The authors present conditions under which the 
system (1) is solvable. The system (1) is solvable when the 
matrices M, C, and K can be upper triangularized simulta­
neously, i.e., there exists a nonsingular real n x n matrix S 
that results in upper triangular matrices S~lMS, S~lCS, and 
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Applications of Potential Theory in Mechanics: A Selection 
of New Results, by V. I. Fabrikant, Kluwer Academic Pub­
lishers, Dordrecht, The Netherlands, 1989. 467 pages. Price: 
$119.00. 

REVIEWED BY M. HANSON1 

In a field as old and well defined as potential theory, it is 
seldom that a new idea or method can be developed which will 
have a significant impact on the way problems are approached 
and solved in the future. That is what the author claims to 
have accomplished with this book and this claim is well founded 
in the method he has developed to formulate and solve mixed 
boundary value problems in potential theory. This book de­
velops the new method in the initial chapters and then applies 
it to various problems in the latter sections. The new results 
presented are those obtained by the author with reference to 
other research for comparative purposes when possible. 

Chapter 1 presents a description of the new method for 
solving boundary value problems in potential theory. An in­
tegral representation for the reciprocal of the distance between 
two points is first developed, which is the foundation of his 

1 Department of Engineering Mechanics, University of Kentucky, Lexington, 
KY 40506-0046. 

method. Chapter 2 moves on to mixed boundary value prob­
lems for a transversely isotropic half-space with a circular line 
dividing the boundary conditions while Chapter 3 addresses 
mixed-mixed boundary value problems. Chapters 4 and 5 apply 
the integral equation solutions developed in Chapter 2 to var­
ious crack and punch problems. 

This book by Professor Fabrikant is a definite aid for re­
searchers in elasticity as well as other fields in which the equa­
tions are reducible to those of potential theory. Furthermore, 
those interested in developing closed-form solutions to half-
space problems with a circular line dividing the boundary con­
ditions will find this book invaluable. Even with integral trans­
form formulations, the final steps in piecing together closed-
form solutions require the evaluation of formidable integrals 
for which this book has developed a systematic procedure. If 
Professor Fabrikant's method is adopted for solving mixed 
boundary value problems, his book can be used as a learning 
tool since it is rich with detail on the analysis and it contains 
many problems for exercises where the answers are also given. 
Although the method requires no knowledge of special func­
tions, only integral and differential calculus, the manipulations 
are often formidable and this book is best suited to researchers 
or students who are well versed in the equations of potential 
theory and who are comfortable with the idea of mixed bound­
ary value problems. 
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